Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments
Abstract
:1. Introduction
2. Membrane Curvature
3. Membrane Proteins Generate Membrane Curvature
3.1. Peripheral Membrane Proteins
3.2. Integral Membrane Proteins
3.3. Mechanical Force by the Cytoskeleton
4. Membrane Curvature Affects the Function and Distribution of Membrane Proteins
4.1. High Membrane Curvature to Peripheral Membrane Proteins
4.2. High Membrane Curvature to Integral Membrane Proteins
4.3. Positive/Negative Membrane Curvature to Pore-Forming Proteins
5. Perspective on the Disease Treatments
5.1. Disease Progression
5.2. Disease Prevention
6. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Abbreviation | Definition |
AH | Amphipathic helix |
ALPS motif | Amphipathic lipid packing sensor motif |
BAR domain | Bin/Amphiphysin/Rvs domain |
CL | Cardiolipin |
COPI/II | Coat protein complex I/II |
DGK | Diacylglycerol kinase |
EHD2 | EH-domain containing 2 |
ENTH domain | Epsin N-terminal homology domain |
ER | Endoplasmic reticulum |
FRET | Fluorescence resonance energy transfer |
GL1 | GABARAP-L1 |
HBV | Hepatitis B virus |
HBx | Hepatitis B virus X protein |
PA | Phosphatidic acid |
PC | Phosphatidylcholine |
PE | Phosphatidylethanolamine |
PI | Phosphatidylinositol |
PI 3-kinase | Phosphoinositide 3-kinase |
PTA | Proton transfer activity |
Sec14L3 | Sec14-like 3 |
Sh | Short-hairpin |
ShRNA-Bin1 | Short-hairpin RNA targeting Bin1 |
SNARE | Soluble N-ethylmaleimide-sensitive factor attachment protein receptor |
Synj1 | Synaptojanin 1 |
TPD54 | Tumor protein D54 |
α-HL | α-hemolysin |
β2AR | β2-adrenergic receptors |
References
- McMahon, H.T.; Gallop, J.L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 2005, 438, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Pomorski, T.G.; Nylander, T.; Cárdenas, M. Model cell membranes: Discerning lipid and protein contributions in shaping the cell. Adv. Colloid. Interface Sci. 2014, 205, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Bigay, J.; Antonny, B. Curvature, lipid packing, and electrostatics of membrane organelles: Defining cellular territories in determining specificity. Dev. Cell 2012, 23, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Shibata, Y.; Hu, J.; Kozlov, M.M.; Rapoport, T.A. Mechanisms shaping the membranes of cellular organelles. Annu. Rev. Cell Dev. Biol. 2009, 25, 329–354. [Google Scholar] [CrossRef] [PubMed]
- Chang-Ileto, B.; Frere, S.G.; Chan, R.B.; Voronov, S.V.; Roux, A.; Di Paolo, G. Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev. Cell 2011, 20, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Doucet, C.M.; Talamas, J.A.; Hetzer, M.W. Cell cycle-dependent differences in nuclear pore complex assembly in metazoa. Cell 2010, 141, 1030–1041. [Google Scholar] [CrossRef] [PubMed]
- Cardenas, J.; Rivero, S.; Goud, B.; Bornens, M.; Rios, R.M. Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms. BMC Biol. 2009, 7, 56. [Google Scholar] [CrossRef]
- Ueki, M.; Iwamoto, M. Fluorescent labeling in size-controlled liposomes reveals membrane curvature-induced structural changes in the KcsA potassium channel. FEBS Lett. 2021, 595, 1914–1919. [Google Scholar] [CrossRef]
- Aimon, S.; Callan-Jones, A.; Berthaud, A.; Pinot, M.; Toombes, G.E.; Bassereau, P. Membrane shape modulates transmembrane protein distribution. Dev. Cell 2014, 28, 212–218. [Google Scholar] [CrossRef]
- Fertuck, H.C.; Salpeter, M.M. Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc. Natl. Acad. Sci. USA 1974, 71, 1376–1378. [Google Scholar] [CrossRef]
- MacKinnon, R. Potassium channels. FEBS Lett. 2003, 555, 62–65. [Google Scholar] [CrossRef]
- Unwin, N. Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 2005, 346, 967–989. [Google Scholar] [CrossRef] [PubMed]
- You, D.G.; Cho, Y.Y.; Lee, H.R.; Lee, J.H.; Yu, S.J.; Yoon, J.H.; Yoo, Y.D.; Kim, Y.J.; Lee, G.Y. Hepatitis B virus X protein induces size-selective membrane permeabilization through interaction with cardiolipin. Biochim. Biophys. Acta Biomembr. 2019, 1861, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Pabis, A.; Rawle, R.J.; Kasson, P.M. Influenza hemagglutinin drives viral entry via two sequential intramembrane mechanisms. Proc. Natl. Acad. Sci. USA 2020, 117, 7200–7207. [Google Scholar] [CrossRef] [PubMed]
- Bhaskara, R.M.; Grumati, P.; Garcia-Pardo, J.; Kalayil, S.; Covarrubias-Pinto, A.; Chen, W.; Kudryashev, M.; Dikic, I.; Hummer, G. Curvature induction and membrane remodeling by FAM134B reticulon homology domain assist selective ER-phagy. Nat. Commun. 2019, 10, 2370. [Google Scholar] [CrossRef] [PubMed]
- Gowrisankaran, S.; Wang, Z.; Morgan, D.G.; Milosevic, I.; Mim, C. Cells Control BIN1-Mediated Membrane Tubulation by Altering the Membrane Charge. J. Mol. Biol. 2020, 432, 1235–1250. [Google Scholar] [CrossRef]
- McMahon, H.T.; Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 2015, 128, 1065–1070. [Google Scholar] [CrossRef] [PubMed]
- Morozova, D.; Guigas, G.; Weiss, M. Dynamic structure formation of peripheral membrane proteins. PLoS Comput. Biol. 2011, 7, e1002067. [Google Scholar] [CrossRef]
- Boes, D.M.; Godoy-Hernandez, A.; McMillan, D.G.G. Peripheral Membrane Proteins: Promising Therapeutic Targets across Domains of Life. Membranes 2021, 11, 346. [Google Scholar] [CrossRef]
- Monje-Galvan, V.; Klauda, J.B. Peripheral membrane proteins: Tying the knot between experiment and computation. Biochim. Biophys. Acta 2016, 1858, 1584–1593. [Google Scholar] [CrossRef]
- Kirchhausen, T. Three ways to make a vesicle. Nat. Rev. Mol. Cell Biol. 2000, 1, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Stahelin, R.V. Peripheral proteins as drug targets. Curr. Drug Targets 2008, 9, 601–602. [Google Scholar] [CrossRef] [PubMed]
- Zimmerberg, J.; Kozlov, M.M. How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 2006, 7, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, R.; Groves, J.T. Curvature and spatial organization in biological membranes. Soft Matter 2006, 3, 24–33. [Google Scholar] [CrossRef]
- Zimmerberg, J.; McLaughlin, S. Membrane curvature: How BAR domains bend bilayers. Curr. Biol. 2004, 14, R250–R252. [Google Scholar] [CrossRef]
- Peter, B.J.; Kent, H.M.; Mills, I.G.; Vallis, Y.; Butler, P.J.; Evans, P.R.; McMahon, H.T. BAR domains as sensors of membrane curvature: The amphiphysin BAR structure. Science 2004, 303, 495–499. [Google Scholar] [CrossRef]
- Goh, S.L.; Wang, Q.; Byrnes, L.J.; Sondermann, H. Versatile membrane deformation potential of activated pacsin. PLoS ONE 2012, 7, e51628. [Google Scholar] [CrossRef]
- Shimada, A.; Niwa, H.; Tsujita, K.; Suetsugu, S.; Nitta, K.; Hanawa-Suetsugu, K.; Akasaka, R.; Nishino, Y.; Toyama, M.; Chen, L.; et al. Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 2007, 129, 761–772. [Google Scholar] [CrossRef]
- Frost, A.; Perera, R.; Roux, A.; Spasov, K.; Destaing, O.; Egelman, E.H.; De Camilli, P.; Unger, V.M. Structural basis of membrane invagination by F-BAR domains. Cell 2008, 132, 807–817. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, Z.; Baumgart, T. Regulation of membrane-shape transitions induced by I-BAR domains. Biophys. J. 2015, 109, 298–307. [Google Scholar] [CrossRef]
- Saarikangas, J.; Zhao, H.; Pykäläinen, A.; Laurinmäki, P.; Mattila, P.K.; Kinnunen, P.K.; Butcher, S.J.; Lappalainen, P. Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr. Biol. 2009, 19, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Pannuzzo, M.; McDargh, Z.A.; Deserno, M. The role of scaffold reshaping and disassembly in dynamin driven membrane fission. Elife 2018, 7, e39441. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, E.M.; Schultz, S.W.; Schink, K.O.; Pedersen, N.M.; Nähse, V.; Carlson, A.; Brech, A.; Stenmark, H.; Raiborg, C. Concerted ESCRT and clathrin recruitment waves define the timing and morphology of intraluminal vesicle formation. Nat. Commun. 2018, 9, 2932. [Google Scholar] [CrossRef]
- Chernomordik, L.V.; Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 2003, 72, 175–207. [Google Scholar] [CrossRef] [PubMed]
- Has, C.; Das, S.L. Recent developments in membrane curvature sensing and induction by proteins. Biochim. Biophys. Acta Gen. Subj. 2021, 1865, 129971. [Google Scholar] [CrossRef]
- Hatzakis, N.S.; Bhatia, V.K.; Larsen, J.; Madsen, K.L.; Bolinger, P.Y.; Kunding, A.H.; Castillo, J.; Gether, U.; Hedegård, P.; Stamou, D. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat. Chem. Biol. 2009, 5, 835–841. [Google Scholar] [CrossRef]
- Campelo, F.; McMahon, H.T.; Kozlov, M.M. The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys. J. 2008, 95, 2325–2339. [Google Scholar] [CrossRef]
- Li, Z.L. Molecular dynamics simulations of membrane deformation induced by amphiphilic helices of Epsin, Sar1p, and Arf1. Chin. Phys. B 2018, 27, 038703. [Google Scholar] [CrossRef]
- Ford, M.G.; Mills, I.G.; Peter, B.J.; Vallis, Y.; Praefcke, G.J.; Evans, P.R.; McMahon, H.T. Curvature of clathrin-coated pits driven by epsin. Nature 2002, 419, 361–366. [Google Scholar] [CrossRef]
- Yorimitsu, T.; Sato, K.; Takeuchi, M. Molecular mechanisms of Sar/Arf GTPases in vesicular trafficking in yeast and plants. Front. Plant Sci. 2014, 5, 411. [Google Scholar] [CrossRef]
- Ambroggio, E.; Sorre, B.; Bassereau, P.; Goud, B.; Manneville, J.B.; Antonny, B. ArfGAP1 generates an Arf1 gradient on continuous lipid membranes displaying flat and curved regions. EMBO J. 2010, 29, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Hanna, M.G.t.; Mela, I.; Wang, L.; Henderson, R.M.; Chapman, E.R.; Edwardson, J.M.; Audhya, A. Sar1 GTPase Activity Is Regulated by Membrane Curvature. J. Biol. Chem. 2016, 291, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.C.; Orci, L.; Hamamoto, S.; Futai, E.; Ravazzola, M.; Schekman, R. Sar1p N-terminal helix initiates membrane curvature and completes the fission of a COPII vesicle. Cell 2005, 122, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Westphal, C.H.; Chandra, S.S. Monomeric synucleins generate membrane curvature. J. Biol. Chem. 2013, 288, 1829–1840. [Google Scholar] [CrossRef] [PubMed]
- Opaliński, Ł.; Kiel, J.A.; Williams, C.; Veenhuis, M.; van der Klei, I.J. Membrane curvature during peroxisome fission requires Pex11. EMBO J. 2011, 30, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Daumke, O.; Lundmark, R.; Vallis, Y.; Martens, S.; Butler, P.J.; McMahon, H.T. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 2007, 449, 923–927. [Google Scholar] [CrossRef]
- Plomann, M.; Wittmann, J.G.; Rudolph, M.G. A hinge in the distal end of the PACSIN 2 F-BAR domain may contribute to membrane-curvature sensing. J. Mol. Biol. 2010, 400, 129–136. [Google Scholar] [CrossRef]
- Farsad, K.; Ringstad, N.; Takei, K.; Floyd, S.R.; Rose, K.; De Camilli, P. Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J. Cell Biol. 2001, 155, 193–200. [Google Scholar] [CrossRef]
- Kahraman, O.; Langen, R.; Haselwandter, C.A. Directed Supramolecular Organization of N-BAR Proteins through Regulation of H0 Membrane Immersion Depth. Sci. Rep. 2018, 8, 16383. [Google Scholar] [CrossRef]
- Henne, W.M.; Kent, H.M.; Ford, M.G.; Hegde, B.G.; Daumke, O.; Butler, P.J.; Mittal, R.; Langen, R.; Evans, P.R.; McMahon, H.T. Structure and analysis of FCHo2 F-BAR domain: A dimerizing and membrane recruitment module that effects membrane curvature. Structure 2007, 15, 839–852. [Google Scholar] [CrossRef]
- Nintemann, S.J.; Palmgren, M.; López-Marqués, R.L. Catch You on the Flip Side: A Critical Review of Flippase Mutant Phenotypes. Trends Plant Sci. 2019, 24, 468–478. [Google Scholar] [CrossRef]
- Ruprecht, J.J.; Kunji, E.R.S. Structural Mechanism of Transport of Mitochondrial Carriers. Annu. Rev. Biochem. 2021, 90, 535–558. [Google Scholar] [CrossRef] [PubMed]
- Szczot, M.; Nickolls, A.R.; Lam, R.M.; Chesler, A.T. The Form and Function of PIEZO2. Annu. Rev. Biochem. 2021, 90, 507–534. [Google Scholar] [CrossRef] [PubMed]
- Zurek, N.; Sparks, L.; Voeltz, G. Reticulon short hairpin transmembrane domains are used to shape ER tubules. Traffic 2011, 12, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Erlandson, K.J.; Bisht, H.; Weisberg, A.S.; Hyun, S.I.; Hansen, B.T.; Fischer, E.R.; Hinshaw, J.E.; Moss, B. Poxviruses Encode a Reticulon-Like Protein that Promotes Membrane Curvature. Cell Rep. 2016, 14, 2084–2091. [Google Scholar] [CrossRef] [PubMed]
- Khaminets, A.; Heinrich, T.; Mari, M.; Grumati, P.; Huebner, A.K.; Akutsu, M.; Liebmann, L.; Stolz, A.; Nietzsche, S.; Koch, N.; et al. Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 2015, 522, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Minauro-Sanmiguel, F.; Wilkens, S.; García, J.J. Structure of dimeric mitochondrial ATP synthase: Novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc. Natl. Acad. Sci. USA 2005, 102, 12356–12358. [Google Scholar] [CrossRef] [PubMed]
- Strauss, M.; Hofhaus, G.; Schröder, R.R.; Kühlbrandt, W. Dimer ribbons of ATP synthase shape the inner mitochondrial membrane. EMBO J. 2008, 27, 1154–1160. [Google Scholar] [CrossRef]
- Blum, T.B.; Hahn, A.; Meier, T.; Davies, K.M.; Kühlbrandt, W. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows. Proc. Natl. Acad. Sci. USA 2019, 116, 4250–4255. [Google Scholar] [CrossRef]
- Khattree, N.; Ritter, L.M.; Goldberg, A.F. Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis. J. Cell Sci. 2013, 126, 4659–4670. [Google Scholar] [CrossRef]
- Thaa, B.; Levental, I.; Herrmann, A.; Veit, M. Intrinsic membrane association of the cytoplasmic tail of influenza virus M2 protein and lateral membrane sorting regulated by cholesterol binding and palmitoylation. Biochem. J. 2011, 437, 389–397. [Google Scholar] [CrossRef]
- Groffen, A.J.; Martens, S.; Díez Arazola, R.; Cornelisse, L.N.; Lozovaya, N.; de Jong, A.P.; Goriounova, N.A.; Habets, R.L.; Takai, Y.; Borst, J.G.; et al. Doc2b is a high-affinity Ca2+ sensor for spontaneous neurotransmitter release. Science 2010, 327, 1614–1618. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.; Johnson, C.P.; Yao, J.; Dunning, F.M.; Chapman, E.R. Synaptotagmin-mediated bending of the target membrane is a critical step in Ca(2+)-regulated fusion. Cell 2009, 138, 709–721. [Google Scholar] [CrossRef]
- McMahon, H.T.; Kozlov, M.M.; Martens, S. Membrane curvature in synaptic vesicle fusion and beyond. Cell 2010, 140, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Doherty, G.J.; McMahon, H.T. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu. Rev. Biophys. 2008, 37, 65–95. [Google Scholar] [CrossRef] [PubMed]
- Leduc, C.; Campàs, O.; Joanny, J.F.; Prost, J.; Bassereau, P. Mechanism of membrane nanotube formation by molecular motors. Biochim. Biophys. Acta 2010, 1798, 1418–1426. [Google Scholar] [CrossRef]
- Rohn, J.L.; Baum, B. Actin and cellular architecture at a glance. J. Cell Sci. 2010, 123, 155–158. [Google Scholar] [CrossRef]
- Nguyen, N.; Shteyn, V.; Melia, T.J. Sensing Membrane Curvature in Macroautophagy. J. Mol. Biol. 2017, 429, 457–472. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, Z.; Wang, L.; Zhou, K.; Xia, K.; Xiong, Q.; Liu, L.; Zhang, Z.; Chapman, E.R.; Xiong, Y.; et al. Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nat. Chem. 2021, 13, 335–342. [Google Scholar] [CrossRef]
- Nath, S.; Dancourt, J.; Shteyn, V.; Puente, G.; Fong, W.M.; Nag, S.; Bewersdorf, J.; Yamamoto, A.; Antonny, B.; Melia, T.J. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 2014, 16, 415–424. [Google Scholar] [CrossRef]
- Sesana, S.; Re, F.; Bulbarelli, A.; Salerno, D.; Cazzaniga, E.; Masserini, M. Membrane features and activity of GPI-anchored enzymes: Alkaline phosphatase reconstituted in model membranes. Biochemistry 2008, 47, 5433–5440. [Google Scholar] [CrossRef]
- Ahyayauch, H.; Villar, A.V.; Alonso, A.; Goñi, F.M. Modulation of PI-specific phospholipase C by membrane curvature and molecular order. Biochemistry 2005, 44, 11592–11600. [Google Scholar] [CrossRef]
- Hübner, S.; Couvillon, A.D.; Käs, J.A.; Bankaitis, V.A.; Vegners, R.; Carpenter, C.L.; Janmey, P.A. Enhancement of phosphoinositide 3-kinase (PI 3-kinase) activity by membrane curvature and inositol-phospholipid-binding peptides. Eur. J. Biochem. 1998, 258, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Lundmark, R.; Doherty, G.J.; Vallis, Y.; Peter, B.J.; McMahon, H.T. Arf family GTP loading is activated by, and generates, positive membrane curvature. Biochem. J. 2008, 414, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Bigay, J.; Casella, J.F.; Drin, G.; Mesmin, B.; Antonny, B. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. EMBO J. 2005, 24, 2244–2253. [Google Scholar] [CrossRef] [PubMed]
- Bigay, J.; Gounon, P.; Robineau, S.; Antonny, B. Lipid packing sensed by ArfGAP1 couples COPI coat disassembly to membrane bilayer curvature. Nature 2003, 426, 563–566. [Google Scholar] [CrossRef]
- Taniguchi, S.; Toyoshima, M.; Takamatsu, T.; Mima, J. Curvature-sensitive trans-assembly of human Atg8-family proteins in autophagy-related membrane tethering. Protein Sci. 2020, 29, 1387–1400. [Google Scholar] [CrossRef]
- Jensen, M.B.; Bhatia, V.K.; Jao, C.C.; Rasmussen, J.E.; Pedersen, S.L.; Jensen, K.J.; Langen, R.; Stamou, D. Membrane curvature sensing by amphipathic helices: A single liposome study using α-synuclein and annexin B12. J. Biol. Chem. 2011, 286, 42603–42614. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, A.; Magdeleine, M.; Patel, A.; Gay, A.S.; Debayle, D.; Abelanet, S.; Antonny, B. Tumor protein D54 binds intracellular nanovesicles via an extended amphipathic region. J. Biol. Chem. 2022, 298, 102136. [Google Scholar] [CrossRef]
- Hishikawa, D.; Shindou, H.; Harayama, T.; Ogasawara, R.; Suwabe, A.; Shimizu, T. Identification of Sec14-like 3 as a novel lipid-packing sensor in the lung. FASEB J. 2013, 27, 5131–5140. [Google Scholar] [CrossRef]
- Larsen, J.B.; Kennard, C.; Pedersen, S.L.; Jensen, K.J.; Hatzakis, N.S.; Uline, M.J.; Stamou, D. N-RAS Lipid Anchor Adsorption to Membranes as a Function of Lipid Composition and Curvature. Biophys. J. 2016, 110, 579a. [Google Scholar] [CrossRef]
- Ambroggio, E.E.; Sillibourne, J.; Antonny, B.; Manneville, J.B.; Goud, B. Arf1 and membrane curvature cooperate to recruit Arfaptin2 to liposomes. PLoS ONE 2013, 8, e62963. [Google Scholar] [CrossRef] [PubMed]
- Genz, C.; Fundakowski, J.; Hermesh, O.; Schmid, M.; Jansen, R.P. Association of the yeast RNA-binding protein She2p with the tubular endoplasmic reticulum depends on membrane curvature. J. Biol. Chem. 2013, 288, 32384–32393. [Google Scholar] [CrossRef] [PubMed]
- Bacia, K.; Futai, E.; Prinz, S.; Meister, A.; Daum, S.; Glatte, D.; Briggs, J.A.; Schekman, R. Multibudded tubules formed by COPII on artificial liposomes. Sci. Rep. 2011, 1, 17. [Google Scholar] [CrossRef]
- Hernandez, J.M.; Kreutzberger, A.J.; Kiessling, V.; Tamm, L.K.; Jahn, R. Variable cooperativity in SNARE-mediated membrane fusion. Proc. Natl. Acad. Sci. USA 2014, 111, 12037–12042. [Google Scholar] [CrossRef]
- Mathiasen, S.; Tonnesen, A.; Christensen, S.M.; Fung, J.J.; Rasmussen, S.G.F.; Borrero, E.E.; Provasi, D.; Filizola, M.; Kobilka, B.K.; Stamou, D.G. Membrane Curvature Regulates the Oligomerization of Human β2-Adrenergic Receptors. Biophys. J. 2013, 104, 42a. [Google Scholar] [CrossRef]
- Lucken-Ardjomande, S.; Montessuit, S.; Martinou, J.C. Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death Differ. 2008, 15, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Bozelli, J.C.; Jennings, W.; Black, S.; Hou, Y.H.; Lameire, D.; Chatha, P.; Kimura, T.; Berno, B.; Khondker, A.; Rheinstadter, M.C.; et al. Membrane curvature allosterically regulates the phosphatidylinositol cycle, controlling its rate and acyl-chain composition of its lipid intermediates. J. Biol. Chem. 2018, 293, 17780–17791. [Google Scholar] [CrossRef]
- James, D.J.; Khodthong, C.; Kowalchyk, J.A.; Martin, T.F. Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J. Cell Biol. 2008, 182, 355–366. [Google Scholar] [CrossRef]
- Shin, L.; Wang, S.; Lee, J.S.; Flack, A.; Mao, G.; Jena, B.P. Lysophosphatidylcholine inhibits membrane-associated SNARE complex disassembly. J. Cell Mol. Med. 2012, 16, 1701–1708. [Google Scholar] [CrossRef]
- Tonnesen, A.; Christensen, S.M.; Tkach, V.; Stamou, D. Geometrical membrane curvature as an allosteric regulator of membrane protein structure and function. Biophys. J. 2014, 106, 201–209. [Google Scholar] [CrossRef]
- Foo, A.; Battle, A.R.; Marsh, B.J.; Hankamer, B.; Martinac, B. Measuring the Release of Fluorescein from MscL-Loaded Liposomes with Stressed Lipid Bilayers. Biophys. J. 2010, 98, 327a. [Google Scholar] [CrossRef]
- Yang, X.; Lin, C.; Chen, X.; Li, S.; Li, X.; Xiao, B. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 2022, 604, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Lewis, A.H.; Grandl, J. Piezo1 ion channels inherently function as independent mechanotransducers. Elife 2021, 10, e70988. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, J.; Jang, J.; Ye, F.; Hong, S.J.; Petrich, B.G.; Ulmer, T.S.; Kim, C. Topological Adaptation of Transmembrane Domains to the Force-Modulated Lipid Bilayer Is a Basis of Sensing Mechanical Force. Curr. Biol. 2020, 30, 1614–1625.e1615. [Google Scholar] [CrossRef] [PubMed]
- Aimon, S.; Toombes, G.; Yegor, D.; Bassereau, P. Effects of Membrane Geometry on Voltage-Gated ion Channel Distribution Studied with a Model System. Biophys. J. 2011, 100, 526. [Google Scholar] [CrossRef]
- Greenhut, S.F.; Bourgeois, V.R.; Roseman, M.A. Distribution of cytochrome b5 between small and large unilamellar phospholipid vesicles. J. Biol. Chem. 1986, 261, 3670–3675. [Google Scholar] [CrossRef]
- Vandenabeele, P.; Bultynck, G.; Savvides, S.N. Pore-forming proteins as drivers of membrane permeabilization in cell death pathways. Nat. Rev. Mol. Cell Biol. 2023, 24, 312–333. [Google Scholar] [CrossRef]
- Evavold, C.L.; Ruan, J.; Tan, Y.; Xia, S.; Wu, H.; Kagan, J.C. The Pore-Forming Protein Gasdermin D Regulates Interleukin-1 Secretion from Living Macrophages. Immunity 2018, 48, 35–44.e36. [Google Scholar] [CrossRef]
- Mello-Vieira, J.; Enguita, F.J.; de Koning-Ward, T.F.; Zuzarte-Luís, V.; Mota, M.M. Plasmodium translocon component EXP2 facilitates hepatocyte invasion. Nat. Commun. 2020, 11, 5654. [Google Scholar] [CrossRef]
- Sychev, S.V.; Balandin, S.V.; Panteleev, P.V.; Barsukov, L.I.; Ovchinnikova, T.V. Lipid-dependent pore formation by antimicrobial peptides arenicin-2 and melittin demonstrated by their proton transfer activity. J. Pept. Sci. 2015, 21, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Murayama, T.; Pujals, S.; Hirose, H.; Nakase, I.; Futaki, S. Effect of amino acid substitution in the hydrophobic face of amphiphilic peptides on membrane curvature and perturbation: N-terminal helix derived from adenovirus internal protein VI as a model. Biopolymers 2016, 106, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Sobko, A.A.; Kotova, E.A.; Antonenko, Y.N.; Zakharov, S.D.; Cramer, W.A. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: Evidence in favor of a toroidal pore. FEBS Lett. 2004, 576, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Goñi, F.M.; Buckley, J.T. Lipids favoring inverted phase enhance the ability of aerolysin to permeabilize liposome bilayers. Biochemistry 2000, 39, 14019–14024. [Google Scholar] [CrossRef]
- Brown, A.C.; Kieba, I.R.; Boesze-Battaglia, K.; Lally, E.T. Aggregatibacter Actinomycetemcomitans Leukotoxin Disrupts Membranes By Inducing the Formation of An Inverted Hexagonal Lipid Phase. Biophys. J. 2010, 98, 20a. [Google Scholar] [CrossRef]
- Zhao, H.; Sood, R.; Jutila, A.; Bose, S.; Fimland, G.; Nissen-Meyer, J.; Kinnunen, P.K. Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: Implications for a novel mechanism of action. Biochim. Biophys. Acta 2006, 1758, 1461–1474. [Google Scholar] [CrossRef]
- Chlanda, P.; Zimmerberg, J. Protein-lipid interactions critical to replication of the influenza A virus. FEBS Lett. 2016, 590, 1940–1954. [Google Scholar] [CrossRef]
- Soni, S.P.; Adu-Gyamfi, E.; Yong, S.S.; Jee, C.S.; Stahelin, R.V. The Ebola virus matrix protein deeply penetrates the plasma membrane: An important step in viral egress. Biophys. J. 2013, 104, 1940–1949. [Google Scholar] [CrossRef]
- Hung, Y.F.; Schwarten, M.; Hoffmann, S.; Willbold, D.; Sklan, E.H.; Koenig, B. Amino Terminal Region of Dengue Virus NS4A Cytosolic Domain Binds to Highly Curved Liposomes. Viruses 2015, 7, 4119–4130. [Google Scholar] [CrossRef]
- Gerlach, H.; Laumann, V.; Martens, S.; Becker, C.F.; Goody, R.S.; Geyer, M. HIV-1 Nef membrane association depends on charge, curvature, composition and sequence. Nat. Chem. Biol. 2010, 6, 46–53. [Google Scholar] [CrossRef]
- Lomakin, A.; Chung, D.S.; Benedek, G.B.; Kirschner, D.A.; Teplow, D.B. On the nucleation and growth of amyloid beta-protein fibrils: Detection of nuclei and quantitation of rate constants. Proc. Natl. Acad. Sci. USA 1996, 93, 1125–1129. [Google Scholar] [CrossRef] [PubMed]
- Terakawa, M.S.; Yagi, H.; Adachi, M.; Lee, Y.H.; Goto, Y. Small liposomes accelerate the fibrillation of amyloid β (1-40). J. Biol. Chem. 2015, 290, 815–826. [Google Scholar] [CrossRef] [PubMed]
- Kurth, I.; Pamminger, T.; Hennings, J.C.; Soehendra, D.; Huebner, A.K.; Rotthier, A.; Baets, J.; Senderek, J.; Topaloglu, H.; Farrell, S.A.; et al. Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat. Genet. 2009, 41, 1179–1181. [Google Scholar] [CrossRef] [PubMed]
- Tjondrokoesoemo, A.; Park, K.H.; Ferrante, C.; Komazaki, S.; Lesniak, S.; Brotto, M.; Ko, J.K.; Zhou, J.; Weisleder, N.; Ma, J. Disrupted membrane structure and intracellular Ca2+ signaling in adult skeletal muscle with acute knockdown of Bin1. PLoS ONE 2011, 6, e25740. [Google Scholar] [CrossRef]
- Wu, T.; Shi, Z.; Baumgart, T. Mutations in BIN1 associated with centronuclear myopathy disrupt membrane remodeling by affecting protein density and oligomerization. PLoS ONE 2014, 9, e93060. [Google Scholar] [CrossRef]
- Shin, S.; Ko, H.; Kim, C.H.; Yoon, B.K.; Son, S.; Lee, J.A.; Shin, J.M.; Lee, J.; Song, S.H.; Jackman, J.A.; et al. Curvature-sensing peptide inhibits tumour-derived exosomes for enhanced cancer immunotherapy. Nat. Mater. 2023, 22, 656–665. [Google Scholar] [CrossRef]
Peripheral Membrane Proteins | Membrane Curvature | Effects | Reference |
---|---|---|---|
ATG3 | High membrane curvature | Promotes lipidation of GL1. | [69] |
Synaptojanin 1 | High membrane curvature | Preferentially removes PI(4,5)P2. | [5] |
LC3B (Human Atg8 orthologs) | High membrane curvature | Drives tethering more efficiently. | [77] |
GATE-16 (Human Atg8 orthologs) | High membrane curvature | Reduces protein activity. | [77] |
Alkaline phosphatase | High membrane curvature | Enhances enzyme activity. | [71] |
Phosphatidylinositol-specific phospholipase C | High membrane curvature | The enzyme rate increases. | [72] |
Phosphoinositide 3-kinase | High membrane curvature | The rate of phosphorylated PI increases. | [73] |
ArfGAP 1 | High membrane curvature | Promotes GTP hydrolysis in Arf1. | [75,76] |
Integral Membrane Proteins | Membrane Curvature | Effects | Reference |
---|---|---|---|
SNARE | High membrane curvature | Increases SNARE-mediated fusion rate. | [69] |
High membrane curvature | Reduces the number of SNARE complexes required for membrane fusion. | [85] | |
Positive curvature | Inhibits SNARE-mediated membrane fusion by preventing the formation of membrane fusion intermediates with high negative curvature. | [89] | |
Positive curvature | Inhibits the disassembly of SNARE complexes. | [90] | |
Synaptotagmin1 (mutant) | High membrane curvature | Promotes SNARE-mediated membrane fusion. | [63] |
Human β2-adrenergic receptor | High membrane curvature | Inhibits β2-adrenergic receptor oligomerization. | [86] |
Bax | High membrane curvature | Inhibits the activation of Bax. | [87] |
Diacylglycerol kinase | Low membrane curvature | DGK lacks acyl-chain specificity and low enzyme activity. | [88] |
α-hemolysin | High membrane curvature | Compression of the effective pore size of α-hemolysin and a reduction of about 40% of the effective pore area. | [91] |
KcsA channel | High membrane curvature | The activation gate conformation changes. | [8] |
Mechanosensitive ion channel | High membrane curvature | Induces activation of mechanosensitive ion channel function. | [92] |
Pore-Forming Proteins | Membrane Curvature | Effects | Reference |
---|---|---|---|
Hepatitis B virus X protein | Negative curvature | Enhances HBx-induced membrane permeabilization. | [13] |
α-helical melittin | Negative curvature | Reduces proton transfer activity. | [101] |
β-structural arenicin-2 | Negative curvature | Increases proton transfer activity. | [101] |
Internal protein VI of adenovirus | Positive curvature | Enhances ability to lyse membranes. | [102] |
Colicin E1 | Positive curvature | Enhances the pore-forming activity of colicin E1. | [103] |
Negative curvature | Reduces the pore-forming activity of colicin E1. | [103] | |
Aerolysin | Positive curvature | Reduces the rate of pore formation. | [104] |
Leukotoxin | Negative curvature | Enhances the pore-forming activity of leukotoxin. | [105] |
Positive curvature | Reduces the pore-forming activity of leukotoxin. | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, P.; Zhang, H.; Qin, Y.; Xiong, H.; Shi, C.; Zhou, Z. Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules 2023, 13, 1772. https://doi.org/10.3390/biom13121772
Xie P, Zhang H, Qin Y, Xiong H, Shi C, Zhou Z. Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules. 2023; 13(12):1772. https://doi.org/10.3390/biom13121772
Chicago/Turabian StyleXie, Peng, Heng Zhang, Yatong Qin, Hehe Xiong, Changrong Shi, and Zijian Zhou. 2023. "Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments" Biomolecules 13, no. 12: 1772. https://doi.org/10.3390/biom13121772
APA StyleXie, P., Zhang, H., Qin, Y., Xiong, H., Shi, C., & Zhou, Z. (2023). Membrane Proteins and Membrane Curvature: Mutual Interactions and a Perspective on Disease Treatments. Biomolecules, 13(12), 1772. https://doi.org/10.3390/biom13121772