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Abstract: With the increasingly serious burden of osteoarthritis (OA) on modern society, it is urgent
to propose novel diagnostic biomarkers and differentiation models for OA. 7-methylguanosine (m7G),
as one of the most common base modification forms in post transcriptional regulation, through which
the seventh position N of guanine (G) of messenger RNA is modified by methyl under the action of
methyltransferase; it has been found that it plays a crucial role in different diseases. Therefore, we
explored the relationship between OA and m7G. Based on the expression level of 18 m7G-related
regulators, we identified nine significant regulators. Then, via a series of methods of machine
learning, such as support vector machine recursive feature elimination, random forest and lasso-cox
regression analysis, a total of four significant regulators were further identified (DCP2, EIF4E2,
LARP1 and SNUPN). Additionally, according to the expression level of the above four regulators, two
different m7G-related clusters were divided via consensus cluster analysis. Furthermore, via immune
infiltration, differential expression analysis and enrichment analysis, we explored the characteristic
of the above two different clusters. An m7G-related scoring model was constructed via the PCA
algorithm. Meanwhile, there was a different immune status and correlation for immune checkpoint
inhibitors between the above two clusters. The expression difference of the above four regulators was
verified via real-time quantitative polymerase chain reaction. Overall, a total of four biomarkers were
identified and two different m7G-related subsets of OA with different immune microenvironment
were obtained. Meanwhile, the construction of m7G-related Scoring model may provide some new
strategies and insights for the therapy and diagnosis of OA patients.

Keywords: osteoarthritis; 7-methylguanosine; biomarkers; scoring model

1. Introduction

Being unpredictable and one of the most common chronic degenerative joint diseases,
OA (OA) has a prevalence that increases with age. OA causes significant pain and disabil-
ity [1–3]. Furthermore, inflammation or fibrosis of the infrapatellar fat pad is present in
patients with OA, which is one of the well-established risk factors for the development
of the pain caused by OA [4,5]. Moreover, pathological changes, including subchondral
osteosclerosis, synovitis, fibrosis, and cartilage degeneration are closely associated with
OA [6–9]. OA has a multifaceted etiology; and is caused by a combination of immune
response, chronic inflammation, trauma, and biomechanical processes [10–12]. Congenital
joint abnormalities, trauma, stress injury, obesity, sex, age, and knee gap narrowing [13]
are all complicatedly associated with the development of OA [14].OA can have serious
physical, emotional, and economic consequences; moreover, it is becoming an evolving
public health issue that negatively affects the daily lives and quality of life of people [15].
With an increasing prevalence, overall, the age-standardized prevalence of OA increased
by 7.5% in Northern Europe between 1990 and 2015, with an annual increase of 43% [16].
Clinical symptoms and imaging findings are required for making the standard diagnosis of
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OA; however, often, when these symptoms appear, patients have already reached the late
stage of the disease [17]. Moreover, patients with OA show relatively severe symptoms and
have poor treatment results because no current drug treatment has been found to reverse
the progression of OA in the long term [15]. Therefore, it is even more important to look
for novel diagnostic modalities that can help diagnose OA as early as possible, facilitating
the timely treatment of patients.

RNA modifications were not known as the “epitranscriptome” until 2015. Emerging
studies on the function of these modifications have shown significant implications for
human pathology [18]. Adenosine methylation is present in mRNAs and non-coding RNAs,
such as circular RNA (circRNAs), microRNAs (miRNAs), and long-stranded non-coding
RNAs (lncRNAs), which adjust their biogenesis and function [19]. The RNA methylation
types can be divided into various modification types: m6A, m5C, m7G, and so on; of which
m6A and m7G are the two most common types [20–22]. However, so far, more extensive
studies on the association between m6A and OA are available, whereas there are few studies
on m7G [23,24]. Moreover, there is a prevalence of m7G RNA modifications within mRNA,
and their conservation, regulation, and dynamics as well as their roles in translational
control have been shown. Modifications of the m7G cap are widely seen in OA-related
mRNA [25]; they play an important role in the efficient translation, splicing, and stability
of related mRNA and also affect the synthesis of related proteins. Modifications of m7G
are also observed in OA-related mRNA and help in enabling the translation of OA-related
mRNA. Thus, m7G, as a transcriptional marker, is important for protein translation and
can be used as the basis for making diagnostic models for OA.

Herein, we have analyzed numerous publicly available microarray datasets. Using
differential analysis and algorithmic screening, we have acquired the most critical genes of
m7G-regulators for forming an intersection. We have identified four significant regulators,
including DCP2, EIF4E2, SNUPN, and LARP1, in combination with machine learning.
Based on the expression of these four regulators, we have divided all the OA samples into
m7G-related clusters. Next, we performed principal component analysis (PCA) to calculate
the m7G score in the above two clusters. Then, we performed differential expression
analysis, enrichment analysis, and immune infiltration to explore the characteristics of the
two clusters. Finally, after the intersection of the differentially expressed genes (DEGs)
between the above two clusters and DEGs between the normal samples (NM) and OA
samples, we constructed a diagnostic model using LASSO Cox regression. Furthermore,
we verified the abovementioned four regulators with the use of real-time quantitative
polymerase chain reaction (RT-qPCR).

2. Materials and Methods
2.1. Data Acquisition and Processing

By retrieving the keyword “OA” from the Gene Expression Omnibus database, datasets
containing the synovial tissue samples of normal people and patients with OA were ob-
tained [26]. Moreover, the standards for screening our datasets are as follows: (1) Homo
sapiens Expression Profiling by array, (2) synovial tissue of OA from joint synovial biopsies,
(3) datasets containing complete information about the samples, (4) one biopsy sample per
subject was analyzed without replicates. The detailed information regarding the datasets
used in our study is listed in Table 1. Then, “inSilicoMerging” [27] was used to merge and
the “limma” package (v3.42.2) in R software [28] was used to remove the batch effect of these
three data sets; finally, a data set containing the synovial tissue samples of 26 patients with
OA and 20 normal people was obtained. Furthermore, 24 m7G-regulators collected in the
gene sets GOMF_RNA_7_METHYLGUANOSINE_CAP_BINDING, GOMF_M7G_5_PPPN
_DIPHOSPHATASE_ACTIVITY, and GOMF_RNA_CAP_BINDING, were summarized,
wherein only 18 regulators were annotated in our data sets [29]. In this study, the asso-
ciation between the expression of these 18 genes and diseases as well as that between
m7G-regulators self-expression was studied. The results were visualized using heat maps.
The Wilcoxon signed-rank test was performed to select some significant regulators.
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Table 1. The information of datasets included in our research. OA, osteoarthritis; NM, normal.

Accession Platform
Samples

Tissue
NM OA

GSE55235 GPL96 10 10 synovium
GSE55457 GPL96 10 10 synovium
GSE55584 GPL96 0 6 synovium
GSE12021 GPL96 9 10 synovium

GSE32317 GPL570
Early OA Late OA synovium

10 9

2.2. Enrichment Analysis

Gene ontology (GO) analysis is a common method to annotate gene products and
the functions of genes, including cellular component, biological pathway, and molecular
function [30]. The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a useful database
for the systematic analysis of gene functions and associated high-level genomic functional
information [31]. We used “clusterProfiler” (version 3.14.3) and R software packages
“org.Hs.eg.db” (version 3.1.0) for the GO and KEGG pathway analysis. The maximum size
gene sets were set to 5000 genes and the minimum to 5; the analysis results with a p-value
of <0.05 were considered significant. ClueGO is an important plug-in of Cytoscape, which
can be used for GO enrichment analysis. It was also used for enrichment analysis in our
study [32].

2.3. Construction and Verification of Prediction Model

To more accurately screen the m7G-regulators associated with the occurrence of OA,
significant m7G-regulators and OA were extracted using the support vector machine recur-
sive feature elimination (SVM-RFE) algorithm and random forest algorithm (RF) [33], and
the two analysis results were intersected using the Venn diagram. Finally, to determine the
best prognostic characteristic regulators, the LASSO Cox regression analysis was performed
on the basis of the abovementioned results [34]. Then, cluster analysis was performed on
the finally screened feature genes using the “ConsensusClusterPlus” package; accordingly,
the samples were divided into two categories. PCA was used for extracting PC1 and PC2
to form signature scores. Afterward, the above scores were applied to construct the m7G
score: m7G score = Σ (PC1i + PC2i).

2.4. Immune Infiltration

The genes significantly associated with 28 immune cell types from the literature were
collected (Table S1). Then, the expression of these immune genes were linked with the dis-
tribution of 28 types of immune cells using the single-sample gene set enrichment analysis
method [35]; combined with our m7G regulators; we finally analyzed the association of
28 immune cells with different m7G-related clusters and immune cells with m7G character-
istic genes.

2.5. Construction of Diagnostic Model of OA

To better explore the characteristic of our two m7G-related clusters, differential ex-
pression analysis was performed to assess the DEGs between the two m7G-related clusters
and those between the NM and OA samples with the cutoff criteria of |log2FC| > 1
(p < 0.05). After the intersection of the two different types of DEGs, a diagnostic model
was constructed using the overlapped DEGs via the LASSO Cox regression. The diagnostic
score was as follows: Diagnostic Score = ∑i Coefficientsi * Expression level of signaturei.
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2.6. Collection of Our Synovial Samples

In our study, synovial tissue samples of OA were obtained from patients undergoing
surgery due to knee OA (n = 15). The normal synovial samples were from patients who
underwent surgery for meniscus laceration of the knee joint caused by trauma (n = 15).

2.7. RT-qPCR

Trizol (Invitrogen, Waltham, MA, USA) reagent was used to extract total RNA from
the synovial tissue samples of normal people and patients with OA; the Prime Script TMRT
kit (Takara, RR047A) was used to reverse transcribe to obtain cDNA. Finally, the SYBR
Premix Ex Taq II Kit (Takara, Japan) was used for PCR amplification according to the
manufacturer’s instructions. And we used Bio-Rad (CFX96) of the UK for RT-qPCR. The
primer sequences are listed in Table S2.

2.8. Statistical Analysis

R software (version 4.2.1) and its related software packages were used to process and
analyze data (p < 0.05). We used the Wilcoxon signed-rank test to assess the significance of
difference between the two groups. And a t-test was used for the analysis of the result of
RT-qPCR. Afterward, Sangerbox was used to visualize the results of the receiver operating
characteristic curves and Wilcoxon signed-rank test; the “RMS” package in R software was
used to visualize Nomograms.

3. Results

3.1. Identification of Significant m7G-Regulators in OA

We calculated the Spearman correlation coefficient among these 18 regulators, wherein
several regulators demonstrated significant correlation on the basis of the expression
levels of 18 m7G-regulators in our datasets which were merged with the three datasets
from GEO (Figure 1A). Meanwhile, the interaction association of these 18 regulators was
revealed by constructing a protein-protein interaction network (Figure 1B). Then, we used
the Wilcoxon signed-rank test to identify the significant regulators in our training set.
Thus, nine significant regulators (p < 0.05) were obtained, including DCP2, IFIT5, EIF4E2,
NUDT11, NUDT3, LARP1, SNUPN, LSM1, and CYFIP1 (Figure 1C). The heat map shows
the expression level of these nine significant regulators (Figure 1D).
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normal; OA, OA.
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3.2. Enrichment Analysis for Our Significant m7G-Regulators

The ClueGO plug-in in Cytoscape was first used to perform enrichment analysis
(p < 0.05) for comprehensively exploring the function of the above nine significant m7G-
regulators in OA. Thus, the term with the largest proportion was “m7G(5′)pppN diphos-
phatase activity” (53.85%); furthermore, the rest of the terms revealed that our significant
m7G-regulators were almost involved in the pathways of RNA metabolism and translation
progress (Figure 2A). Meanwhile, the MCODE plug-in was used to extract the important
clusters of the ClueGO results. The clusters with a high score are shown in Figure 2B–D;
the cluster with the highest score was the “m7G(5′)pppN diphosphatase activity” pathway,
which was consistent with the biological function of these regulators.
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Moreover, the GO, KEGG, and Reactome analyses were performed to ensure the
preciseness of our research (p < 0.05) (Figure 2E–I). Correspondingly, almost all results
of different methods of enrichment analysis revealed that these regulators focused on
RNA metabolism. Interestingly, pathways associated with the immune system and other
pathways, including the viral myocarditis, interferon signaling, and HIF-1 signaling path-
ways, were found, indicating that these m7G-regulators played a significant role in RNA
modification as well as immune and other fields.

3.3. Selection of Significant m7G-Regulators via Machine Learning

In line with the above analysis, we explored the important and key role of OA by
using several methods of machine learning to further identify some significant regulators
in OA. First, SVM-RFE was performed to evaluate the diagnostic effectiveness of these
regulators. Thus, seven regulators were obtained. Meanwhile, another method, RF, was
used to calculate the importance of these regulators (Figure 3A,B). With a score of >2,
six regulators were selected (Figure 3C,D). Then, we intersected the results of SVM-RFE and
RF, through which four regulators (EIF4E2, DCP2, SNUPN, and LARP1) were considered
the final crucial regulators (Figure 3E).
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Figure 3. The further selection of crucial m7G-regulators for OA via machine learning. (A,B) The
results of SVM-RFE identified seven significant features. (C,D) The results of RF identified six
significant features. (E) The Venn diagram to extract the overlapped features between RF and SVM-
RFE. (F,G) The results of lasso-cox regression analysis. (H) The nomogram of the four significant
regulators to distinguish early- and end-stage of OA confirmed via machine learning. (I) The
calibration curve of our nomogram.

Furthermore, the LASSO Cox regression was performed to verify the diagnostic
effectiveness of these four regulators (Figure 3F,G). Thus, all four regulators were regarded
as significantly diagnostic signatures.

Moreover, based on the expression matrix of GSE32317, the nomogram was further ex-
hibited to reveal the efficiency of the above four m7G-regulators in distinguishing early- and
end-stage OA, and the calibration curve revealed the accuracy of our model (Figure 3H,I).

3.4. Identification of Two Different m7G-Related Clusters

According to the expression levels of the four key regulators selected via machine
learning, we divided our OA samples in the training set into two m7G-related clusters
with the most appropriate K value (K = 2) via consensus cluster analysis (Figure 4A–C).
Furthermore, the PCA diagram revealed a significant difference between clusters A and
B (Figure 4D). Meanwhile, all four regulators showed a significant statistical difference
between m7G-related clusters A and B (Figure 4E,F). Based on the PCA algorithm, an m7G
score module was calculated to distinguish the above two clusters (p < 0.05), which was
higher in m7G-related cluster B and lower in m7G-related cluster A (Figure 4G).
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curve of the result for consensus cluster analysis. (C) The heat map of two different m7G-related
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the four regulators between two clusters. (G) The difference of m7G score between two clusters.
**, p < 0.01; ****, p < 0.0001.

3.5. GSEA, Immune Infiltration, and Immune Checkpoint Characteristics in m7G–Related Clusters

To better describe the characteristics and functions in the abovementioned m7G-related
clusters, the GSEA analysis was performed. We identified three pathways with a p-value
of <0.05, including TGF_BETA_SIGNALING, ALLOGRAFT_REJECTION, and ESTRO-
GEN_RESPONSE_EARLY, which indicated that the m7G score was mainly associated with
the metabolism and immune system (Figure 5A). Therefore, we performed the immune
infiltration analysis and the mantel test to demonstrate the association between the four
significant regulators and the infiltration score of the 28 immune cells. Interestingly, a
stronger association was noted in cluster A, indicating that the lower m7G score suggested
prominently elevated infiltration of immune cells in patients with OA (Figure 5B,C).

Furthermore, the Pearson correlation coefficient between the expressions of a series
of immune checkpoint-related genes in the above two clusters and the m7G score was
calculated for more comprehensively exploring the immune signature between these
two clusters. For the immune checkpoint inhibitors, the m7G score in m7G-related cluster A
was positively associated with most of the inhibitors (Figure 5D). On the contrary, the m7G
score in m7G-related cluster B was negatively correlated with most inhibitors (Figure 5E).
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enrichment analysis in two clusters. (B) The mantel correlation heat map between the m7G score
and 28 different kinds of immune cells in two different clusters. (C) The mantel correlation heat map
between the expression level of four significant regulators and 28 different kinds of immune cells in
two different clusters. (D,E) The lollipop chart revealed the results of Pearson correlation analysis
between m7G score and the expression level of several immune checkpoint inhibitors in (D) cluster A
and (E) cluster B.

3.6. Exploration of Difference between the above Two Clusters and Construction of a
Diagnostic Model

To further emphasize the significance of the m7G-related clusters, differential expression
analysis was performed with |log2FC| > 1 (p < 0.05) as the cutoff. Thus, 113 DEGs were identi-
fied, including 46 upregulated and 67 downregulated, which were visualized using the volcano
and heat maps (Figure 6A,B). Moreover, the DEGs between NM and OA and between the above
two clusters intersected. Finally, eight overlapped DEGs were obtained (CRYBB1, N6AMT1,
SNORA21, HAUS2, P2RX3, RRN3P1, CC2D1A, and FKBP5), which were considered the candi-
date factors extracted for the LASSO Cox regression (Figure 6C,D). We regarded lambda-min:
0.0469 as the optimal value after running the 10-fold cross-validation. Thus, five factors were
selected to construct our diagnostic model for OA: Diagnostic value = (−0.00806730919977491
× SNORA21) + (−0.00181179794976226 ×HAUS2) + (−0.0134814157908044 × CC2D1A) +
(−0.00123114088948981 × FKBP5) + (0.00983579963789009 ×N6AMT1) (Figure 6E,F). Fur-
thermore, all samples were randomly divided into two different subsets with a ratio of
1:1: a verification set and a training set. According to the above formula of the diagnostic
score, the Wilcoxon signed-rank test was performed to explore the statistical difference
between the NM and OA samples. Finally, the diagnostic score of both sets demonstrated a
significant difference (p < 0.05) (Figure 6G,I). In addition, the area under the receiver oper-
ating characteristic curve of the diagnostic model in the verification and training set was
85.4701 and 93.0070, respectively, which further indicated the excellent effectiveness of our
diagnostic model (Figure 6H,J). Moreover, to further verify the accuracy of the diagnostic
model, another external dataset GSE12021 was selected, wherein a significant difference
was observed in the diagnostic value between NM and OA samples (p < 0.05) (Figure 6K).
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Meanwhile, in GSE12021, the area under the receiver operating characteristic curve of the
diagnostic model was 97.7778, demonstrating the accuracy of our model (Figure 6L).
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Figure 6. The construction of a diagnostic model related to m7G. (A) The volcano map of the DEGs
between two different m7G clusters. (B) The heat map revealed the expression level of DEGs in
two clusters. (C,D) The Venn diagram to intersect the overlapped (C) up-regulated and (D) down-
regulated DEGs between the DEGs in two different clusters and DEGs between NM and OA group.
(E,F) The results of lasso-cox regression analysis. (G,I,K) The difference of diagnostic score between
NM and OA in our (G) training set, (I) internal verification set, and (K) external verification set.
(H,J,L) The ROC curve of the diagnostic score in our (H) training set, (J) internal verification set, and
(L) external verification set.

3.7. Validation of the Four Significant m7G-Regulators in the Synovial Tissue of Patients with OA

To explore the abovementioned four significant m7G-regulators (DCP2, EIF4E2, SNUPN,
and LARP1) in OA, the synovial tissues of normal people and patients with OA were
collected from the Second Affiliated Hospital of Nanchang University and the demographic
data of the patients included in our study is listed in Table 2. Then, the expression difference
in the RNA level was verified using qRT-PCR. Thus, except for LARP1, the other three
regulators exhibited a significant high-expression level in OA, which was consistent with
our above analysis (Figure 7A–D).
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Table 2. The demographic data of patients included in our study.

OA Samples Normal Samples

Age Gender Height (cm) Weight (kg) Age Gender Height (cm) Weight (kg)

75 Female 154 60 43 Male 156 60
66 Male 168 66 53 Male 158 61
60 Female 155 55 53 Male 172 86
65 Male 163 70 68 Female 150 50
75 Female 150 50 54 Female 157 56
58 Female 158 65 55 Female 165 80
90 Male 160 61 54 Female 155 48
64 Female 163 63 57 Female 158 64
69 Female 155 58 56 Female 156 60
71 Female 150 55 55 Male 177 75
73 Male 178 90 47 Male 160 65
70 Female 160 45 60 Female 153 50
53 Male 171 71 61 Male 185 73
69 Female 150 50 54 Female 156 56
53 Female 150 46 53 Male 171 75
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significant regulators (A) DCP2, (B) EIF4E2, (C) LARP1 and (D) SNUPN between the NC and OA
group in the synovial tissue of our OA patients via RT-qPCR. ns, p > 0.05; **, p < 0.01; ***, p < 0.001.

4. Discussion

OA is usually assumed to be caused by non-inflammatory factors; that is, a series
of mechanical stresses that destroys the cartilage. However, recently, some associated
inflammatory factors have also been shown to contribute to OA development, allowing
inflammatory cells to infiltrate the synovium [36]. Moreover, inflammatory cytokines
play an essential role in the progression of OA by stimulating the production of matrix
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metalloproteinases and thus increasing matrix degradation [37]. An increasing number
of studies have focused on the effects of nucleic acid site changes on the cell function and
even body activities, wherein RNA modification plays a critical role. This can be seen in
the methylation of m7G, which is located in the inner part of tRNA and rRNA and plays
a significant role in coordinating numerous functions during the mRNA lifecycle. This is
largely accredited to the protein factors that particularly bind to the cap structures, the
cap-binding complex in the nucleus, and eIF4E in the cytoplasm. m7G is accountable for
mRNA processing and nuclear export in the nucleus and is needed for effective pre-mRNA
splicing. In vivo, mRNA interacts with protein factors throughout its life cycle and also
plays a role in transcription termination and exosome degradation [38]. In the present
study, we have briefly discussed the association between m7G and OA. Several research
gaps still exist despite a growing interest in this field. Thus, we have attempted to create a
novel prospect for the clinical diagnosis of OA.

In this study, three datasets were downloaded from the Gene Expression Omnibus
database, namely GSE55235, GSE55457, and GSE55584. After unified treatment, 18 regula-
tory factors associated with m7G were identified and analyzed from the data of 26 patients
with OA and 20 normal people. Nine statistically significant m7G regulators were ob-
tained; their association was strong enough. Second, a protein-protein interaction network
was constructed to enrich and analyze these regulators using GO and KEGG. The results
showed that these genes were mainly involved in no MTG-related dephosphorylation, RNA
metabolism, RNA modification, and other processes and were enriched in hypoxia-related
GFR signaling, insulin metabolism-related, and virus-related pathways. Next, two machine
learning algorithms (RF and SVM-RFE) were used to further screen the nine genes, obtain
the intersection, and further obtain four key genes, EIF4E2, DCP2, SNUPN, and LARP1.
Based on these four genes, the diagnostic effectiveness of these four genes was further
verified using the LASSO Cox regression. Furthermore, based on the expression levels of
the abovementioned four hub genes, the 26 OA samples in the training set were divided
into two different m7G-related clusters; the PCA algorithm was used to further calculate
the m7G score to differentiate the two subtypes. Immune infiltration analysis demonstrated
that cluster A was more closely associated with the immune system. Moreover, to better
exhibit the characteristic of our m7G-related clusters, a diagnostic model was constructed
for calculating the diagnostic score using the differential expression analysis and LASSO
Cox regression. Finally, the differential expression of the abovementioned four genes in
the synovial tissues of patients with OA was verified using an external validation set and
RT-qPCR. Although unilaterally LARP1 exhibited a non-statistically significant difference
between NM and OA in RT-qPCR, the m7G-related Score to distinguish two different m7G-
related clusters of OA exhibited an accurate efficiency and the diagnostic model constructed
via these four m7G-regulators played an extraordinary role in the diagnosis of OA.

EIF4E2 is a protein-coding gene located in the p-body and belongs to part of the mRNA
cap-binding active complex [39,40]. In the early stage of initiation, EIF4E2 recognizes and
binds m7G mRNA cap, activates ubiquitin protein ligase-binding activity, and participates
in miRNA-mediated translational inhibition. Contrary to EIF4E, EIF4E2 is unable to bind
EIF4G (EIF4G1, EIF4G2, or EIF4G3), signifying that it assembles EIF4F by competing with
EIF4E and blocking it in the cap region [41]. EEIF4E2-related diseases include casket-Siris
syndrome 2, melanoma, cancer, viruses, and so on. The related pathways include the
PI3K-Akt signaling and innate immune system pathways. RNA-binding and ubiquitin
protein ligase binding are the GO annotations associated with this gene. Shaohong Chen
et al. proposed that TNRC6 competes with EIF4E1 to recruit EIF4E2 for targeting mRNA,
thus blocking translation initiation. Moreover, EIF4E2 mainly inhibits the expression
of genes at the translational level but does not significantly affect the level of coding
mRNA [42]. Moreover, Mir-29b is associated with EIF4E2. However, Mir-29b can silence
premature AID expression in naive B cells, thus reducing the probability of inappropriate
and potentially dangerous deamination activity [43]. Cadherin-22, a cell-cell adhesion
molecule, is upregulated by promoter eIF4E2-mediated mTORC1-independent translational
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control during hypoxia; the novel function of cadherin-22 acts as a hypoxia-specific cell
surface molecule and is involved in cancer cell migration, invasion, and adhesion [44].
However, no previous studies have noted and discussed the association between EIF4E2
and OA or the role of EIF4E2 in OA, which may become a potential topic for studies in
the future.

The protein encoded by DCP2 is a key component of the mRNA uncoating complex
required for mRNA degradation. It removes the 7-methylguanine cap structure from
mRNA and then degrades from the 5′ end. The involved pathways are an unfolded protein
response and the regulation of activated PAK-2P34 by proteasome-mediated degradation.
The GO annotations associated with this gene include RNA binding and manganese ion
binding. Moreover, T cell intracellular antigen-1 (TIA-1)-induced transformation silencing
promotes the decay of selected mRNAs, and TIA-1-mediated decay is inhibited by small
interfering RNAs targeting the 5′-3′ (e.g., DCP2) or 3′-5′ (e.g., exosomal component Rrp46)
decay pathway, suggesting that TIA-1 sensitizes mRNA to both major decay pathways [45].
Interestingly, there is no study on the association between DCP2 and OA. This is also the
novelty of our study, and it is worthy of more detailed research.

SNUPN is also a protein-coding gene, acts as a U snRNP-specific nuclear import
adapter, and participates in the trimethylguanosine cap-dependent nuclear import of U
snRNPs. SNUPN is associated with chronic lymphocytic leukemia, cancer, and so on.
The related pathways include the translocation of pre-mRNA containing introns and
SLBP-independent mature mRNA. The GO annotations associated with this gene include
outdated protein transporter activity and RNA cap binding. Moreover, XPO1 binding to
various proteins is mediated by the recognition of leucine-rich nuclear export signals at
the N-terminus of SNUPN, thus transporting proteins. Overexpression or dysfunction of
XPO1 has been reported in different cancers [46]. As the role of SNUPN in OA has not been
explored by previous studies, our study is the first one to demonstrate a link between the
two. To understand the role of SNUPN in OA in detail, further deeper research is necessary.

LARP1 is a class of RNA-binding proteins that regulates the translation of specific
target mRNAs downstream of the mTORC1 complex and plays a role in growth signaling
and nutrient availability while regulating cell growth and proliferation [47]. The diseases
associated with LARP1 are dengue virus and hepatocellular carcinoma. The pathways
involved include disease and SARS-CoV-2 infection. The GO annotations associated with
this gene include RNA binding and translation initiation factor binding. Furthermore,
RNMT selectively regulates the LARP1 target (TOP mRNA in the terminal polypyrimidine
tract) expression. Increased ribosome abundance leads to the upregulation of RNMT for
coordinating mRNA capping and processing and increasing translational capacity during T-
cell activation [48]. Meanwhile, the association between LARP1 and OA is still not studied.
Our study is the first one to show that LARP1 may have an impact on the pathogenesis of
OA, but it still needs further exploration.

Furthermore, up to now, the diagnosis of OA has become clearer and accurate, which
is based on X-rays and clinical symptoms [17,49,50]. However, with OA development, the
joint pain caused by OA and its effect on the daily life and exercise capacity of patients
becomes more and more severe. Thus, early and timely diagnosis of OA is urgent and
necessary. In our study, the nomogram constructed based on the GSE32317 further revealed
that our four regulators (DCP2, EIF4E2, SNUPN, and LARP1) also showed excellent
accuracy to distinguish early- and end-stage OA, which provided effective insight to the
early diagnosis of OA.

In summary, in this study, the collected data sets were unified and merged into a whole
for analysis to avoid homogeneity. The number of samples used was also significant. Simul-
taneously, we used two different machine learning methods to avoid the one-sidedness of
screening methods and make the results more convincing. Furthermore, the scoring model
of m7G was constructed for the first time, which is progressive. However, not enough
synovial tissue samples were collected. Moreover, the role of our four m7G-regulators in
the occurrence and development of OA was not explored with detailed experiments, which
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needs to be explored in the future. Moreover, the five-gene diagnostic model obtained
via our m7G-related cluster was verified only via external and internal datasets without
experiments; thus, its diagnostic accuracy needs to be further validated. In conclusion, we
constructed an m7G-related scoring model, which can significantly differentiate patients
with OA, and correlated it with different statuses of the immune microenvironment, based
on which we constructed a diagnostic model to diagnose patients with OA.
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