Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms
Abstract
:1. Introduction
2. Study Methodology
3. Mechanisms of Apoptotic Action
3.1. Calpain-Dependent Apoptotic Pathway
3.2. Anti-Proliferative Pathways
Compound | Cell Line | Incubation Period | Concentration(s) | Biomarker Changes and Effects | Reference | |
---|---|---|---|---|---|---|
Flavonoids | ||||||
Apigenin | NUB-7 and LAN-5 | 24 h | 10, 50, 100, 150, 200 µM IC50: 35 μM in NUB-7 IC50: 22 μM in LAN-5 | ↑ p53 ↑ p21WAF−1/CIP−1 | ↓ Proliferation | [33] |
DEDC | SH-SY5Y | 24 h | 7.5 µg/mL | ↑ p53 mRNA ↑ p21 mRNA ↓ Cyclin-B1 | [32] | |
Didymin | CHLA-90 and SK-N-BE2 (p53-mutant) l + SMS-KCNR and LAN-5 (p53 wild-type) | 24 h | 50 μmol/L | ↓ P13K ↓ Akt | ↓ Proliferation | [34] |
↓ Vimentin | ↓ Motility of tumor cells | |||||
↓ N-Myc transcription | ||||||
↑ RKIP | ↓ MAPK pathway ↓ Proliferation | |||||
Isoliquiritigenin | SH-SY5Y | 24 h | 10–100 µM IC50: 25.4 µM | ↑ pERK1/2 | ↓ Cell migration ↓ Proliferation ↑ S + G2/M-phase arrest | [35] |
Rutin | LAN-5 | 24 h | 0, 25, 50, 100 μM | ↑ G2/M-phase arrest | [36] | |
Quercetin | Neuro2a (mouse cell line) | 24 h |
10, 20, 40, 80, 120 μM IC50: 40 µM | ↑ p27 | ↓ Cyclin–CDK complex binding | [30] |
↓ Bcl-w | ↓ Tumor-cell-gene expression | |||||
Quercetin | Neuroblastoma X glioma NG 108-15 cells (mouse cell line) | 48 h |
10 µM, 20 µM IC50: 10 µM | ↓ K+-channel activity | ↓ Cell growth | [31] |
Non-Flavonoid Polyphenols | ||||||
Curcumin | SK-N-SH | 24 h | 8, 16, 32 µM | ↓ CDC2 ↓ Cyclin B1 | ↑ G2/M-phase arrest | [37] |
Curcumin | GI-L-IN, HTLA-230, SH-SY5Y, LAN5, SK-NBE2c, and IMR-32 | 18–72 h | 0.1–25 µM | ↓ NFκβ activator protein (AP-1) ↓ STAT3, STAT5 activation | ↓ Cell growth | [38] |
Curcumin | NUB-7, LAN-5, IMR-32 and SK-N-BE(2) | 2–8 days | 0–100 µM * * Significantly inhibited proliferation in the range of 5–10 µM | ↑ p53 translocation from cytoplasm to nucleus ↑ p21WAF−1/CIP−1 | ↑ G1-, G2/M-, and S-phase arrest | [42] |
Honokiol | Neuro-2a (mouse cell line) and NB41A3 | 72 h |
2.5, 5, 10, 20, 30, 40, 50, 60, 80, 100 µM LC50: 63.3 µM | ↑ Sub-G1-phase arrest | [39] | |
Prenyl hydroxy-coumarins | Neuro-2a (mouse cell line) | 24, 48, 72 h | 6.25–200 µg/mL | ↑ Sub-G1-phase arrest | [43] | |
Resveratrol | B103 (rat cell line) | 48 h |
5–20 µM IC50: 17.86 µM | ↓ Cyclin D1 | ↑ G1-phase arrest | [40] |
Resveratrol | B65 (rat dopaminergic cell line) | 24 h | 25, 50, 100 µM | ↓ pAkt ↓ Cyclin D, E, A ↓ CDK2 ↑ p53 ↑ NFκβ | ↑ S-phase arrest | [41] |
Resveratrol | NUB-7, LAN-5, IMR-32 and SK-N-BE(2) | 2–8 days | 25–160 µM | ↑ p53 translocation from cytoplasm to nucleus ↑ p21WAF−1/CIP−1 | ↑ G1-, G2/M-, and S-phase arrest | [53] |
3.3. Mitochondrial and ER-Stress-Related Apoptotic Pathways
3.3.1. Bcl-2-Family Proteins
3.3.2. PARP Cleavage
3.3.3. MMP and Cytochrome C
3.3.4. Oxidative and ER Stress
3.3.5. p53 and p38
Compound | Cell Line | Incubation Period | Concentration(s) | Biomarker Changes | Reference |
---|---|---|---|---|---|
Flavonoids | |||||
Apigenin | SH-SY5Y | 24 h | 50 µM | ↑ Bax ↓ Bcl-2 ↑ Cytochrome c release ↑ Caspase-3, -9 | [27] |
Apigenin | NUB-7 and LAN-5 | 24 h | 10, 50, 100, 150, 200 µM IC50: 35 μM in NUB-7 IC50: 22 μM in LAN-5 | ↑ Bax ↑ PARP cleavage ↑ Caspase-3 | [33] |
Butein | Neuro2a (mouse cell line) | 24 and 48 h | 6.25, 12.5, 25, 50, 100 μM IC50: 6.25 µM, 24 h | ↑ Bax ↓ Bcl-2 ↑ Caspase-3 ↑ PARP cleavage ↑ ROS | [55] |
CA (carnosic acid, rosemary phenolic compound) | IMR-32 | 24 h | 5, 10, 20, 30, 40 µM IC50: 30 µM | ↑ Caspase-3, -9 ↑ PARP cleavage ↓ Bcl-2 ↑ ROS ↑ p38 activation | [60] |
CA | SH-SY5Y | 1 h | 0.2–2 μM | ↑ Nitrosative and oxidative stress ↑ PI3K/Akt/Nrf2 signaling ↑ Nrf2 expression | [73] |
DEDC | SH-SY5Y | 24 h | 7.5 µg/mL | ↑ Bax ↓ Bcl-2 | [32] |
3,4-dihydroxybenzalacetone and caffeic acid phenethyl ester | SH-SY5Y | 4 and 8 h | 10 and 20 μM | ↑ LC3-II ↓ 4-Phenylbutyric acid (chaperone) ↑ Autophagy | [74] |
EGC | SH-SY5Y | 24 h | 50 µM | ↑
Cytochrome c ↑ Caspase-9 | [27] |
ECGC | SH-SY5Y | 24 h | 50 µM | ↑
Cytochrome c ↑ Caspase-9 | [27] |
Genistein | SK-N-DZ | 24 h | 10 µM | ↑ Caspase-3, -9 ↑ Bax/Bcl-2 ratio ↓ Bcl-2 with only genistein Complete Bcl-2 knockdown with combination treatment (with Bcl-2 siRNA plasmid vector) | [56] |
Genistein | SH-SY5Y | 24 h | 100 µM | ↑ Bax ↓ Bcl-2 ↑ Cytochrome c ↑ Caspase-3, -9 | [27] |
Isoliquiritigenin | IMR-32 and SK-N-BE(2) | 24 h | 5–200 μM | ↑ ROS level | [72] |
Luteolin | Neuro-2a (mouse cell line) | 24 h |
1–50 µM IC50: 10 µM | ↑ ER: CHOP, GRP94, GRP78 ↑ ATF6α cleavage ↑ eIF2α phosphorylation ↑ ROS ↓ MMP ↑ Bax ↑ cytochrome c | [57] |
Quercetin | Neuro2a (mouse cell line) | 24 h | 10, 20, 40, 80, 120 μM IC50: 40 µM | ↑ Caspase-3, -9 ↑ p53 mRNA ↑ Bax ↑ Cytochrome c | [30] |
Rutin | LAN-5 | 24 h | 0, 25, 50, 100 μM | ↓ Bcl-2 expression ↑ Bax/Bcl-2 ratio | [36] |
Non-Flavonoid Polyphenols | |||||
Bisphenol A (BPA) Bisphenol B (BPB) Bisphenol S (BPS) | IMR-32 (male) and SK-N-SH (female) | 24 h |
BPA and xBPS: IMR-32: 1, 10, 100 nM IMR-32 and SK-N-SH: 1, 10, 100 μM BPB: IMR-32: 1, 10 nM IMR-32 and SK-N-SH: 100 nM 1, 10, 100 μM | ↑ Caspase-3 ↑ Bak1 ↑ Bax ↑ Cytochrome c ↓ Bcl-2 ↓ MMP ↑ ROS ↑ MDA | [59] |
Curcumin | NUB-7, LAN-5, IMR-32 and SK-N-BE(2) | 2–8 days | 25–160 µM | ↑ p53 translocation ↑ Bax | [42] |
Curcumin | GI-L-IN, HTLA-230, SH-SY5Y, LAN5, SK-NBE2c, and IMR-32 | 18–72 h | 0.1–25 µM | ↑ Cytochrome C | [38] |
Curcumin | SK-N-SH | 24 h | 8, 16, 32 µM | ↑ Caspase-3 ↑ ROS ↑ PARP cleavage ↓ p53 ↓ Bcl-2 ↓ MMP ↑ Cytochrome C | [37] |
Curcumin | LAN-5 | 3, 5, 24 h | 5, 10, 15, 20 µM | ↓ Hsp60 ↓ HK-II | [77] |
Curcumin | Neuro-2a (mouse cell line) | 24 h | 10, 25, 50 µM | ↑ Caspase-3, -9 ↑ ROS ↑ PARP cleavage ↑ p53 ↑ Bex genes | [65] |
Honokiol | Neuro-2a (mouse cell line) and NB41A3 | 72 h |
2.5, 5, 10, 20, 30, 40, 50, 60, 80, and 100 µM LC50: 63.3 µM | ↑ Bax ↑ Cytochrome-C ↓ MMP ↑ Caspase-3, -6, -9 | [39] |
Honokiol | Neuro-2a (mouse cell line) and NB41A3 | 24, 48, 72 h | 50 µM | ↑ p53 ↑ Cytochrome-C ↑ Autophagy ↑ Caspase-3 ↑ LC3-II | [76] |
Nordentatin | SH-SY5Y | 24, 48, 72 h | 1, 10, 100 µM | ↓ GSK-3 phosphorylation ↓ Mcl-1 ↓ MMP-9 ↑ Caspase-3 | [63] |
Oleacein | SH-SY5Y | 6 and 24 h | 10 and 25 μM | ↑ Bax/Bcl-2 ratio ↑ p53 ↑ STAT phosphorylation | [62] |
Resveratrol | SK-N-AS, NGP, and SH-SY5Y | 48 h | IC50: SK-N-A: 70 µM/L NGP: 120 µM/L SH-SY5Y: 100 µM/L | ↑ Caspase-3, -9 ↑ Cytochrome-C ↑ Smac/Diablo ↓ Bcl-2 | [61] |
Resveratrol | B103 (rat cell line) | 48 h |
5–20 µM IC50: 17.86 µM | ↓ Bcl-2 ↓ Bcl-xL ↓ Mcl-1 ↑ Caspase-3, -9 | [40] |
Resveratrol | NUB-7, LAN-5, IMR-32 and SK-N-BE(2) | 2–8 days | 25–160 µM | ↑ Bax ↑ p53 translocation | [42] |
Resveratrol | K-N-SH, SH-SY5Y, SK-N-Be2, SMS-KCNR, and NB1691 | 8 h | 10–100 μM | ↑ Cell death ↑ Caspase-3 ↑ ER stress ↓ Akt ↑ PP1α | [75] |
Plant extracts | |||||
Kaffir lime leaf (contains alkaloid, flavonoid, terpenoid, tannin, and saponin compounds) | UKF-NB3, IMR-5 and SK-N-AS | IC50: UKF-NB3: 18.9 µg/mL IMR-5: 6.4 µg/mL SK-N-AS: 9.4 µg/mL | [78] | ||
Juniperus communis L. Berry (contains 13 flavonoid glycosides and 2 phenolic acids) | SH-SY5Y | 12, 36, 48 h | 10 µg/mL | ↑ p53 | [79] |
3.4. Receptor-Mediated Apoptotic Pathway
4. Overview of Findings
4.1. Potent Findings and Treatment Mechanisms
4.2. Plant Extracts
4.3. In Vivo Studies Involving NB
5. Key Considerations and Challenges
5.1. Limitations of Polyphenol Use
5.2. Insights into Flavonoid-Delivery Mechanisms
5.3. Clinical Trials Investigating Therapeutic Use of Polyphenols
- Reliance on a few select endpoints without other indicators of disease progression [118].
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Akt | Serine–threonine kinase |
AIF | Apoptosis-inducing factor |
ATF | Activating transcription factor |
Bax | Bcl-2 associated X-protein |
Bad | Bcl-2 associated agonist of cell death |
BBB | Blood–brain barrier |
Bcl | B-cell lymphoma |
Bid | BH3 interacting-domain death agonist |
BP | Bisphenol |
Ca2+ | Calcium ion |
CAD | Caspase-activated DNase |
CDK | Cyclin-dependent kinase |
CHOP | C/EBP homologous protein |
DEDC | 2-(cis-1,2-dihydroxy-4-oxo-cyclohex-5-enyl)-5,7-dihydroxy-chromone |
EGCG | Epigallocatechin gallate |
EGC | Epigallocatechin |
eIF | Eukaryotic initiation factor |
ER | Endoplasmic reticulum |
ERK | Extracellular signal-regulated kinase |
FADD | Fas-associated DEATH domain protein |
FasL | Fas ligand |
GI | Gastrointestinal |
GRP | Glucose-regulated protein |
GSK | Glycogen synthase kinase |
HSP | Heat-shock protein |
JNK | c-Jun N-terminal kinase |
MAPK | Mitogen activated protein kinase |
MDA | Malondialdehyde |
MMP | Mitochondrial membrane potential |
NB | Neuroblastoma |
NF-κB | Nuclear Factor κappa of B cells |
PARP | Poly (ADP-Ribose) polymerase |
PI3K | Phosphoinositide 3-kinases |
PTEN | Phosphatase and tensin homolog |
RIP | Receptor-interacting protein |
RKIP | Raf-1 kinase inhibitor protein |
ROS | Reactive oxygen species |
tBid | Truncated Bid |
TNF | Tumor necrosis factor |
TRADD | Tumor necrosis factor receptor type 1-associated DEATH domain |
References
- Johnsen, J.I.; Dyberg, C.; Wickström, M. Neuroblastoma—A Neural Crest Derived Embryonal Malignancy. Front. Mol. Neurosci. 2019, 12, 9. [Google Scholar] [CrossRef]
- Finklestein, J.Z.; Gilchrist, G.S. Recent Advances in Neuroblastoma. N. Engl. J. Med. 2010, 362, 116–127. [Google Scholar] [CrossRef] [Green Version]
- Smith, V.; Foster, J. High-Risk Neuroblastoma Treatment Review. Children 2018, 5, 114. [Google Scholar] [CrossRef] [Green Version]
- Ducassou, A.; Gambart, M.; Munzer, C.; Padovani, L.; Carrie, C.; Haas-Kogan, D.; Bernier-Chastagner, V.; Demoor, C.; Claude, L.; Helfre, S.; et al. Long-Term Side Effects of Radiotherapy for Pediatric Localized Neuroblastoma: Results from Clinical Trials NB90 and NB94. Strahlenther. Onkol. 2015, 191, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Keshelava, N.; Seeger, R.C.; Reynolds, C.P. Drug Resistance in Human Neuroblastoma Cell Lines Correlates with Clinical Therapy. Eur. J. Cancer 1997, 33, 2002–2006. [Google Scholar] [CrossRef]
- Liskova, A.; Koklesova, L.; Samec, M.; Smejkal, K.; Samuel, S.M.; Varghese, E.; Abotaleb, M.; Biringer, K.; Kudela, E.; Danko, J.; et al. Flavonoids in Cancer Metastasis. Cancers 2020, 12, 1498. [Google Scholar] [CrossRef] [PubMed]
- Zhai, K.; Mazurakova, A.; Koklesova, L.; Kubatka, P.; Büsselberg, D. Flavonoids Synergistically Enhance the Anti-Glioblastoma Effects of Chemotherapeutic Drugs. Biomolecules 2021, 11, 1841. [Google Scholar] [CrossRef] [PubMed]
- Abotaleb, M.; Samuel, S.M.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in Cancer and Apoptosis. Cancers 2018, 11, 28. [Google Scholar] [CrossRef] [Green Version]
- Liskova, A.; Stefanicka, P.; Samec, M.; Smejkal, K.; Zubor, P.; Bielik, T.; Biskupska-Bodova, K.; Kwon, T.K.; Danko, J.; Büsselberg, D.; et al. Dietary Phytochemicals as the Potential Protectors against Carcinogenesis and Their Role in Cancer Chemoprevention. Clin. Exp. Med. 2020, 20, 173–190. [Google Scholar] [CrossRef]
- Niedzwiecki, A.; Roomi, M.W.; Kalinovsky, T.; Rath, M. Anti-cancer Efficacy of Polyphenols and Their Combinations. Nutrients 2016, 8, 552. [Google Scholar] [CrossRef] [Green Version]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anti-cancer Drugs: Perspectives on Cancer Treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef] [Green Version]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P.M. New Insights on the Anti-cancer Properties of Dietary Polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Bhosale, P.B.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Kim, S.M.; Kim, G.S. Functions of Polyphenols and Its Anti-cancer Properties in Biomedical Research: A Narrative Review. Transl. Cancer Res. 2020, 9, 7619–7631. [Google Scholar] [CrossRef]
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural Polyphenols: An Overview. Int. J. Food Prop. 2016, 20, 1689–1699. [Google Scholar] [CrossRef] [Green Version]
- Luca, S.V.; Macovei, I.; Bujor, A.; Miron, A.; Skalicka-Woźniak, K.; Aprotosoaie, A.C.; Trifan, A. Bioactivity of Dietary Polyphenols: The Role of Metabolites. Crit. Rev. Food Sci. Nutr. 2020, 60, 626–659. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, H.; Sueoka, E.; Watanabe, T.; Suganuma, M. Primary Cancer Prevention by Green Tea, and Tertiary Cancer Prevention by the Combination of Green Tea Catechins and Anti-cancer Compounds. J. Cancer Prev. 2015, 20, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Noguchi-Shinohara, M.; Yuki, S.; Dohmoto, C.; Ikeda, Y.; Samuraki, M.; Iwasa, K.; Yokogawa, M.; Asai, K.; Komai, K.; Nakamura, H.; et al. Consumption of Green Tea, but Not Black Tea or Coffee, Is Associated with Reduced Risk of Cognitive Decline. PLoS ONE 2014, 9, e96013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- Watanabe, N.; Ikeda, U. Matrix Metalloproteinases and Atherosclerosis. Curr. Atheroscler. Rep. 2004, 6, 112–120. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- Cháirez-Ramírez, M.H.; de la Cruz-López, K.G.; García-Carrancá, A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front. Pharm. 2021, 12, 710304. [Google Scholar] [CrossRef] [PubMed]
- González, R.; Ballester, I.; López-Posadas, R.; Suárez, M.D.; Zarzuelo, A.; Martínez-Augustin, O.; Sánchez de Medina, F. Effects of Flavonoids and Other Polyphenols on Inflammation. Crit. Rev. Food Sci. Nutr. 2011, 51, 331–362. [Google Scholar] [CrossRef] [PubMed]
- Dias, M.C.; Pinto, D.C.G.A.; Silva, A.M.S.; Giovinazzo, G.; Gerardi, C.; Mosca, L. Plant Flavonoids: Chemical Characteristics and Biological Activity. Molecules 2021, 26, 5377. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anti-cancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Momeni, H.R. Role of Calpain in Apoptosis. Cell J. (Yakhteh) 2011, 13, 65. [Google Scholar]
- Martinez, J.A.; Zhang, Z.; Svetlov, S.I.; Hayes, R.L.; Wang, K.K.; Larner, S.F. Calpain and Caspase Processing of Caspase-12 Contribute to the ER Stress-Induced Cell Death Pathway in Differentiated PC12 Cells. Apoptosis 2010, 15, 1480–1493. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Banik, N.L.; Ray, S.K. Mechanism of Apoptosis with the Involvement of Calpain and Caspase Cascades in Human Malignant Neuroblastoma SH-SY5Y Cells Exposed to Flavonoids. Int. J. Cancer 2006, 119, 2575–2585. [Google Scholar] [CrossRef]
- Ray, S.K.; Fidan, M.; Nowak, M.W.; Wilford, G.G.; Hogan, E.L.; Banik, N.L. Oxidative Stress and Ca2+ Influx Upregulate Calpain and Induce Apoptosis in PC12 Cells. Brain Res. 2000, 852, 326–334. [Google Scholar] [CrossRef]
- Sergeev, I.N. Genistein Induces Ca2+-Mediated, Calpain/Caspase-12-Dependent Apoptosis in Breast Cancer Cells. Biochem. Biophys. Res. Commun. 2004, 321, 462–467. [Google Scholar] [CrossRef]
- Sugantha Priya, E.; Selvakumar, K.; Bavithra, S.; Elumalai, P.; Arunkumar, R.; Raja Singh, P.; Brindha Mercy, A.; Arunakaran, J. Anti-Cancer Activity of Quercetin in Neuroblastoma: An in Vitro Approach. Neurol. Sci. 2014, 35, 163–170. [Google Scholar] [CrossRef]
- Rouzaire-Dubois, B.; Gérard, V.; Dubois, J.M. Involvement of K+ Channels in the Quercetin-Induced Inhibition of Neuroblastoma Cell Growth. Pflügers Archiv. 1993, 423, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Jiang, C.; Xiong, C.; Ruan, J. DEDC, a New Flavonoid Induces Apoptosis via a ROS-Dependent Mechanism in Human Neuroblastoma SH-SY5Y Cells. Toxicol. Vitr. 2012, 26, 16–23. [Google Scholar] [CrossRef]
- Torkin, R.; Lavoie, J.F.; Kaplan, D.R.; Yeger, H. Induction of Caspase-Dependent, P53-Mediated Apoptosis by Apigenin in Human Neuroblastoma. Mol. Cancer 2005, 4, 1–11. [Google Scholar] [CrossRef]
- Singhal, J.; Nagaprashantha, L.D.; Vatsyayan, R.; Ashutosh; Awasthi, S.; Singhal, S.S. Didymin Induces Apoptosis by Inhibiting N-Myc and Upregulating RKIP in Neuroblastoma. Cancer Prev. Res. 2012, 5, 473–483. [Google Scholar] [CrossRef] [Green Version]
- Escobar, S.J.d.M.; Fong, G.M.; Winnischofer, S.M.B.; Simone, M.; Munoz, L.; Dennis, J.M.; Rocha, M.E.M.; Witting, P.K. Anti-Proliferative and Cytotoxic Activities of the Flavonoid Isoliquiritigenin in the Human Neuroblastoma Cell Line SH-SY5Y. Chem. Biol. Interact. 2019, 299, 77–87. [Google Scholar] [CrossRef]
- Chen, H.; Miao, Q.; Geng, M.; Liu, J.; Hu, Y.; Tian, L.; Pan, J.; Yang, Y. Anti-Tumor Effect of Rutin on Human Neuroblastoma Cell Lines through Inducing G2/M Cell Cycle Arrest and Promoting Apoptosis. Sci. World J. 2013, 2013, 269165. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.; Chen, D.; Zheng, R.; Chen, H.; Xu, T.; Wang, C.; Zhu, S.; Gao, X.; Zhang, J.; Li, D.; et al. Curcumin Induced G2/M Cycle Arrest in SK-N-SH Neuroblastoma Cells through the ROS-Mediated P53 Signaling Pathway. J. Food Biochem. 2021, 45, e13888. [Google Scholar] [CrossRef]
- Pisano, M.; Pagnan, G.; Dettori, M.A.; Cossu, S.; Caffa, I.; Sassu, I.; Emionite, L.; Fabbri, D.; Cilli, M.; Pastorino, F.; et al. Enhanced Anti-Tumor Activity of a New Curcumin-Related Compound against Melanoma and Neuroblastoma Cells. Mol. Cancer 2010, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.W.; Chen, J.T.; Hong, C.Y.; Lin, Y.L.; Wang, K.T.; Yao, C.J.; Lai, G.M.; Chen, R.M. Honokiol Traverses the Blood-Brain Barrier and Induces Apoptosis of Neuroblastoma Cells via an Intrinsic Bax-Mitochondrion-Cytochrome c-Caspase Protease Pathway. Neuro Oncol. 2012, 14, 302–314. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Kim, N.H.; Kim, S.H.; Oh, S.M.; Huh, S.O. Anti-proliferative and Cytotoxic Effects of Resveratrol in Mitochondria-Mediated Apoptosis in Rat B103 Neuroblastoma Cells. Korean J. Physiol. Pharm. 2012, 16, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Pizarro, J.G.; Verdaguer, E.; Ancrenaz, V.; Junyent, F.; Sureda, F.; Pallàs, M.; Folch, J.; Camins, A. Resveratrol Inhibits Proliferation and Promotes Apoptosis of Neuroblastoma Cells: Role of Sirtuin 1. Neurochem. Res. 2011, 36, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Liontas, A.; Yeger, H. Curcumin and Resveratrol Induce Apoptosis and Nuclear Translocation and Activation of P53 in Human Neuroblastoma. Anticancer Res. 2004, 24, 987. [Google Scholar]
- Sargolzaei, J.; Sadeghian, H.; Golahmadi, S.; Soukhtanloo, M. Cytotoxic Effects of Hydroxy Coumarin Derivations to Neuroblastoma N2a Cells. Iran. J. Pharm. Sci. 2020, 16, 95–106. [Google Scholar] [CrossRef]
- Kubatka, P.; Kapinová, A.; Kello, M.; Kruzliak, P.; Kajo, K.; Výbohová, D.; Mahmood, S.; Murin, R.; Viera, T.; Mojžiš, J.; et al. Fruit Peel Polyphenols Demonstrate Substantial Anti-Tumour Effects in the Model of Breast Cancer. Eur. J. Nutr. 2016, 55, 955–965. [Google Scholar] [CrossRef]
- Kapinova, A.; Stefanicka, P.; Kubatka, P.; Zubor, P.; Uramova, S.; Kello, M.; Mojzis, J.; Blahutova, D.; Qaradakhi, T.; Zulli, A.; et al. Are Plant-Based Functional Foods Better Choice against Cancer than Single Phytochemicals? A Critical Review of Current Breast Cancer Research. Biomed. Pharmacother. 2017, 96, 1465–1477. [Google Scholar] [CrossRef]
- Hosseini, A.; Ghorbani, A. Cancer Therapy with Phytochemicals: Evidence from Clinical Studies. Avicenna J. Phytomed. 2015, 5, 84. [Google Scholar]
- Kubatka, P.; Kello, M.; Kajo, K.; Samec, M.; Liskova, A.; Jasek, K.; Koklesova, L.; Kuruc, T.; Adamkov, M.; Smejkal, K.; et al. Rhus Coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma. Int. J. Mol. Sci. 2021, 22, 183. [Google Scholar] [CrossRef] [PubMed]
- Morandi, F.; Bensa, V.; Calarco, E.; Pastorino, F.; Perri, P.; Corrias, M.V.; Ponzoni, M.; Brignole, C. The Olive Leaves Extract Has Anti-Tumor Effects against Neuroblastoma through Inhibition of Cell Proliferation and Induction of Apoptosis. Nutrients 2021, 13, 2178. [Google Scholar] [CrossRef]
- Ahrens, S.; Appl, B.; Trochimiuk, M.; Dücker, C.; Feixas Serra, G.; Oliver Grau, A.; Reinshagen, K.; Pagerols Raluy, L. Kigelia Africana Inhibits Proliferation and Induces Cell Death in Stage 4 Neuroblastoma Cell Lines. Biomed. Pharmacother. 2022, 154, 113584. [Google Scholar] [CrossRef]
- Roomi, M.W.; Kalinovsky, T.; Roomi, N.W.; Niedzwiecki, A.; Rath, M. Inhibition of the SK-N-MC Human Neuroblastoma Cell Line in Vivo and in Vitro by a Novel Nutrient Mixture. Oncol. Rep. 2013, 29, 1714–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazurakova, A.; Samec, M.; Koklesova, L.; Biringer, K.; Kudela, E.; Al-Ishaq, R.K.; Pec, M.; Giordano, F.A.; Büsselberg, D.; Kubatka, P.; et al. Anti-Prostate Cancer Protection and Therapy in the Framework of Predictive, Preventive and Personalised Medicine—Comprehensive Effects of Phytochemicals in Primary, Secondary and Tertiary Care. EPMA J. 2022, 13, 461–486. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Ai, W.; Banik, N.L.; Ray, S.K. Overexpression of MiR-7-1 Increases Efficacy of Green Tea Polyphenols for Induction of Apoptosis in Human Malignant Neuroblastoma SH-SY5Y and SK-N-DZ Cells. Neurochem. Res. 2013, 38, 420–432. [Google Scholar] [CrossRef]
- ISSN 1791-7530 (Online)|Anti-cancer Research|The ISSN Portal. Available online: https://portal.issn.org/resource/ISSN/1791-7530 (accessed on 9 November 2022).
- Wang, Q.; Zhang, L.; Yuan, X.; Ou, Y.; Zhu, X.; Cheng, Z.; Zhang, P.; Wu, X.; Meng, Y.; Zhang, L. The Relationship between the Bcl-2/Bax Proteins and the Mitochondria-Mediated Apoptosis Pathway in the Differentiation of Adipose-Derived Stromal Cells into Neurons. PLoS ONE 2016, 11, e0163327. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.H.; Yeh, C.W.; Lo, H.C.; Su, S.L.; Hseu, Y.C.; Hsu, L.S. Generation of Reactive Oxygen Species Mediates Butein-Induced Apoptosis in Neuroblastoma Cells. Oncol. Rep. 2012, 27, 1233–1237. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Banik, N.L.; Ray, S.K. Genistein Induces Receptor and Mitochondrial Pathways and Increases Apoptosis during BCL-2 Knockdown in Human Malignant Neuroblastoma SK-N-DZ Cells. J. Neurosci. Res. 2010, 88, 877–886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, A.Y.; Choi, J.H.; Yoon, H.; Hwang, K.Y.; Noh, M.H.; Choe, W.; Yoon, K.S.; Ha, J.; Yeo, E.J.; Kang, I. Luteolin Induces Apoptosis through Endoplasmic Reticulum Stress and Mitochondrial Dysfunction in Neuro-2a Mouse Neuroblastoma Cells. Eur. J. Pharm. 2011, 668, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, F.; Pan, S.; Zhao, S.; Xue, Y. Luteolin Induces Apoptosis, G0/G1 Cell Cycle Growth Arrest and Mitochondrial Membrane Potential Loss in Neuroblastoma Brain Tumor Cells. Drug Res. 2015, 65, 91–95. [Google Scholar] [CrossRef]
- Wang, C.; He, J.; Xu, T.; Han, H.; Zhu, Z.; Meng, L.; Pang, Q.; Fan, R. Bisphenol A(BPA), BPS and BPB-Induced Oxidative Stress and Apoptosis Mediated by Mitochondria in Human Neuroblastoma Cell Lines. Ecotoxicol. Environ. Saf. 2021, 207, 111299. [Google Scholar] [CrossRef]
- Tsai, C.W.; Lin, C.Y.; Lin, H.H.; Chen, J.H. Carnosic Acid, a Rosemary Phenolic Compound, Induces Apoptosis through Reactive Oxygen Species-Mediated P38 Activation in Human Neuroblastoma IMR-32 Cells. Neurochem. Res. 2011, 36, 2442–2451. [Google Scholar] [CrossRef] [PubMed]
- Van Ginkel, P.R.; Sareen, D.; Subramanian, L.; Walker, Q.; Darjatmoko, S.R.; Lindstrom, M.J.; Kulkarni, A.; Albert, D.M.; Polans, A.S. Resveratrol Inhibits Tumor Growth of Human Neuroblastoma and Mediates Apoptosis by Directly Targeting Mitochondria. Clin. Cancer Res. 2007, 13, 5162–5169. [Google Scholar] [CrossRef] [Green Version]
- Cirmi, S.; Celano, M.; Lombardo, G.E.; Maggisano, V.; Procopio, A.; Russo, D.; Navarra, M. Oleacein Inhibits STAT3, Activates the Apoptotic Machinery, and Exerts Anti-Metastatic Effects in the SH-SY5Y Human Neuroblastoma Cells. Food Funct. 2020, 11, 3271–3279. [Google Scholar] [CrossRef] [PubMed]
- Boonyarat, C.; Boonput, P.; Tongloh, N.; Kaewamatawong, R.; Chaiwiwatrakul, S.; Yenjai, C.; Waiwut, P. Nordentatin Inhibits Neuroblastoma Cell Proliferation and Migration through Regulation of GSK-3 Pathway. Curr. Issues Mol. Biol. 2022, 44, 1062–1074. [Google Scholar] [CrossRef] [PubMed]
- Boulares, A.H.; Yakovlev, A.G.; Ivanova, V.; Stoica, B.A.; Wang, G.; Iyer, S.; Smulson, M. Role of Poly(ADP-Ribose) Polymerase (PARP) Cleavage in Apoptosis. J. Biol. Chem. 1999, 274, 22932–22940. [Google Scholar] [CrossRef] [Green Version]
- Sidhar, H.; Giri, R.K. Induction of Bex Genes by Curcumin Is Associated with Apoptosis and Activation of P53 in N2a Neuroblastoma Cells. Sci. Rep. 2017, 7, 41420. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Yang, J.; Xu, Y.; Huang, Q.; Yang, M.; Hu, K. Lupiwighteone Induces Cell Cycle Arrest and Apoptosis and Activates the Nrf2/ARE Pathway in Human Neuroblastoma Cells. Biomed. Pharmacother. 2015, 69, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Lange, I.; Moschny, J.; Tamanyan, K.; Khutsishvili, M.; Atha, D.; Borris, R.P.; Koomoa, D.L. Scrophularia Orientalis Extract Induces Calcium Signaling and Apoptosis in Neuroblastoma Cells. Int. J. Oncol. 2016, 48, 1608–1616. [Google Scholar] [CrossRef] [Green Version]
- Ly, J.D.; Grubb, D.R.; Lawen, A. The Mitochondrial Membrane Potential (Δψm) in Apoptosis; an Update. Apoptosis 2003, 8, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yang, J.; Jones, D.P. Mitochondrial Control of Apoptosis: The Role of Cytochrome c. Biochim. Et Biophys. Acta (BBA)—Bioenerg. 1998, 1366, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Zhang, J.; O’Neill, K.L.; Gurumurthy, C.B.; Quadros, R.M.; Tu, Y.; Luo, X. Cleavage by Caspase 8 and Mitochondrial Membrane Association Activate the BH3-Only Protein Bid during TRAIL-Induced Apoptosis. J. Biol. Chem. 2016, 291, 11843. [Google Scholar] [CrossRef] [Green Version]
- Scorrano, L.; Ashiya, M.; Buttle, K.; Weiler, S.; Oakes, S.A.; Mannella, C.A.; Korsmeyer, S.J. A Distinct Pathway Remodels Mitochondrial Cristae and Mobilizes Cytochrome c during Apoptosis. Dev. Cell 2002, 2, 55–67. [Google Scholar] [CrossRef] [Green Version]
- Alshangiti, A.M.; Togher, K.L.; Hegarty, S.V.; Sullivan, A.M.; O’Keeffe, G.W. The Dietary Flavonoid Isoliquiritigenin Is a Potent Cytotoxin for Human Neuroblastoma Cells. Neuronal Signal. 2019, 3, NS20180201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, M.R.; Ferreira, G.C.; Schuck, P.F.; Dal Bosco, S.M. Role for the PI3K/Akt/Nrf2 Signaling Pathway in the Protective Effects of Carnosic Acid against Methylglyoxal-Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells. Chem. Biol. Interact. 2015, 242, 396–406. [Google Scholar] [CrossRef]
- Tomiyama, R.; Takakura, K.; Takatou, S.; Le, T.M.; Nishiuchi, T.; Nakamura, Y.; Konishi, T.; Matsugo, S.; Hori, O. 3,4-Dihydroxybenzalacetone and Caffeic Acid Phenethyl Ester Induce Preconditioning ER Stress and Autophagy in SH-SY5Y Cells. J. Cell Physiol. 2018, 233, 1671–1684. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.M.; Hernandez, F.; Puerta, N.; De Angulo, G.; Webster, K.A.; Vanni, S. Resveratrol Augments ER Stress and the Cytotoxic Effects of Glycolytic Inhibition in Neuroblastoma by Downregulating Akt in a Mechanism Independent of SIRT1. Exp. Mol. Med. 2016, 48, e210. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.C.; Lee, Y.W.; Tseng, Y.Y.; Lin, Y.W.; Chen, J.T.; Liu, S.H.; Chen, R.M. Honokiol Induces Autophagic Apoptosis in Neuroblastoma Cells through a P53-Dependent Pathway. Am. J. Chin. Med. 2019, 47, 895–912. [Google Scholar] [CrossRef]
- Picone, P.; Nuzzo, D.; Caruana, L.; Messina, E.; Scafidi, V.; Di Carlo, M. Curcumin Induces Apoptosis in Human Neuroblastoma Cells via Inhibition of AKT and Foxo3a Nuclear Translocation. Free. Radic. Res. 2014, 48, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Tunjung, W.A.S.; Cinatl, J.; Michaelis, M.; Smales, C.M. Anti-Cancer Effect of Kaffir Lime (Citrus Hystrix DC) Leaf Extract in Cervical Cancer and Neuroblastoma Cell Lines. Procedia Chem. 2015, 14, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Lantto, T.A.; Laakso, I.; Dorman, H.J.D.; Mauriala, T.; Hiltunen, R.; Kõks, S.; Raasmaja, A. Cellular Stress and P53-Associated Apoptosis by Juniperus Communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells. Int. J. Mol. Sci. 2016, 17, 1113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Q.; Shi, L.; Qin, P.; Wang, Q. Honokiol Triggers Receptor-Interacting Protein Kinase 3-Mediated Cell Death of Neuroblastoma Cells by Upregulating Reactive Oxygen Species. Mol. Med. Rep. 2017, 16, 8525–8529. [Google Scholar] [CrossRef] [Green Version]
- Seervi, M.; Xue, D. Mitochondrial Cell Death Pathways in Caenorhabiditis Elegans. Curr. Top. Dev. Biol. 2015, 114, 43–65. [Google Scholar] [CrossRef]
- Shankar, E.; Goel, A.; Gupta, K.; Gupta, S. Plant Flavone Apigenin: An Emerging Anti-cancer Agent. Curr. Pharmacol. Rep. 2017, 3, 423–446. [Google Scholar] [CrossRef] [PubMed]
- Labbé, D.; Tremblay, A.; Bazinet, L. Effect of Brewing Temperature and Duration on Green Tea Catechin Solubilization: Basis for Production of EGC and EGCG-Enriched Fractions. Sep. Purif. Technol. 2006, 49, 1–9. [Google Scholar] [CrossRef]
- Javad, M.; Bsc, F.-M.; Nabian Bsc, P.; Gholami Bsc, A.; Dehghanbaghi Bsc, N.; Azizipanah Bsc, M.; Jokar Bsc, K.; Eslami Bsc, M.; Kargarian Bsc, Z.; Tamehri Bsc, M.; et al. A Review of Neuroblastoma: Prevalence, Diagnosis, Related Genetic Factors, and Treatment. Iran. J. Ped. Hematol. Oncol. 2018, 8, 237–246. [Google Scholar]
- Katiyar, S.K.; Elmets, C.A. Green Tea Polyphenolic Antioxidants and Skin Photoprotection (Review). Int. J. Oncol. 2001, 18, 1307–1313. [Google Scholar] [CrossRef] [PubMed]
- Tayyem, R.F.; Heath, D.D.; Al-Delaimy, W.K.; Rock, C.L. Curcumin Content of Turmeric and Curry Powders. Nutr. Cancer 2009, 55, 126–131. [Google Scholar] [CrossRef]
- Faienza, M.F.; Corbo, F.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Grano, M.; Wang, D.Q.H.; D’Amato, G.; Muraglia, M.; Franchini, C.; et al. Novel Insights in Health-Promoting Properties of Sweet Cherries. J. Funct. Foods 2020, 69, 103945. [Google Scholar] [CrossRef]
- Häkkinen, S.H.; Kärenlampi, S.O.; Heinonen, I.M.; Mykkänen, H.M.; Törronen, A.R. Content of the Flavonols Quercetin, Myricetin, and Kaempferol in 25 Edible Berries. J. Agric. Food Chem. 1999, 47, 2274–2279. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Ji, C.; Ye, J. Determination of Liquiritigenin and Isoliquiritigenin in Glycyrrhiza Uralensis and Its Medicinal Preparations by Capillary Electrophoresis with Electrochemical Detection. J. Chromatogr. A 2004, 1042, 203–209. [Google Scholar] [CrossRef]
- Wang, K.L.; Yu, Y.C.; Hsia, S.M. Perspectives on the Role of Isoliquiritigenin in Cancer. Cancers 2021, 13, 115. [Google Scholar] [CrossRef]
- Sukumari-Ramesh, S.; Bentley, J.N.; Laird, M.D.; Singh, N.; Vender, J.R.; Dhandapani, K.M. Dietary phytochemicals induce p53- and caspase-independent cell death in human neuroblastoma cells. Int. J. Dev. Neurosci. 2011, 29, 701–710. [Google Scholar] [CrossRef] [Green Version]
- Miean, K.H.; Mohamed, S. Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. J. Agric. Food Chem. 2001, 49, 3106–3112. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.-M. Luteolin, a Flavonoid with Potential for Cancer Prevention and Therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef]
- Fried, L.E.; Arbiser, J.L. Honokiol, a Multifunctional Antiangiogenic and Antitumor Agent. Antioxid. Redox Signal. 2009, 11, 1139. [Google Scholar] [CrossRef] [PubMed]
- Edlich, F. BCL-2 Proteins and Apoptosis: Recent Insights and Unknowns. Biochem. Biophys. Res. Commun. 2018, 500, 26–34. [Google Scholar] [CrossRef]
- Chen, Y.; Tseng, S.H.; Lai, H.S.; Chen, W.J. Resveratrol-Induced Cellular Apoptosis and Cell Cycle Arrest in Neuroblastoma Cells and Antitumor Effects on Neuroblastoma in Mice. Surgery 2004, 136, 57–66. [Google Scholar] [CrossRef]
- Soto, B.L.; Hank, J.A.; Van De Voort, T.J.; Subramanian, L.; Polans, A.S.; Rakhmilevich, A.L.; Yang, R.K.; Seo, S.; Kim, K.; Reisfeld, R.A.; et al. The Anti-Tumor Effect of Resveratrol Alone or in Combination with Immunotherapy in a Neuroblastoma Model. Cancer Immunol. Immunother. 2011, 60, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Anantharaju, P.G.; Gowda, P.C.; Vimalambike, M.G.; Madhunapantula, S.V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mennen, L.I.; Walker, R.; Bennetau-Pelissero, C.; Scalbert, A. Risks and Safety of Polyphenol Consumption. Am. J. Clin. Nutr. 2005, 81, S326–S329. [Google Scholar] [CrossRef] [Green Version]
- Ninfali, P.; Antonelli, A.; Magnani, M.; Scarpa, E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020, 12, 2534. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.K.; Verma, R.; Salgotra, T.; Rahman, M.H.; Shah, M.; Akter, R.; Murad, W.; Mubin, S.; Bibi, P.; Qusti, S.; et al. Impacting the Remedial Potential of Nano Delivery-Based Flavonoids for Breast Cancer Treatment. Molecules 2021, 26, 5163. [Google Scholar] [CrossRef] [PubMed]
- Vazhappilly, C.G.; Amararathna, M.; Cyril, A.C.; Linger, R.; Matar, R.; Merheb, M.; Ramadan, W.S.; Radhakrishnan, R.; Rupasinghe, H.P.V. Current Methodologies to Refine Bioavailability, Delivery, and Therapeutic Efficacy of Plant Flavonoids in Cancer Treatment. J. Nutr. Biochem. 2021, 94, 108623. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Mateus, N.; Calhau, C. Flavonoid Transport across Blood-Brain Barrier: Implication for Their Direct Neuroprotective Actions. Nutr. Aging 2012, 1, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Youdim, K.A.; Qaiser, M.Z.; Begley, D.J.; Rice-Evans, C.A.; Abbott, N.J. Flavonoid Permeability across an in Situ Model of the Blood–Brain Barrier. Free Radic. Biol. Med. 2004, 36, 592–604. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, L.; Li, X.; Xiong, J.; Xu, P.; Guo, C.; Xue, M. Transport of Active Flavonoids, Based on Cytotoxicity and Lipophilicity: An Evaluation Using the Blood–Brain Barrier Cell and Caco-2 Cell Models. Toxicol. Vitr. 2014, 28, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.; Meireles, M.; Fernandes, I.; Santos-Buelga, C.; Gonzalez-Manzano, S.; Dueñas, M.; De Freitas, V.; Mateus, N.; Calhau, C. Flavonoid Metabolites Transport across a Human BBB Model. Food Chem. 2014, 149, 190–196. [Google Scholar] [CrossRef]
- Zhu, Z.; Liao, L.; Qiao, H. Extracellular Vesicle–Based Drug Delivery System Boosts Phytochemicals’ Therapeutic Effect for Neurodegenerative Diseases. Acupunct. Herb. Med. 2022, 2, 229–239. [Google Scholar] [CrossRef]
- Wang, H.; Sui, H.; Zheng, Y.; Jiang, Y.; Shi, Y.; Liang, J.; Zhao, L. Curcumin-Primed Exosomes Potently Ameliorate Cognitive Function in AD Mice by Inhibiting Hyperphosphorylation of the Tau Protein through the AKT/GSK-3β Pathway. Nanoscale 2019, 11, 7481–7496. [Google Scholar] [CrossRef]
- Fan, Y.; Li, Y.; Huang, S.; Xu, H.; Li, H.; Liu, B. Resveratrol-Primed Exosomes Strongly Promote the Recovery of Motor Function in SCI Rats by Activating Autophagy and Inhibiting Apoptosis via the PI3K Signaling Pathway. Neurosci. Lett. 2020, 736, 135262. [Google Scholar] [CrossRef]
- Peng, H.; Li, Y.; Ji, W.; Zhao, R.; Lu, Z.; Shen, J.; Wu, Y.; Wang, J.; Hao, Q.; Wang, J.; et al. Intranasal Administration of Self-Oriented Nanocarriers Based on Therapeutic Exosomes for Synergistic Treatment of Parkinson’s Disease. ACS Nano 2022, 16, 869–884. [Google Scholar] [CrossRef]
- Sholler, G.L.S.; Gerner, E.W.; Bergendahl, G.; MacArthur, R.B.; VanderWerff, A.; Ashikaga, T.; Bond, J.P.; Ferguson, W.; Roberts, W.; Wada, R.K.; et al. A Phase I Trial of DFMO Targeting Polyamine Addiction in Patients with Relapsed/Refractory Neuroblastoma. PLoS ONE 2015, 10, e0127246. [Google Scholar] [CrossRef] [Green Version]
- Study of Nifurtimox to Treat Refractory or Relapsed Neuroblastoma or Medulloblastoma—Study Results—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT00601003?recrs=eghim&rslt=With&type=Intr&cond=Neuroblastoma&draw=2&rank=31&view=results (accessed on 8 March 2023).
- Modak, S.; Kushner, B.H.; Basu, E.; Roberts, S.S.; Cheung, N.K.V. Combination of Bevacizumab, Irinotecan, and Temozolomide for Refractory or Relapsed Neuroblastoma: Results of a Phase II Study. Pediatr. Blood Cancer 2017, 64. [Google Scholar] [CrossRef] [PubMed]
- Thalidomide and Temozolomide in Relapsed or Progressive CNS Disease or Neuroblastoma—Study Results—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT00098865?recrs=eghim&rslt=With&type=Intr&cond=Neuroblastoma&draw=2&rank=40#evnt (accessed on 8 March 2023).
- Irinotecan Hydrochloride and Temozolomide With Temsirolimus or Dinutuximab in Treating Younger Patients with Refractory or Relapsed Neuroblastoma—Study Results—ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01767194?recrs=eghim&rslt=With&type=Intr&cond=Neuroblastoma&draw=2&rank=33#evnt (accessed on 8 March 2023).
- Henning, S.M.; Wang, P.; Said, J.W.; Huang, M.; Grogan, T.; Elashoff, D.; Carpenter, C.L.; Heber, D.; Aronson, W.J. Randomized Clinical Trial of Brewed Green and Black Tea in Men with Prostate Cancer Prior to Prostatectomy. Prostate 2015, 75, 550–559. [Google Scholar] [CrossRef] [Green Version]
- McLarty, J.; Bigelow, R.L.H.; Smith, M.; Elmajian, D.; Ankem, M.; Cardelli, J.A. Tea Polyphenols Decrease Serum Levels of Prostate-Specific Antigen, Hepatocyte Growth Factor, and Vascular Endothelial Growth Factor in Prostate Cancer Patients and Inhibit Production of Hepatocyte Growth Factor and Vascular Endothelial Growth Factor in Vitro. Cancer Prev. Res. 2009, 2, 673–682. [Google Scholar] [CrossRef]
- Thomas, R.; Williams, M.; Sharma, H.; Chaudry, A.; Bellamy, P. A Double-Blind, Placebo-Controlled Randomised Trial Evaluating the Effect of a Polyphenol-Rich Whole Food Supplement on PSA Progression in Men with Prostate Cancer—The UK NCRN Pomi-T Study. Prostate Cancer Prostatic Dis. 2014, 17, 180. [Google Scholar] [CrossRef] [Green Version]
- Pantuck, A.J.; Leppert, J.T.; Zomorodian, N.; Aronson, W.; Hong, J.; Barnard, R.J.; Seeram, N.; Liker, H.; Wang, H.; Elashoff, R.; et al. Phase II Study of Pomegranate Juice for Men with Rising Prostate-Specific Antigen Following Surgery or Radiation for Prostate Cancer. Clin. Cancer Res. 2006, 12, 4018–4026. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.M.; Ahmann, F.R.; Nagle, R.B.; Hsu, C.H.; Tangrea, J.A.; Parnes, H.L.; Sokoloff, M.H.; Gretzer, M.B.; Chow, H.H.S. Randomized, Double-Blind, Placebo Controlled Trial of Polyphenon E in Prostate Cancer Patients before Prostatectomy: Evaluation of Potential Chemopreventive Activities. Cancer Prev. Res. (Phila.) 2012, 5, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crew, K.D.; Ho, K.A.; Brown, P.; Greenlee, H.; Bevers, T.B.; Arun, B.; Sneige, N.; Hudis, C.; Mcarthur, H.L.; Chang, J.; et al. Effects of a Green Tea Extract, Polyphenon E, on Systemic Biomarkers of Growth Factor Signalling in Women with Hormone Receptor-Negative Breast Cancer. J. Hum. Nutr. Diet. 2015, 28, 272. [Google Scholar] [CrossRef] [Green Version]
- Campbell, J.L.; Cardelli, J.; McLarty, J.; Hershman, D.; Taback, B.; Refice, S.; Wang, S.; Bigelow, R.; Crew, K. Abstract PR-05: Effects of Presurgical Administration of Tea Polyphenols in Women with Operable Breast Cancer. Cancer Prev. Res. 2010, 3, PR-05. [Google Scholar] [CrossRef]
- Kapoor, R.; Ronnenberg, A.; Puleo, E.; Chatterton, R.T.; Dorgan, J.F.; Seeram, N.P.; Sturgeon, S.R. Effects of Pomegranate Juice on Hormonal Biomarkers of Breast Cancer Risk. Nutr. Cancer 2015, 67, 1113–1119. [Google Scholar] [CrossRef]
- Tsao, A.S.; Liu, D.; Martin, J.; Tang, X.M.; Lee, J.J.; El-Naggar, A.K.; Wistuba, I.; Culotta, K.S.; Mao, L.; Gillenwater, A.; et al. Phase II Randomized, Placebo-Controlled Trial of Green Tea Extract in Patients with High-Risk Oral Premalignant Lesions. Cancer Prev. Res. (Phila.) 2009, 2, 931. [Google Scholar] [CrossRef] [Green Version]
- Basak, S.K.; Bera, A.; Yoon, A.J.; Morselli, M.; Jeong, C.; Tosevska, A.; Dong, T.S.; Eklund, M.; Russ, E.; Nasser, H.; et al. A Randomized, Phase 1, Placebo-Controlled Trial of APG-157 in Oral Cancer Demonstrates Systemic Absorption and an Inhibitory Effect on Cytokines and Tumor-Associated Microbes. Cancer 2020, 126, 1668–1682. [Google Scholar] [CrossRef] [PubMed]
- Sinicrope, F.A.; Viggiano, T.R.; Buttar, N.S.; Wong Kee Song, L.M.; Schroeder, K.W.; Kraichely, R.E.; Larson, M.V.; Sedlack, R.E.; Kisiel, J.B.; Gostout, C.J.; et al. Randomized Phase II Trial of Polyphenon E versus Placebo in Patients at High Risk of Recurrent Colonic Neoplasia. Cancer Prev. Res. (Phila.) 2021, 14, 573. [Google Scholar] [CrossRef] [PubMed]
- Study Record|Beta ClinicalTrials.Gov. Available online: https://beta.clinicaltrials.gov/study/NCT01916239 (accessed on 7 March 2023).
- Blair, C.K.; Ross, J.A. A Pilot Study to Evaluate the Potential Cardioprotective Effects of Grape Juice in Survivors of Childhood Cancer. Ph.D. Dissertation, University of Minnesota, Minneapolis, MN, USA, 2011. [Google Scholar]
Compound | Cell Line | Incubation Period | Concentration(s) | Biomarker Changes | Reference |
---|---|---|---|---|---|
Flavonoids | |||||
Apigenin | SH-SY5Y | 24 h | 50 µM | ↑ Intracellular free [Ca2+] ↑ Calpain activation ↑ Caspase-12, -3 ↑ CAD | [27] |
EGC | SH-SY5Y | 24 h | 50 µM | ↑ Intracellular free [Ca2+] ↑ Calpain activation ↑ Cytoskeletal protein degradation ↑ Caspase-3 ↑ CAD | [27] |
EGCG | SH-SY5Y | 24 h | 50 µM | ↑ Intracellular free [Ca2+] ↑ Calpain activation ↑ Cytoskeletal protein degradation ↑ Caspase-3 ↑ CAD | [27] |
Genistein | SH-SY5Y | 24 h | 100 µM | ↑ Intracellular free [Ca2+] ↑ Calpain activation ↑ Caspase-12 | [27] |
Compound | Cell Line | Incubation Period | Concentration(s) | Biomarker Changes | Reference |
---|---|---|---|---|---|
Flavonoids | |||||
DEDC | SH-SY5Y | 24 h | 7.5 µg/mL | ↓ Phosphor-STAT3 expression (ROS mediated) | [27] |
Genistein | SK-N-DZ | 24 h | 10 µM | ↑ TNF-α ↑ FasL ↑ TRADD ↑ FADD | [27] |
EGC | SH-SY5Y | 24 h | 50 µM | ↑ Caspase-8 activation ↑ Proteolytic cleavage of Bid to tBid ↑ Bax oligomerization | [27] |
EGCG | SH-SY5Y | 24 h | 100 µM | ↑ Caspase-8 activation ↑ Proteolytic cleavage of Bid to tBid ↑ Bax oligomerization | [27] |
Rutin | LAN-5 | 24 h | 25, 50, 100 μM | ↑ TNF-α secretion | [36] |
Non-Flavonoid Polyphenols | |||||
Curcumin | LAN-5 | 3, 5, 24 h | 5, 10, 15, 20 µM | ↑ Bad ↑ PTEN ↑ ROS | [77] |
Honokiol | Neuro-2a (mouse cell line) | 30, 60, 120 µM | 24, 48, 72 h | ↑ RIP3 ↑ ROS | [80] |
Compound | Cell Line | Incubation Period | Dose(s) | Effect(s) | Reference |
---|---|---|---|---|---|
Flavonoids | |||||
Didymin | Subcutaneous injection of 2 × 106 SMS-KCNR NB-cell suspensions into athymic nude mice | 8 weeks | 2 mg/kg (oral gavage on alternate days) | ↓ CD31 (angiogenesis marker) ↓ ki67 (proliferation marker) ↓ N-Myc (NB oncogenic marker) ↓ Tumor mass | [34] |
Apigenin | Scapular injection of 5 × 106 NUB-7 NB-cell suspensions into nonobese diabetic/severe combined immunodeficient mice | 1 week | 25 mg/kg (intraperitoneal injection daily) | ↓ Tumor mass (~50% less) ↑ Apoptotic fraction | [33] |
Non-Flavonoid Polyphenols | |||||
Curcumin | Orthotopic injection of 1.5 × 106 GI-LI-N NB-cell suspensions into athymic nude mice | 4 weeks | 17.5 mg/kg (intravenous injection twice a week) | ↓ Tumor-growth rate | [38] |
Resveratrol | Subcutaneous injection of 3 × 106 SK-N-AS NB-cell suspension into athymic nude mice | 5 weeks OR 16 days | 50 mg/kg (oral gavage daily) OR 20 mg (peritumor injection 5 times) | ↓ Tumor volume (~80% less) | [61] |
Resveratrol | Subcutaneous injection of 1 × 106 Neuro-2a-cell suspension into A/J mice | 4 weeks | 40 mg/kg (intraperitoneal injection daily) | ↓ Tumor-growth rate ↑ Long-term survival rate (~70%) | [96] |
Resveratrol | Subcutaneous injection of 2 × 106 NXS2 NB-cell suspension injected into A/J mice | 2 weeks | 20 mg (peritumor injection twice a week) | ↓ Tumor-growth rate ↑ Long-term survival rate (~61%) | [97] |
Cancer Type (No. of Selected Studies) | Source of Polyphenols | Noted Outcomes * |
---|---|---|
Prostate Cancer (5) | Green Tea and Pomegranate | Four studies produced statistically significant results, including decreased nuclear NFκB staining [116], decreased prostate-specific antigen (PSA) levels [117,118], and prolongation of PSA doubling time [119]. Another study also presented decreased PSA in study participants undertaking a trial polyphenol treatment, but this did not reach statistical significance [120]. |
Breast Cancer (3) | Green Tea and Pomegranate | Statistically significant results, such as a decrease in serum hepatocyte growth factor (HGF) [121]. Non-statistically significant results included decreased serum vascular endothelial growth factor (VEGF) [121], as well as decreased serum HGF, in a different study [122]. Another study analyzed the effects of pomegranate juice on hormonal biomarkers of breast cancer risk [123]. Although the results presented statistically significant reductions in serum estrone and testosterone levels in women of normal weight, these results were not observed in overweight/obese women. |
Oral Cancer | Green Tea and Pomegranate | One study investigated the effects of green tea, and the results presented a non-statistically significant downregulation of angiogenic stromal VEGF [124]. Another study investigated the effects of curcumin, with the results presenting a statistically significant reduction in inflammatory-cytokine concentrations in salivary cells [125]. |
Colorectal Cancers | Green Tea and Pomegranate | One study investigated green tea, which produced a non-statistically-significant reduction in percentage change in rectal aberrant crypt foci (ACF) number (compared to baseline measurements). These ACFs are generally seen as precursors of colorectal cancers [126]. Another study’s results showed no correlation between the levels of metabolites and the degree of differentiation of adenocarcinomas when investigating pomegranate extract [127]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kafoud, A.; Salahuddin, Z.; Ibrahim, R.S.; Al-Janahi, R.; Mazurakova, A.; Kubatka, P.; Büsselberg, D. Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms. Biomolecules 2023, 13, 563. https://doi.org/10.3390/biom13030563
Kafoud A, Salahuddin Z, Ibrahim RS, Al-Janahi R, Mazurakova A, Kubatka P, Büsselberg D. Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms. Biomolecules. 2023; 13(3):563. https://doi.org/10.3390/biom13030563
Chicago/Turabian StyleKafoud, Aisha, Zoya Salahuddin, Raghad Sabaawi Ibrahim, Reem Al-Janahi, Alena Mazurakova, Peter Kubatka, and Dietrich Büsselberg. 2023. "Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms" Biomolecules 13, no. 3: 563. https://doi.org/10.3390/biom13030563
APA StyleKafoud, A., Salahuddin, Z., Ibrahim, R. S., Al-Janahi, R., Mazurakova, A., Kubatka, P., & Büsselberg, D. (2023). Potential Treatment Options for Neuroblastoma with Polyphenols through Anti-Proliferative and Apoptotic Mechanisms. Biomolecules, 13(3), 563. https://doi.org/10.3390/biom13030563