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Abstract: Background: Activated Cdc42-associated kinase (ACK1) is essential for numerous cellular
functions, such as growth, proliferation, and migration. ACK1 signaling occurs through multiple
receptor tyrosine kinases; therefore, its inhibition can provide effective antiproliferative effects against
multiple human cancers. A number of ACK1-specific inhibitors were designed and discovered
in the previous decade, but none have reached the clinic. Potent and selective ACK1 inhibitors
are urgently needed. Methods: In the present investigation, the pharmacophore model (PM) was
rationally built utilizing two distinct inhibitors coupled with ACK1 crystal structures. The generated
PM was utilized to screen the drug-like database generated from the four chemical databases. The
binding mode of pharmacophore-mapped compounds was predicted using a molecular docking
(MD) study. The selected hit-protein complexes from MD were studied under all-atom molecular
dynamics simulations (MDS) for 500 ns. The obtained trajectories were ranked using binding free
energy calculations (∆G kJ/mol) and Gibb’s free energy landscape. Results: Our results indicate that
the three hit compounds displayed higher binding affinity toward ACK1 when compared with the
known multi-kinase inhibitor dasatinib. The inter-molecular interactions of Hit1 and Hit3 reveal that
compounds form desirable hydrogen bond interactions with gatekeeper T205, hinge region A208,
and DFG motif D270. As a result, we anticipate that the proposed scaffolds might help in the design
of promising selective ACK1 inhibitors.

Keywords: ACK1; pharmacophore modeling; docking; molecular dynamics simulations; cancer;
inhibitor

1. Introduction

The tyrosine kinases are the key regulators of cytoplasmic signaling cascades. The dys-
regulation of their activity by overexpression or point mutation may result in hyperactiva-
tion [1]. Continuous activation of tyrosine kinases can lead to increased cell growth, cell
migration, suppression of apoptosis, angiogenesis, invasion, etc. [2,3]. As a result, tyrosine
kinases have been classified as distinct drug targets for anti-cancer therapies. Tyrosine
kinases are mainly of two types: receptor and non-receptor tyrosine kinases [4]. ACK1 is a
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member of the non-receptor tyrosine kinases (NRTK) family [5]. The TNK2 gene on chromo-
some 3q29 codes for the ACK1 protein, which is linked to various human cancer [6–8]. ACK1
is a multidomain protein of approximately 140 kDa in weight and 1038 amino acids long
(Figure 1A) [9]. It is usually expressed in mammals, with the greatest levels seen in the
spleen, thymus, and brain [8]. The role of ACK1 has been well established in cell survival,
proliferation, migration, and brain development [5,9]. Moreover, several pre-clinical studies
have reported that ACK1 overexpression is responsible for various cancers, such as prostate,
breast, pancreatic, ovarian, lung, gastric, hepatocellular, and renal carcinoma [10–12]. ACK1
acts as an oncogenic kinase by phosphorylating and activating critical survival-promoting
kinase receptors on various tyrosine kinase residues (Figure 1B).
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(B) The signaling network of ACK1. The activated receptor tyrosine kinase pathway induces cell
survival and proliferation by activating ACK1 and its downstream signaling patterners.

In cancer cells, ACK1 stimulates AKT by phosphorylating it at Y176, which promotes
AKT downstream signaling and contributes to cell survival and proliferation [13]. Activated
ACK1 also contributes to stopping the function of the important tumor suppression protein
Wwox by phosphorylating it at Y287 [1]. The androgen receptor phosphorylation by ACK1
at Y267 and Y363 indorses PI3K independent activation and the development of prostate
cancer [14]. Since the ACK1 role is linked to numerous malignancies, inhibiting this protein
is a prospective therapy option for a variety of tumors. To date, various research and
industrial groups have identified six different types of selective inhibitors against ACK1,
which have shown anticancer effects [15]. The multi-kinase FDA-approved inhibitors have
also been tested against ACK1. The most active multi-kinase inhibitor reported against
ACK1 in an in vitro study was dasatinib [16]. KRCA-0008, another multi-kinase inhibitor
with significant inhibitory efficacy against ACK1 and ALK proteins, is currently being
investigated [17]. AIM-100 is the first ACK1 inhibitor that has been studied the most. It
was discovered through a high-throughput screening assay [18]. The inhibitors identified
against ACK1 to date have not progressed to clinics due to off-target effects and poor
pharmacokinetic properties [9,15]. Therefore, there is an urgent need for novel therapeutic
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options against ACK1-related malignancies. Computer-aided drug design is the first step
in rational drug design and is nowadays used commonly for the identification of potential
scaffolds against many therapeutic proteins [19,20]. Correspondingly, in our study, we
applied a series of computational approaches for the identification of novel drug-like ACK1-
selective scaffolds. First of all, the available inhibitor-bound structures were collected from
PDB and were subsequently analyzed for the protein–ligand interaction. Based on key
molecular interactions with the ACK1 protein active site residues, two structures bound
with different inhibitors were further selected for structure-based pharmacophore modeling
(PM). All generated pharmacophores were merged, and a dynamic pharmacophore was
generated. The chosen PM was validated and used to screen the drug-like database. The
MD study was used to predict the binding potential of the chosen compounds. Further, the
validation of docking results was done using MDS studies. Finally, three hit candidates
with unique scaffolds were identified as potentially effective ACK1 inhibitors based on
binding free energy and critical molecular interactions. Our study provides an integrated
computational methodology based rational approach for the identification of hit candidates.
However, further experimental validation of the identified hit candidates is warranted.

2. Materials and Methods
2.1. Structure-Based Pharmacophore Generation

Six inhibitor-bound crystal structures of human ACK1 have been discovered so far, ac-
cording to a protein data bank search (PDB, www.rcsb.org/pdb (accessed on 10 November
2021). All structures were retrieved from the protein data bank and processed in Discovery
Studio. We chose two crystal structures, 1U4D and 3EQR, based on their level of resolu-
tion and inhibitor interactions with active site residues, to develop structure-based ACK1
PMs [21,22]. The Receptor–Ligand Pharmacophore Generation protocol of DS was utilized to
generate hypotheses with default parameters. Subsequently, the generated models from
these structures were merged independently, and single hypotheses were retained from
each structure. Finally, these two hypotheses were superimposed and placed in the active
site of ACK1. Rationally, chemical features mapping with the most important residues was
selected for the generation of the final hypothesis [23,24].

2.2. Validation of Pharmacophore

The efficacy of the pharmacophore to differentiate among active and inactive ACK1
inhibitors was analyzed using the Guner–Henery method [25]. In this method, a decoy
test set was generated with both active and inactive compounds known experimentally
against ACK1 [26,27]. The decoy data set was then screened on our PM using DS studio.
The obtained screening data were used to calculate various important parameters by
solving the Guner–Henery equation [25].

GH =

(
Ha (3A + Ht)

4HtA

)
×

(
1− Ht− Ha

D− A

)
(1)

EF =
Ha/Ht
A/D

(2)

A GH score value approaching 1 indicates an ideal pharmacophore hypothesis for
chemical database screening [26,27].

2.3. Virtual Screening

Chemical databases, such as ZINC, NCI, ASINEX, and Princeton, were considered
for pharmacophore-based screening. Selected databases include thousands of compounds,
some of which may have poor drug-like and pharmacokinetic characteristics, making
screening all compounds in these databases worthless. Therefore, these databases were
filtered by various filters, such as ROF and ADMET Descriptors in DS respectively [28,29].

www.rcsb.org/pdb
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Subsequently, the selected PM was provided as input, and the drug-like database screening
was performed using DS with Best/Flexible option [30].

2.4. Molecular Docking

The Genetic Optimization of Ligand Docking (GOLD v5.2.2) package was used for the
docking study [31]. The GOLD program offers full ligand flexibility and partial protein
flexibility, resulting in more consistent docking simulations. The 3D structure of ACK1
(PDB ID: 1U4D) was selected for MD studies [21]. The structure was downloaded from the
PDB databank (https://www.rcsb.org/ (accessed on 15 January 2022) and prepared for MD
in DS. The structure was obtained in dimer form; therefore, Chain A and other unwanted
molecules were deleted. Subsequently, the structure was cleaned using the Clean Protein
module of DS, and missing residues were added. The docking site was defined around the
PDB 1U4D-bound inhibitor. The cocrystal ligand and multi-kinase inhibitor dasatinib were
used as reference compounds for docking analysis. The Goldscore and Chemscore were
used to rank the compounds [32,33]. For each compound, 10 poses were produced. The
best conformer was selected on the basis of consensus scoring and a better docking score
than the two REF compounds. The best pose was further visualized in DS for crucial polar
and non-polar interactions with the active site residues of ACK1 [34].

2.5. Molecular Dynamics Simultaions

The MDS for all the selected ACK1-inhibitor complexes were performed using the
Groningen Machine for Chemical Simulation (GROMACS v2022.2) [35,36]. The topology file
for protein was generated with the CHARMm27 forcefield in GROMACS, and ligand
files were generated from SwisParam [37,38]. The MDS were run in a dodecahedron box
with a TIP3P water model. The neutralization of the simulation system of each protein–
ligand complex was performed with appropriate Na+/Cl− ions. The energy minimization
of the system was performed with 10 kJ/mol to avoid steric collision and inappropriate
contact. In the equilibration step, temperature and pressure equilibration were performed
under NVT and NPT ensembles for 1000 ps at 300K. During the equilibration process, the
protein backbone was restricted, whereas the solvent molecules and ions were permitted to
circulate. The MDS of each system was performed under periodic boundary conditions for
500 ns. section may be divided into subheadings. It should provide a concise and precise
description of the experimental results and their interpretation, as well as the experimental
conclusions that can be drawn.

2.6. Binding Free Energy Analysis

The binding affinity calculations can provide mechanistic insights into protein–ligand
interaction and therefore can play a crucial role in the selection of high affinity candidates
against the target protein [39,40]. In the present study, ∆G was calculated for simulated
ACK1-inhibitor complexes using the molecular mechanics Poisson-Boltzmann surface area
(MM-PBSA) approach [41]. From the 500 ns simulation trajectory, a total of 40 snapshots
were extracted for free energy calculation. The analyses were performed using the GRO-
MACS plugin tool g_mmpbsa [42]. The different components involved in protein–ligand
interactions, such as electrostatic, polar, and non-polar solvation, were calculated. The
binding free energy of the ACK1-ligand complex in a solvent was calculated using the
following equations:

∆Gbinding = Gcomplex− (Gprotein + Gligand) (3)

where Gcomplex is the total protein–ligand complex energy, Gprotein and Gligand denoting indi-
vidual energy components. The per residue contribution of each residue was also calculated
using the MmPbSaDecomp py python script. A complete description of the method can be
found elsewhere [42].

https://www.rcsb.org/
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2.7. Principal Component and Free Energy Landscape Analyses

MDS trajectories were utilized for the analyses of pattern recognition in protein move-
ments using the GROMACS tool “gmx_covar” [35]. In principal component analysis (PCA),
eigenvectors and eigenvalues were first computed using the covariance matrix [43]. The
larger the eigenvalue of the corresponding eigenvector, the higher the motion for this
eigenvector coordinate. The 2D plotting of two different eigenvectors is produced using
the “gmx_anaeig” tool. Moreover, the free energy landscape was also studied using the
Gibbs free energy landscape of the top two eigenvectors using “gmx_sham” [35].

3. Results

A generalized overview of the study is provided in Figure 2, and the results are
explained in detail in the sections below.
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is shown on the right side.

3.1. Active Site Analysis of ACK1

The structural details reveal that the active site of the ACK1 is surrounded by the
gatekeeper (T205), hinge region (206–210), glycine-rich loop (133–138), αC helix (251–257),
and DFG (Asp-Phe-Gly) motif (270–272) [21,44]. A detailed observation of the residues
targeted by the 3D structure-bound inhibitors via hydrogen bond is summarized in Table 1.
The analysis revealed that hinge region residue A208 was targeted by each inhibitor bound
to ACK1 via a hydrogen bond. The gatekeeper residue T205, which connects the N and C
terminals of the kinase, was observed to form hydrogen bond interactions in two structures:
3EQR and 3EQP bound inhibitor [22]. The role of T205 was reported to enhance ACK1
inhibition in in vitro cellular assays. Therefore, targeting T205 via hydrogen bonds is a
desirable characteristic of future ACK1 inhibitors. The conserved DFG motif residue D270,
part of the activation loop, was observed to form a hydrogen bond with 1U4D and 5ZXB
bound inhibitors [21,45]. This analysis motivated us to use the knowledge of two different
protein–inhibitor complexes that target three key residues via hydrogen bonds, A208, T205,
and D270, to build a hypothesis that can map potential inhibitors that should target the
aforementioned residues [21,22,45]. Therefore, 1U4D and 3EQR were selected rationally
for PM generation.



Biomolecules 2023, 13, 217 6 of 21

Table 1. Analysis of the binding pattern of inhibitors with ACK1 based on PDB structures.

PDB ID Ligands Id Resolution
(Å)

Active Sire Residues
References

A208 T205 D270 E206 E177 D134 K158

1U4D DBQ 2.10
√ √ √ √ √

[21]
3EQR T74 2.00

√ √
[22]3EQP T95 2.00

√ √

4EWH T77 2.50
√

[46]
4ID7 1G0 3.00

√ √
[47]

5ZXB 9KO 2.20
√ √ √

[45]
√

denotes hydrogen bond of inhibitor atom with corresponding amino acid.

3.2. Structure-Based Pharmacophore Modeling

The debromohymenialdisine (DBQ) and T74 ligand-bound crystal structures of ACK1;
1U4D and 3EQR were obtained from the PDB database. The Receptor–ligand Pharmacophore
Generation module of Discovery Studio (DS) v19 was utilized for pharmacophore gener-
ation [48]. A total of twenty pharmacophores were generated, ten from each structure
(Tables S1 and S2). The generated PMs were subsequently merged using the Edit and Cluster
tool available in DS, and a single common feature hypothesis was selected from each PDB
(Figure S1A,B). The 1U4D pharmacophore (Pharm A) has eight different features: three
hydrogen bond donors (HBD), two hydrogen bond acceptors (HBA), two hydrophobic
(HYP), and one ionizable position (PI). The merged hypothesis detailed analysis indicates
that the imidazole ring of DBQ accommodated two HBA features mapped with K158
and another HBA feature mapped with DFG motif residue D270. The azepine ring of the
DBQ accommodates one HBA and one HBD feature, which complements E206 and A208
(Figure 3A). The hydrophobic feature of the pyrrole ring may interact with L132, V140,
and L259. The remaining features, such as HYP and PI features, did not show potential
mapping with active site residue and therefore could be removed from the pharmacophore
(Figure 3A). The merged hypothesis obtained from the PDB 3EQR (Pharm B) displayed
seven features: four HYP, two HBD, and one HBA (Figure 3B). The phenyl ring of T74 was
mapped with three hydrophobic features. The nitrogen atom that connects the phenyl and
pyrimidine rings displayed the HBD feature, which mapped with gatekeeper residue T205.
The pyrimidine ring and its adjacent nitrogen atom connect it with the phenyl ring map
with A208 via HBA and HBD features, respectively. The adjacent phenyl ring also accom-
modates the hydrophobic feature (Figure 3B). Further, the hypotheses were superimposed,
and a hybrid PM was generated. Rationally common and unique features were retained
only. In the final hypothesis common, HBA features complementary to A208 were retained.
However, two unique features complementary to T205 and D270 were retained from the
3EQR and IU4D structures. Two hydrophobic features that may map with residues L132,
K158, and M203 were also retained from the 3EQR hypothesis (Figure 3C). Robust PM was
designed with the aim of targeting these essential residues. The inhibitors that map with
purposed PM may target ACK1 with high specificity.

3.3. Validation of Pharmacophore

The initial validation of the PM was done on the basis of a chemical feature mapping
analysis with protein active site residues. The overlay of the final model into the active site
of ACK1 confirms the mapping with three key residues, T205, A208, and D270, through the
hydrogen bond donor or acceptor feature. The two hydrophobic features retained in the
final PM may map with residues L132, K158, and M203 (Figure 4A–C).
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Furthermore, a well-known decoy set method approach using the Guner–Henery (GH)
method was used for the validation of the PM [25]. For this, a database of experimentally
tested 20 active (IC50 < 100 nM) and 120 inactive (IC50 > 1000 nM) compounds against
ACK1 was generated [46,47,49–51]. PM was used to perform virtual screening of the drug-
like database using the Ligand Pharmacophore Mapping protocol of DS. According to our
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observations, the hypothesis gives GH and EF scores of 0.76 and 5.40, respectively. (Table 2).
Additional parameters calculated in this method, such as yields and ratio of actives, false
negatives and positives, are shown in Table 2. It can be learned from the validation results
that the model displayed great potential in differentiating between active and inactive
compounds and therefore can be used for ACK1 inhibitor identification.

Table 2. The details of pharmacophore validation parameters.

S. No. Parameters Calculated Values

1 Total no. of molecules in the database (D) 140
2 Total number of active molecules in the database (A) 20
3 Total number of active molecules in the retrieved hits (Ht) 22
4 Number of retrieved hits by pharmacophore (Ha) 17
5 % Yield of actives [(Ha/Ht) × 100] 77.27%
6 % Ratio of actives [(Ha/A × 100) 85%
7 False-negative [A-Ha] 3
8 False-positive [Ht-Ha] 5
9 Goodness of fit 0.76
10 Enrichment factor (EF) 5.40

3.4. Virtual Screening

Four different chemical libraries, Asinex, Princeton, ZINC, and NCI, were considered
for pharmacophore-based virtual screening. A total of 61,297 drug-like compounds were
obtained after the successful application of drug-like filters from the selected chemical
databases (Table 3 and Figure 2).

Table 3. Details of parameters used for the generation of the drug-like database.

Lipinski’s Rule of Five ADMET Descriptors

Parameters Threshold value Parameters Threshold value
Number of hydrogen bond donors ≤5 Absorption level 0 (Good)

Number of hydrogen bond acceptors ≤10 Solubility level 3 (Good)
Molecular weight (Da) ≤500 Blood-brain barrier level 3 (Low)

AlogP value ≤5 CYP2D6 prediction False
Hepatotoxic prediction False

Subsequently, compounds were imported to DS, and the Ligand Pharmacophore mapping
module of DS was utilized for virtual screening using PM. Accordingly, 866 compounds
were obtained, which were further analyzed in DS for best mapping with PM. Finally,
351 compounds were selected for the MD study with the ACK1 protein. It is noteworthy
to mention the significance of PM in the elimination of false binders, reducing 61,297
compounds to 351 (Figure 2).

3.5. Molecular Docking

The ACK1 kinase domain 3D structure (PDB id: 1U4D) was taken as a receptor for
the docking study [21]. Subsequently, the structure was prepared using DS by deleting
the heteroatoms, and chain B was used [52]. The docking site was defined using the
Define and Edit Binding Site module around the bound inhibitor. The radius of the docking
sphere was set at 6 Å and the XYZ coordinates were set as 56.30, 17.14, and 41.12. The MD
study was conducted using the GOLD program [31]. During the docking experiment,
two known ACK1 inhibitors (cocrystal ligand and dasatinib) were also docked with 351
potential inhibitors. Default docking scores GoldScore and ChemScore were used for the
selection of the final hit compounds. Our results demonstrated that the REF drug dasatinib
displayed Goldscore 63.78 and Chemscore −25.09 that is greater than the co-crystal ligand
Goldscore 45.48 and Chemscore−22.33. Therefore, a docking score greater than dasatinib was
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used as the first criterion for the selection of potential binders, and a total of 25 compounds
were selected. We further analyzed each compound’s molecular interactions with ACK1.
As suggested by previous studies, inhibitor interactions with hinge region residue A208,
gatekeeper T205, and DFG motif D270 are most important for ACK1 inhibition. The inhibitors
that form hydrogen bond interactions with at least two of the mentioned residues were
selected. Finally, eleven compounds were obtained. The MD scores and corresponding
molecular structures are shown in Table S3 and Figure S2A,B.

3.6. Molecular Dynamics Simulations

Initially, a 50 ns molecular dynamics simulation run was conducted for complexes
selected from the molecular docking study. The stability of the simulation trajectories was
studied using root mean square deviation, fluctuations, and hydrogen bond potential. Fur-
ther, the ligands were ranked according to binding affinity using the MM-PBSA approach
(Table S4). The selected simulation systems were prepared using the GROMACS program
and simulated until 500 ns (Table S5). The final compounds were selected on the basis of
stability, binding affinity, and key molecular interactions (Table S6).

3.6.1. Stability of the Simulation Complexes

Figure 5A graphically shows the assessment of the protein backbone atom root mean
square deviation (RMSD) analyses. Throughout the simulations, the RMSD values of the
Hit compounds and REF inhibitors were observed within a reasonable fluctuation of
<0.3 nm (Table S6). The average RMSD value of the PDB structure 1UD4-apo form was
0.24 nm. Interestingly, all the hit compounds, dasatinib and 1U4D-DBQ-bound ACK1
complexes, displayed lower average RMSD values in comparison to the 1U4D-apo form.
Hit2 displayed the lowest RMSD values of 0.17 nm, followed by dasatinib and DBQ
at 0.18 nm. Hit1 displayed an average RMSD of 0.19 nm, whereas Hit3 displayed an
average RMSD of 0.20 nm. The RMSD of the studied ligands is also plotted in Figure S3.
The plot indicates that ligands named Hit2 displayed the most stable RMSD throughout the
simulation run, followed by Hit3 and Hit1. All the ligands displayed significant fluctuations
except Hit2 and Hit3, but interestingly, the average value was observed <0.3 nm (Table S6).
The root mean square fluctuation (RMSF) measured protein flexibility and was widely used
to analyze the protein’s residual flexibility over the simulation period. The RMSF of the 251
residues of the ACK1 backbone atoms was measured for 500 ns. As shown in Figure 5B, major
fluctuations were observed in the loop regions ranging between residue numbers 136 to 167.
Interestingly, fewer residual fluctuations were observed in the inhibitor-bound complexes when
compared to the apo 1U4D structure. The superimposition of all the simulated complexes
revealed that synonymous behavior of protein backbone residues was observed in each system
(Figure 5B). Moreover, the catalytically important regions were stable, except for the G-
loop region (133–138). Overall, RMSF average values were observed <0.3 nm in all the
simulated complexes, indicating the stability of the systems (Table S6). Hydrogen bonds play
a significant role as a stabilizing force for a protein–ligand complex. Therefore, the potential of
Hit compounds to form hydrogen bonds was analyzed (Figure 5C). Interestingly, we observed
that Hit1, Hit2, and Hit3 bound complexes displayed a slightly better potential to form
a hydrogen bond with protein residues when compared with dasatinib and DBQ-bound
complexes (Table S6). The strong hydrogen bond-forming potential of the Hit compounds
indicates that they can bind with proteins effectively and tightly.
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3.6.2. Binding Free Energy

The “g_mmpbsa” GROMACS plugin tool was used to predict the binding free energy
(∆G) of the simulated compounds [42]. According to the MM-PBSA calculations, van der
Waals interactions were the major contributing force to complex stability. Hit2 displayed
the highest van der Waals interaction energy, followed by Hit1, Hit3, dasatinib, and DBQ
(Table S7). The electrostatic contribution was highest in Hit3, followed by Hit2, Hit1,
DBQ, and Dasatinib. Polar solvation energy contributed positively to the protein–ligand
interaction. SASA energy contributes negatively to the interactions. The average ∆G of
Hit1 was −104.18 kJ/mol and was found significantly better than other compounds as well
as REF inhibitors dasatinib and DBQ, which displayed average ∆G of −75.42 kJ/mol and
−43.62 kJ/mol respectively. Hit2 and Hit3 displayed average binding affinity of −86.31
and −80.23 kJ/mol. The detailed contributions of the energies are shown in Table S6 and
Figure 5D.

3.6.3. Binding Mode Analysis

The selected ligands binding with the ACK1 structure were analyzed using the rep-
resentative structure from the last 5 ns simulation trajectories. The superimposition of all
protein–ligand complexes indicates that Hit compounds follow the binding mode similar
to crystalized ligand DBQ and the REF inhibitor dasatinib (Figure 6). The active site of the
ACK1 protein is located between the smaller N and larger C terminal domains, and it is
surrounded by the hinge region, glycine-rich loop, activation loop, and catalytic loop. It is
important to note that ACK1 inhibitor-bound crystal structures identified to date target
the hinge region residue A208 via hydrogen bond interactions. In vitro studies conducted
against ACK1 reveal that gatekeeper residue T205 may play a crucial role in inhibitor activ-
ity against ACK1 [22]. The structural details reveal that ACK1 is present in an activated
state without phosphorylation; therefore, DFG motif residues, such as D270 and F271, may
be important for inhibitor binding. We, therefore, selected only those hit compounds that
target A208, T205, and D270 via hydrogen, preferably, or hydrophobic interactions. Our
analysis confirms that each selected inhibitor occupies an ATP-binding site similar to the
REF inhibitors used in the study.
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The average structure of ACK1-Hit1 displayed five hydrogen bond interactions. The
purine ring of Hit1 interacts with gatekeeper residue T205, hinge region E206, and A208 via
hydrogen bond interactions. The hydroxypropyl sulfanyl chain interacts with catalytic loop
residue R256 and DFG motif residue D270 via a hydrogen bond (Figure 7A). The purine and
chlorophenyl rings of Hit1 displayed significant pi-alkyl interactions with residues L132,
V140, A156, K158, M181, I190, 203, L259, and F271 (Figure 7D). Further, the interactions
were also supported via various van der Waals interactions with D134, L207, S212, N257,
and G269 (Table 4). The purine ring of Hit2 displayed two hydrogen bonds with residue
hinge region residues E206, and A208. Additional hydrogen bonds, as observed with DFG
motif residues D270. Unlike Hit1, Hit2 does not display a conventional hydrogen bond
with gatekeeper residue T205, but a hydrophobic interaction was observed with the phenyl
ring of the hit compound (Figure 7B). The residues G133, G135, K158, T205, L207, G211,
N257, G269, and F271 were observed to contribute to van der walls interactions (Figure 7E).
The pi-alkyl interactions were observed with residues similar to Hit1, with a slightly lower
number (Table 4).

Table 4. The detailed inter-molecular interactions between Hit compounds and ACK1.

Name

Hydrogen Bond Interactions

Van Der Waals Interactions π-π/π-Alkyl
InteractionsAmino Acid Amino Acid

Atom Ligand Atom Distance
(<3.5 Å)

Hit1

T205 OG1 H28 2.70

D134, L207, S212, N257, G269
L132, V140, A156,
K158, M181, I190,
M203, L259, F271

E206 O H28 1.79
A208 HN O12 2.56
R256 O H35 1.95
D270 HN S13 2.25

Hit2
E206 O H32 1.83

G133, G135, K158, T205, L207,
G211, N257, G269, F271

L132, V140, A156,
M181, I190, L259

A208 HN O12 1.74
D270 HN O18 1.93

Hit3

T205 HG1 O17 2.01
G133, V140, A156, I190, E177,
M203, P209, G211, L259, G269,

F271

L132, K158, L207,
M181

E206 O H38 1.73
A208 HN O12 2.30
D270 OD2 H42 1.65
A208 HN N8 2.42

Dasatinib
D270 OD1 H47 2.82 G133, 135, S136, E206, L207,

P209, G211, S212
L132, V140, A156,

I190, L259T205 OG1 H28 2.70

DBQ A208 HN N7 2.48 L132, V140, I190, E206, G211,
L207, N257, G269 A156, L259D270 HN N16 2.83
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Figure 7. The 3D representation of the molecular interaction of (A) Hit1, (B) Hit2, and (C) Hit3.
The hydrogen bonds are shown with green dashed lines. A lower panel (D–F) displaying detailed
molecular interactions in 2D of Hit1, Hit2, and Hit3, respectively.

The pyrrole ring of the Hit3 displayed hydrogen bonds with gatekeeper T205, hinge
region residue E206, A208, and the methoxyphenyl ring interacts with DFG motif residue
D270 (Figure 7C). The hydrophobic interactions in the case of Hit3 were mainly formed by
van der Waals interactions with residues G133, V140, A156, I190, E177, M203, P209, G211,
L259, G269, and F271 and pi-alkyl interactions with L132, K158, L207, and M181 (Figure 7F).
The co-crystalized ligand bound with PDB id 1U4D, named DBQ, was also simulated
until 500 ns, and the average structure of the complex was taken from the last 5 ns MDS
trajectories. The detailed binding mode of the complex reveals that the inhibitor displayed
hydrogen bond interactions with hinge region residue A208 and DFG motif residues D270
(Figure S4A,B). A carbon hydrogen bond was also observed with hinge region residue
E206. The crystalized inhibitor failed to show hydrogen bond interaction with residues,
such as D134 and K158. Moreover, similar to the crystalized structure, the ACK1-DBQ
complex did not display conventional hydrogen bond interaction with gatekeeper T205.
The complex displayed seral van der Walls and pi-alkyl interactions with the surrounding
active site residues (Table 4). The multi-kinase inhibitor, which showed nanomolar efficacy
against ACK1, was also studied under similar conditions, and the average structure of
MDS displayed two hydrogen bonds with gatekeeper residue hinge region A208, and DFG
motif residue D270 (Figure S5C,D). Further, the REF inhibitor dasatinib forms eight van der
Waals interactions and five π-π/ π-alkyl interaction (Table 4). It can be inferred from our
analysis that all three-hit compounds form strong hydrogen bond interactions with the key
residues of the ACK1 active site (Tables 4 and 5). Therefore, hit compounds can be further
selected for future studies to combat ACK1-related malignancies.
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Table 5. The 2D chemical structure of the identified scaffolds and IUPAC names.

Hits 2D Structure IUPAC Name

Hit1
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The per-residues contribution obtained from free energy calculation can provide more
details about protein inhibitor interactions. It can be noticed from Figure 8 that REF in-
hibitor dasatinib, DBQ, and selected hits target similar residues with different energetics.
In particular, L132, V140, A156, M181, I190, M203, L207, L259, and F271 significantly
contribute to binding via various hydrophobic interactions. The residues shown on the
upper side of the graph, such as R142, K158, G177, T205, N257, and D270, may contribute
to polar interactions.
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3.6.4. Hydrogen Bond Analysis

Hydrogen bonds (H-bonds) observed from a single snapshot may not always provide
significant information; consequently, a complete dynamics analysis of H-bonds can be
valuable for studying the stability of hydrogen bonds. As previously stated, the hydrogen
bond with important residues T205, A208, and D270 is critical for ACK1 protein inhibition.
We plotted the distances between the atoms of the aforementioned protein residues and
ligands using the GROMACS program’s ‘gmx hydrogen-bond distance’ function. The aver-
age structure reveals that all three hits target A208 and D270 through hydrogen bonding.
Hydrogen bonds with T205 were identified exclusively in Hit1 and Hit3 but not in Hit2
and dasatinib (Figure 7 and Table 4). An illustration of the dynamics of the H-bonds for the
chosen amino acid residues is provided in Figure 9A–I. It is clear from the graphs that Hit1
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displayed hydrogen bond with three key residues, but a hydrogen bond distance with D270
was observed >0.35 nm until 300 ns but after that, the average distance lowered <0.35 nm.
Hit2 does not exhibit hydrogen bonding with T205, although the graph indicates that it
may form a hydrophobic interaction. Throughout the 500 ns MDS, Hit2 demonstrated
stable hydrogen bond interactions with A208 and D270. Among all, Hit3 had the most
stable hydrogen bond with all three critical residues; nonetheless, large fluctuations were
detected in the case of D270, although the last 100 ns data showed an average threshold
distance of 0.35 nm. The detailed H-bond dynamics demonstrated that Hit1 and Hit3 can
target all three residues via H-bond interactions; however, there may be a possibility that
the H-bond breaks and recovers in the case of T205 and D270.
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3.6.5. Principal Component Analysis

Principal component analysis (PCA) is usually employed to analyze the collective
motion of protein–ligand complexes taking backbone or c-alpha atoms [53,54]. The PCA
analysis of ACK1-bound ligands reveals that the first few eigenvectors play an important
role in the overall motion of all the complexes. The graph plotted in Figure 10A shows the
superimposition of the first 50 eigenvectors of the ACK1-Dasatinib, ACK1-Hit1, ACK1-
Hit2, and ACK1-Hit3 complexes. The comparative analysis also revealed that the ACK1-
Dasatinib complex may display greater conformational variability when compared to hit
compounds. It can be noticed from the graph that the first five eigenvectors are responsible
for the overall motion of the complexes, accounting for 55.02%, 59.78%, 50.39%, and 57.78%
for the ACK1-dasatinib, ACK1-Hit1, ACK1-Hit2, and ACK1-Hit3 complexes, respectively.
Interestingly, Hit2 displayed significantly fewer motions when compared to the ACK1-
Dasatinib complex; this is then closely followed by ACK1-Hit2 and ACK1-Hit1, indicating
their potential as lead candidates. Moreover, we studied the behavior of protein–ligand
systems using 2D projection plots of the first two significantly contributing eigenvectors
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(PC1 and PC2). The superimposition of the plots revealed that all the Hit compounds
bound complexes occupying a similar region occupied by the ACK1-Dasatinib complex
(Figure 10B). As expected from the eigenvector analysis, Hit2 showed the most stable
cluster, followed by Hit3 and Hit1.

Biomolecules 2023, 13, x FOR PEER REVIEW 16 of 22 
 

 
Figure 10. PCA analyses. (A) Eigenvector index, (B) PC1 and PC2, and (C–F) free energy landscape 
of REF, Hit1, Hit2, and Hit3, respectively. The blue spot in the plots indicates the energy minima, 
whereas the red color indicates a higher energy conformation. 

3.6.6. Gibbs Free Energy Landscape 
Gibbs’s free energy (GFE) landscape was estimated using PC1 and PC2, and the re-

sults are plotted in Figure 10C–F. The GFE analysis results revealed that energy values 
ranged between 0 and 17.9 kJ/mol for REF, 0 and 17.5 kJ/mol for Hit1, 0 and 18.5 kJ/mol 
for Hit2, and 0 and 16.3 kJ/mol for Hit3. It is clear from the GFE values that Hit1 and Hit3 
displayed lower free energy values, and therefore, these complexes may be more thermo-
dynamically stable than Hit2 and REF compounds. The Hit1 and Hit3 GFE plots show a 
similar pattern with the REF drug, but occupy a more minimum energy state, shown with 
blue color. In contrast, Hit2 displayed a different pattern of GFE landscape and had a less 
minimum energy state. 

4. Discussion 
Due to the crucial functions of cellular signaling, kinases have emerged as one of the 

most intensively studied targets in modern pharmacological research, particularly for can-
cer [55,56]. ACK1 is a non-receptor tyrosine kinase that is thought to be an oncogene in 
many tumors and is anticipated to become a therapeutic target [1]. Mahajan et al. reviewed 
early studies conducted on ACK1 to understand its involvement in cancers such as pros-
tate, breast, pancreatic, ovarian, lung, schwannoma, renal carcinoma, etc. [9]. In the last 
decades, a number of potential efforts have been conducted to find ACK1 inhibitors. How-
ever, none of the inhibitors has reached clinics to date [9,15]. Therefore, there is an urgent 
need to develop an ACK1-specific inhibitor that can meet clinical requirements. The de-
velopment of novel drugs against target macromolecules is complex and time consuming. 
However, this can be sped up using computer-aided drug-designing methods [57–59]. 
Therefore, in the present study, the structure-based pharmacophore modeling approach, 
one of the most promising in silico techniques for drug design, was selected along with 
other validation methods, such as MD and MDS (Figure 2). The 3D protein structural 
databank search reveals that, to date, six ACK1-inhibitors bound X-ray structures were 
available. Table 1 shows the hydrogen bond interactions of X-ray structure-bound inhibi-
tors with ACK1 active site residues. It can be observed that all the structures display a 

Figure 10. PCA analyses. (A) Eigenvector index, (B) PC1 and PC2, and (C–F) free energy landscape
of REF, Hit1, Hit2, and Hit3, respectively. The blue spot in the plots indicates the energy minima,
whereas the red color indicates a higher energy conformation.

3.6.6. Gibbs Free Energy Landscape

Gibbs’s free energy (GFE) landscape was estimated using PC1 and PC2, and the results
are plotted in Figure 10C–F. The GFE analysis results revealed that energy values ranged
between 0 and 17.9 kJ/mol for REF, 0 and 17.5 kJ/mol for Hit1, 0 and 18.5 kJ/mol for Hit2,
and 0 and 16.3 kJ/mol for Hit3. It is clear from the GFE values that Hit1 and Hit3 displayed
lower free energy values, and therefore, these complexes may be more thermodynamically
stable than Hit2 and REF compounds. The Hit1 and Hit3 GFE plots show a similar pattern
with the REF drug, but occupy a more minimum energy state, shown with blue color. In
contrast, Hit2 displayed a different pattern of GFE landscape and had a less minimum
energy state.

4. Discussion

Due to the crucial functions of cellular signaling, kinases have emerged as one of
the most intensively studied targets in modern pharmacological research, particularly for
cancer [55,56]. ACK1 is a non-receptor tyrosine kinase that is thought to be an oncogene in
many tumors and is anticipated to become a therapeutic target [1]. Mahajan et al. reviewed
early studies conducted on ACK1 to understand its involvement in cancers such as prostate,
breast, pancreatic, ovarian, lung, schwannoma, renal carcinoma, etc. [9]. In the last decades,
a number of potential efforts have been conducted to find ACK1 inhibitors. However, none
of the inhibitors has reached clinics to date [9,15]. Therefore, there is an urgent need to
develop an ACK1-specific inhibitor that can meet clinical requirements. The development
of novel drugs against target macromolecules is complex and time consuming. However,
this can be sped up using computer-aided drug-designing methods [57–59]. Therefore, in
the present study, the structure-based pharmacophore modeling approach, one of the most
promising in silico techniques for drug design, was selected along with other validation
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methods, such as MD and MDS (Figure 2). The 3D protein structural databank search
reveals that, to date, six ACK1-inhibitors bound X-ray structures were available. Table 1
shows the hydrogen bond interactions of X-ray structure-bound inhibitors with ACK1
active site residues. It can be observed that all the structures display a hydrogen bond with
hinge region residue A208. A previous experimental and modeling study revealed that
a conventional hydrogen bond with gatekeeper T205 provides better inhibitory efficacy
to inhibitors [22]. Only two structures, 3EQR- and 3EQP-bound inhibitors, displayed a
hydrogen bonds with these residues (Table 1). The conserved DFG motif residue D270, which
plays an important role in the activation of kinase, is observed to interact with 1U4D- and
5ZXB-bound inhibitors [21,45]. The knowledge of the intermolecular interactions of these
inhibitors reveals that pharmacophore features of a single structure may not be sufficient to
block ACK1 efficiently, and there is a requirement of hybrid PM, which can be built from
more than one structure [23,24]. Based on this observation, we selected two structures,
1U4D and 3EQR, which target key residues via hydrogen bond interaction (Table 1). A total
of 20 PMs were produced using the Receptor–Ligand Pharmacophore Generation protocol of
DS (Tables S1 and S2). The generated hypothesis was subsequently merged to obtain a
common feature, PM (Figure 3A,B). The pharmacophore features mapping with ACK1
active site residues clearly shows a 1U4D bound ligand map with A208 and D270, whereas
3EQR mapped with A208 and T205. Therefore, in order to obtain desirable HBD feature
mapping with T205 and D270, both pharmacophores merged using DS. Finally, a desirable
PM was generated (Figure 3C). The three important features, HBA, HBD, and HBD, were
mapped with A208, T205, and D270 (Figure 4). We previously developed a ligand-based
common feature PM. The model was created using a ligand-based approach, using the
five most active inhibitors, including dasatinib, as the training set. PM had five chemical
features in total, including two ring aromatics, one hydrophobic, and two hydrogen bond
acceptors (HBA) [28]. The two HBA features were able to map A208 and T205. Unfor-
tunately, it was not able to target DFG motif residue D270. In the present investigation,
that is why we utilized the knowledge of all the available inhibitor-bound structures and
developed a hybrid PM. The current model includes three hydrogen bond acceptor and
donor features that might be used to target the three essential residues, T205, A208, and
D270. As a result, we believe that by utilizing a hybrid PM, there is a good chance of obtaining
hits that target the aforementioned critical residues. The PM was subsequently validated
using the GH approach (Table 2) [25]. A drug-like database obtained from four chemical
databases utilizing ROF and ADMET descriptor filters was used to screen the PM. Out of
the 61,297 compounds, only 866 compounds were mapped to our model. The filtration of
a huge number of compounds reveals the significance of PMs in the virtual screening
process. We utilized a similar dataset in our earlier pharmacophore-based virtual screening
against ACK1, which yielded 3519 compounds [28]. The difference in compound retrieval
between the two distinct methods suggests that the structure-based hybrid PM is capable
of excluding additional compounds. The obtained compounds were visualized in DS, and
the total number was reduced to 351. The final compounds were then subjected to MD
using the GOLD program [31]. For comparative analysis, the 1U4D co-crystal ligand, DBQ,
and multi-kinase inhibitor drug dasatinib, which have shown nanomolar efficacy against
ACK1 in in vitro studies, were docked under similar conditions [16,21]. Our docking results
reveal that the docking score of dasatinib was better than the general kinase inhibitor DBQ;
therefore, the dasatinib docking score was used as a first filter to select the compounds. The
selected dasatinib conformer displayed a Goldscore of 63.78 and a Chemscore of −25.09.
The docking complex of dasatinib displayed a hydrogen bond with A208, E206, and S212.
Furthermore, hydrophobic interactions with crucial residues T205 and D270 were also
observed. Lawrence et al. discovered ACK1 inhibitors utilizing a fragment-based strategy
in which they predicted the binding mechanism of the active compound by MD using the
GOLD program. The hit compound was shown to form a hydrogen bond with residue
A208 in the hinge region. The compound was not observed to form a hydrogen bond with
gatekeeper T205 and DFG motif D270, but hydrophobic interactions were observed [50].
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Another group discovered selective, orally bioavailable imidazo pyrazine-derived ACK1
inhibitors using virtual screening for the selection of hit compounds. The modeled interac-
tions between the ACK1 and selected hit compounds displayed a hydrogen bond with the
gatekeeper T205, and another hit displayed a hydrogen bond with G269 residue close to the
DFG motif [47]. Kopecky et al. identified a series of pyrazolo pyrimidines as a novel class of
ACK1 inhibitors. Research has also identified the inhibitor-bound structure of PDB id 3EQR
and 3EQP. Both structures exhibited a hydrogen bond between the gatekeeper residue T205
and the hinge residue A208. Researchers have demonstrated that the hydrogen bond with
the gatekeeper T205 may be responsible for the enhanced anticancer activity of the hit com-
pounds [22]. According to a review of the literature, the hydrogen bond with gatekeeper
residue is an essential property observed in several potent kinase inhibitors, including the
closely related kinase LCK [60]. According to the aforementioned findings, interaction
with key residues, particularly A208, T205, and D270, plays a crucial role in ACK1 protein
inhibition. Keeping this in mind, we selected a total of 11 compounds from the MD analysis
(Table S3). In structure-based drug design, MDS plays an essential role in the selection of
the final drug candidate in computational studies. Usually, simulation runs are performed
after docking to check the predicted binding mode stability of the compounds [61,62]. In
the present study, the selected compounds were studied under MDS using GROMACS pro-
gram [35,36]. The simulated compounds were ranked on the basis of BFE, and compounds
displaying better binding affinity than dasatinib were selected (Tables S4 and S5) [42]. The
stability analysis of the hit compounds was analyzed using commonly used geometrical
parameters, such as RMSD and RMSF [32,52]. Figure 7 displays the superimposition of
the RMSD and RMSF plots. Our results indicated that hit compounds displayed stable
behavior during the 500 ns simulation run, and the average threshold value was <0.3 nm.
Moreover, hit compounds displayed strong hydrogen bond-forming potential, suggesting
that the inhibitors can interact with proteins with strong affinity (Table S6). The binding
affinity was validated using the MM-PBSA method (Table S7) [42]. The average binding
free energy from the last 100 ns trajectories revealed that Hit1 displayed significantly better
binding affinity with −104.18 kJ/mol than dasatinib −75.42 kJ/mol. The detailed binding
mode of the hit compounds DBQ and dasatinib showed that active site key residues were
targeted by various types of molecular interactions (Figure 7 and Figure S4). The hinge
region residue A208 and DFG motif D270 were targeted via hydrogen bonds by each
inhibitor (Figure 7A–C). The desirable hydrogen bond with gatekeeper residue T205 was
not observed in the case of Hit2; however, hydrophobic interaction was observed (Figure 7).
Moreover, per residue decomposition revealed that residues like R142, K158, G177, T205,
N257, and D270 may contribute to polar interactions, whereas L132, V140, A156, M181,
I190, M203, L207, L259, and F271 can participate in non-polar interactions (Figure 8). All
of these findings are consistent with previously published inhibitor-bound ACK1 crystal
structures [21,22,45,46]. The dynamics of the hydrogen bond with critical residues A208,
205, and D270 were also investigated (Figure 9). It was observed that Hit3 can form a stable
hydrogen bond with all three residues, which is then followed by Hit1. As expected from
the binding mode, Hit2 did not display a hydrogen bond with gatekeeper T205, but the
distance analysis revealed that it can form hydrophobic interactions. It is noteworthy to
mention that through our modeling work, this is the first time that the ACK1 hit candidate
displayed hydrogen bond with three key residues, A208, T205, and D270. We further stud-
ied the collective motion of the protein–ligand complexes using PCA analysis [53,54]. The
eigenvector index revealed that the first five eigenvectors were responsible for the overall
motion of the protein. Covariance analyses revealed that hit compounds occupied less
conformational space when compared with dasatinib (Figure 10A,B). The thermodynamic
stability of the compounds was also studied using Gibb’s free energy landscapes [35]. The
2D energy plots reveal that Hit3 and Hit1 have minimum free energy values, followed by
dasatinib and Hit2 (Figure 10C–F). Finally, we suggest three scaffolds of ACK1 inhibitors
as potential platforms for the development of promising anti-cancer inhibitors (Table 5).
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5. Conclusions

In summary, a structure-based hybrid PM was generated using the known inhibitor-
bound crystal structures of ACK1. The PM was observed to be efficient in targeting three
key residues of the catalytic domain viz. gatekeeper residue T205, hinge region A208, and
DFG motif D270, through desirable hydrogen bond interactions. Four drug-like databases
were screened using our PM to obtain potential ACK1 inhibitors. The binding affinity of the
compounds was predicted and validated using MD and MDS. The binding free energy analysis
was used to rank the simulated complexes, and the results were compared with the multi-
kinase inhibitor dasatinib. Binding mode evaluation further reveals that selected ACK1-hit
complexes form favorable hydrogen bonds with the gatekeeper residue, hinge region, and
DFG motif residues. As a result, we contend that the discovered scaffolds might serve as a
new scaffold against ACK1 for anticancer therapies subjected to experimental validation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13020217/s1, Figure S1: Pharmacophore modeling. (A) Phar-
macophore model based on PDB id: 1U4D, (B) and PDB id: 3EQR. The hydrogen bond donor (HBD)
and acceptor (HBA) features are shown in pink and green. The cyan and red colors represent hy-
drophobic (HYP) and pos ionizable (PI) features, respectively. Figure S2: The 3D crystal structure of
ACK1 PDB id: 1U4D is used for molecular docking. (A) The docking site was defined near the bound
ligand. (B) The overlay of the selected compounds after molecular docking analysis in the side active
site of ACK1. Figure S3: RMSD analysis of the selected Hit candidates, co-crystalized ligand DBQ,
and dasatinib after 500 ns MDS study. Figure S4: The 3D and 2D binding modes of DBQ and dasatinib
(shown with cyan stick) inside the active site of ACK1. The upper panel of image A-B) displaying
the binding mode of DBQ and the lower panels C-D) displaying Dasatinib. The hydrogen bonds
are shown with dark green dashed lines. The van der Waals and pi-alkyl interactions were shown
with light green, purple, and pink colored spheres. Table S1: Pharmacophore models generated from
PDB: 1U4D. Table S2: Pharmacophore models generated from PDB: 3EQR. Table S3: List of potential
compounds obtained after molecular docking. A total of 11 compounds showed a better Goldscore
and Chemscore than the reference inhibitor. Table S4: Details of binding free energy and H-bond
interactions of simulated compounds after 50 ns MD simulations. Table S5: Details of the molecular
dynamics simulation system prepared for a 500 ns run. Table S6: Details of molecular docking and
molecular dynamics simulation analysis after 500 ns of selected Hit compounds. Table S7: Binding
free energy components of Hit compounds and dasatinib calculated from the MM-PBSA method.
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