Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning the Genes of Interest
2.2. Cell Culture
2.3. Construction of Baculoviruses and Expression in Sf9 and ExpiSf Cells
2.4. Transient Gene Expression in Insect High Five Cells
2.5. Transient Gene Expression in Mammalian Expi293F Cells
2.6. Transient Expression in ExpiCHO Cells
2.7. Construction of Lentiviruses and Expression in HEK293S (GnTI-TetR) Cells
2.8. Efficiency of Gene Delivery and in-Cell GFP Fluorescence
2.9. Protein Purification
2.10. Fluorescence-Detection Size-Exclusion Chromatography
2.11. Gel Electrophoresis and In-Gel Fluorescence
3. Results
3.1. Gene Delivery
3.2. Fluorescence-Detection SEC Analysis of Membrane Fusion Proteins Extracted and Purified in DDM
3.3. Transient Gene Expression of Membrane Fusion Proteins in High Five Insect Cells and DDM/CHS Extraction
3.4. Comparison of Twin-Strep and Hexahistidine Tags for the Affinity Purification of Membrane Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kost, T.A.; Condreay, J.P.; Jarvis, D.L. Baculovirus as Versatile Vectors for Protein Expression in Insect and Mammalian Cells. Nat. Biotechnol. 2005, 23, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Eberwine, J.H. Mammalian Cell Transfection: The Present and the Future. Anal. Bioanal. Chem. 2010, 397, 3173–3178. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.H. Gene Expression in Mammalian Cells and Its Applications. Adv. Pharm. Bull. 2013, 3, 257–263. [Google Scholar] [PubMed]
- Scholz, J.; Suppmann, S.A. New Single-Step Protocol for Rapid Baculovirus-Driven Protein Production in Insect Cells. BMC Biotechnol. 2017, 17, 83. [Google Scholar] [CrossRef]
- Elegheert, J.; Behiels, E.; Bishop, B.; Scott, S.; Woolley, R.E.; Griffiths, S.C.; Byrne, E.F.X.; Chang, V.T.; Stuart, D.I.; Jones, E.Y.; et al. Lentiviral Transduction of Mammalian Cells for Fast, Scalable and High-Level Production of Soluble and Membrane Proteins. Nat. Protoc. 2018, 13, 2991–3017. [Google Scholar] [CrossRef]
- Geisse, S. Reflections on more than 10 years of TGE approaches. Protein Expr. Purif. 2009, 64, 99–107. [Google Scholar] [CrossRef]
- Schneiter, R.; Toulmay, A. The Role of Lipids in the Biogenesis of Integral Membrane Proteins. Appl. Microbiol. Biotechnol. 2007, 73, 1224–1232. [Google Scholar] [CrossRef]
- Fortin, J.-P.; Dziadulewicz, E.K.; Gera, L.; Marceau, F. A Nonpeptide Antagonist Reveals a Highly Glycosylated State of the Rabbit Kinin B1 Receptor. Mol. Pharmacol. 2006, 69, 1146–1157. [Google Scholar] [CrossRef]
- Yeliseev, A.; van den Berg, A.; Zoubak, L.; Hines, K.; Stepnowski, S.; Williston, K.; Yan, W.; Gawrisch, K.; Zmuda, J. Thermostability of a Recombinant G Protein-Coupled Receptor Expressed at High Level in Mammalian Cell Culture. Sci. Rep. 2020, 10, 16805. [Google Scholar] [CrossRef]
- Chen, Q.; Miller, L.J.; Dong, M. Role of N-Linked Glycosylation in Biosynthesis, Trafficking, and Function of the Human Glucagon-like Peptide 1 Receptor. Am. J. Physiol. Endocrinol. Metab. 2010, 299, E62–E68. [Google Scholar] [CrossRef]
- Goth, C.K.; Petäjä-Repo, U.E.; Rosenkilde, M.M. G Protein-Coupled Receptors in The Sweet Spot: Glycosylation and Other Post-Translational Modifications. ACS Pharmacol. Transl. Sci. 2020, 3, 237–245. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, E.A.; Abbott, W.M. Expression of Recombinant Proteins in Insect and Mammalian Cells. Methods 2018, 147, 40–49. [Google Scholar] [CrossRef]
- Andréll, J.; Tate, C.G. Overexpression of membrane proteins in mammalian cells for structural studies. Mol. Membr. Biol. 2013, 30, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, J.L.; Goodwin, R.H.; Tompkins, G.J.; McCawley, P. The Establishment of Two Cell Lines from the Insect Spodoptera frugiperda (Lepidoptera; Noctuidae). In Vitro 1977, 13, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.E.; Summers, M.D.; Fraser, M.J. Production of Human Beta Interferon in Insect Cells Infected with a Baculovirus Expression Vector. Mol. Cell. Biol. 1983, 3, 2156–2165. [Google Scholar]
- Wickham, T.J.; Davis, T.; Granados, R.R.; Shuler, M.L.; Wood, H.A. Screening of Insect Cell Lines for the Production of Recombinant Proteins and Infectious Virus in the Baculovirus Expression System. Biotechnol. Prog. 1992, 8, 391–396. [Google Scholar] [CrossRef]
- Thomas, J.A.; Tate, C.G. Quality Control in Eukaryotic Membrane Protein Overproduction. J. Mol. Biol. 2014, 426, 4139–4154. [Google Scholar] [CrossRef]
- Loomis, K.H.; Yeager, K.W.; Batenjany, M.M.; Mehler, M.M.; Grabski, A.C.; Wong, S.C.; Novy, R.E. InsectDirect System: Rapid, high-level protein expression and purification from insect cells. J. Struct. Funct. Genom. 2005, 6, 189–194. [Google Scholar] [CrossRef]
- Ogay, I.D.; Lihoradova, O.A.; Azimova, S.S.; Abdukarimov, A.A.; Slack, J.M.; Lynn, D.E. Transfection of Insect Cell Lines Using Polyethylenimine. Cytotechnology 2006, 51, 89–98. [Google Scholar] [CrossRef]
- Chen, H.; Shaffer, P.L.; Huang, X.; Rose, P.E. Rapid Screening of Membrane Protein Expression in Transiently Transfected Insect Cells. Protein Expr. Purif. 2013, 88, 134–142. [Google Scholar] [CrossRef]
- Shen, X.; Hacker, D.L.; Baldi, L.; Wurm, F.M. Virus-free transient protein production in Sf9 cells. J. Biotechnol. 2014, 171, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Bleckmann, M.; Fritz, M.H.-Y.; Bhuju, S.; Jarek, M.; Schürig, M.; Geffers, R.; Benes, V.; Besir, H.; van den Heuvel, J. Genomic Analysis and Isolation of RNA Polymerase II Dependent Promoters from Spodoptera frugiperda. PLoS ONE 2015, 10, e0132898. [Google Scholar] [CrossRef] [PubMed]
- Bleckmann, M.; Schürig, M.; Chen, F.-F.; Yen, Z.-Z.; Lindemann, N.; Meyer, S.; Spehr, J.; van den Heuvel, J. Identification of Essential Genetic Baculoviral Elements for Recombinant Protein Expression by Transactivation in Sf21 Insect Cells. PLoS ONE 2016, 11, e0149424. [Google Scholar] [CrossRef] [PubMed]
- Bleckmann, M.; Schürig, M.; Endres, M.; Samuels, A.; Gebauer, D.; Konisch, N.; van den Heuvel, J. Identifying Parameters to Improve the Reproducibility of Transient Gene Expression in High Five Cells. PLoS ONE 2019, 14, e0217878. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Pitol, A.K.; Bachmann, V.; Hacker, D.L.; Baldi, L.; Wurm, F.M. A simple plasmid-based transient gene expression method using High Five cells. J. Biotechnol. 2015, 216, 67–75. [Google Scholar] [CrossRef]
- Farrell, P.; Iatrou, K. Transfected insect cells in suspension culture rapidly yield moderate quantities of recombinant proteins in protein-free culture medium. Protein Expr. Purif. 2004, 36, 177–185. [Google Scholar] [CrossRef]
- Mori, K.; Hamada, H.; Ogawa, T.; Ohmuro-Matsuyama, Y.; Katsuda, T.; Yamaji, H. Efficient production of antibody Fab fragment by transient gene expression in insect cells. J. Biosci. Bioeng. 2017, 124, 221–226. [Google Scholar] [CrossRef]
- Puente-Massaguer, E.; Lecina, M.; Gòdia, F. Nanoscale characterization coupled to multi-parametric optimization of Hi5 cell transient gene expression. Appl. Microbiol. Biotechnol. 2018, 102, 10495–10510. [Google Scholar] [CrossRef]
- Puente-Massaguer, E.; Strobl, F.; Grabherr, R.; Striedner, G.; Lecina, M.; Gòdia, F. PEI-Mediated Transient Transfection of High Five Cells at Bioreactor Scale for HIV-1 VLP Production. Nanomaterials 2020, 10, 1580. [Google Scholar] [CrossRef]
- Tate, C.G.; Haase, J.; Baker, C.; Boorsma, M.; Magnani, F.; Vallis, Y.; Williams, D.C. Comparison of Seven Different Heterologous Protein Expression Systems for the Production of the Serotonin Transporter. Biochim. Biophys. Acta 2003, 1610, 141–153. [Google Scholar] [CrossRef]
- Lundstrom, K.; Wagner, R.; Reinhart, C.; Desmyter, A.; Cherouati, N.; Magnin, T.; Zeder-Lutz, G.; Courtot, M.; Prual, C.; André, N.; et al. Structural Genomics on Membrane Proteins: Comparison of More than 100 GPCRs in 3 Expression Systems. J. Struct. Funct. Genom. 2006, 7, 77–91. [Google Scholar] [CrossRef]
- Bernaudat, F.; Frelet-Barrand, A.; Pochon, N.; Dementin, S.; Hivin, P.; Boutigny, S.; Rioux, J.-B.; Salvi, D.; Seigneurin-Berny, D.; Richaud, P.; et al. Heterologous Expression of Membrane Proteins: Choosing the Appropriate Host. PLoS ONE 2011, 6, e29191. [Google Scholar] [CrossRef]
- Goh, J.B.; Ng, S.K. Impact of Host Cell Line Choice on Glycan Profile. Crit. Rev. Biotechnol. 2018, 38, 851–867. [Google Scholar] [CrossRef]
- Vasseur, L.; Cens, T.; Wagner, R.; Saint, N.; Kugler, V.; Chavanieu, A.; Ouvry, C.; Dupré, C.; Ferry, G.; Boutin, J.A. Importance of the Choice of a Recombinant System to Produce Large Amounts of Functional Membrane Protein HERG. Int. J. Mol. Sci. 2019, 20, 3181. [Google Scholar] [CrossRef]
- Wiseman, D.N.; Otchere, A.; Patel, J.H.; Uddin, R.; Pollock, N.L.; Routledge, S.J.; Rothnie, A.J.; Slack, C.; Poyner, D.R.; Bill, R.M.; et al. Expression and Purification of Recombinant G Protein-Coupled Receptors: A Review. Protein Expr. Purif. 2020, 167, 105524. [Google Scholar] [CrossRef]
- Kotov, V.; Bartels, K.; Veith, K.; Josts, I.; Subhramanyam, U.K.T.; Günther, C.; Labahn, J.; Marlovits, T.C.; Moraes, I.; Tidow, H.; et al. High-Throughput Stability Screening for Detergent-Solubilized Membrane Proteins. Sci. Rep. 2019, 9, 10379. [Google Scholar] [CrossRef]
- Berrow, N.S.; Alderton, D.; Sainsbury, S.; Nettleship, J.; Assenberg, R.; Rahman, N.; Stuart, D.I.; Owens, R.J. A Versatile Ligation-Independent Cloning Method Suitable for High-Throughput Expression Screening Applications. Nucleic Acids Res. 2007, 35, e45. [Google Scholar] [CrossRef]
- Krasnoselska, G.O.; Dumoux, M.; Gamage, N.; Cheruvara, H.; Birch, J.; Quigley, A.; Owens, R.J. Transient Transfection and Expression of Eukaryotic Membrane Proteins in Expi293F Cells and Their Screening on a Small Scale: Application for Structural Studies. Methods Mol. Biol. 2021, 2305, 105–128. [Google Scholar]
- Fan, S.; Maguire, C.A.; Ramirez, S.H.; Bradel-Tretheway, B.; Sapinoro, R.; Sui, Z.; Chakraborty-Sett, S.; Dewhurst, S. Valproic Acid Enhances Gene Expression from Viral Gene Transfer Vectors. J. Virol. Methods 2005, 125, 23–33. [Google Scholar] [CrossRef]
- Lin, M.Y.; de Zoete, M.R.; van Putten, J.P.M.; Strijbis, K. Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Front. Immunol. 2015, 6, 554. [Google Scholar] [CrossRef]
- Ölander, M.; Handin, N.; Artursson, P. Image-Based Quantification of Cell Debris as a Measure of Apoptosis. Anal. Chem. 2019, 91, 5548–5552. [Google Scholar] [CrossRef] [PubMed]
- Weiß, H.M.; Grisshammer, R. Purification and Characterization of the Human Adenosine A2a receptor Functionally Expressed in Escherichia coli: Purification and Characterization of A2a Receptor. Eur. J. Biochem. 2002, 269, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Marheineke, K.; Grünewald, S.; Christie, W.; Reiländer, H. Lipid Composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) Insect Cells Used for Baculovirus Infection. FEBS Lett. 1998, 441, 49–52. [Google Scholar] [CrossRef]
- Sjöstrand, D.; Diamanti, R.; Lundgren, C.A.K.; Wiseman, B.; Högbom, M. A Rapid Expression and Purification Condition Screening Protocol for Membrane Protein Structural Biology: Rapid Membrane Protein Purification Screening. Protein Sci. 2017, 26, 1653–1666. [Google Scholar] [CrossRef] [PubMed]
- Stetsenko, A.; Guskov, A. An Overview of the Top Ten Detergents Used for Membrane Protein Crystallization. Crystals 2017, 7, 197. [Google Scholar] [CrossRef]
- Lyons, J.A.; Shahsavar, A.; Paulsen, P.A.; Pedersen, B.P.; Nissen, P. Expression Strategies for Structural Studies of Eukaryotic Membrane Proteins. Curr. Opin. Struct. Biol. 2016, 38, 137–144. [Google Scholar] [CrossRef]
- Seddon, A.M.; Curnow, P.; Booth, P.J. Membrane Proteins, Lipids and Detergents: Not Just a Soap Opera. Biochim. Biophys. Acta 2004, 1666, 105–117. [Google Scholar] [CrossRef]
- Gimpl, G.; Klein, U.; Reiländer, H.; Fahrenholz, F. Expression of the Human Oxytocin Receptor in Baculovirus-Infected Insect Cells: High-Affinity Binding Is Induced by a Cholesterol-Cyclodextrin Complex. Biochemistry 1995, 34, 13794–13801. [Google Scholar] [CrossRef]
- Milić, D.; Veprintsev, D.B. Large-Scale Production and Protein Engineering of G Protein-Coupled Receptors for Structural Studies. Front. Pharmacol. 2015, 6, 66. [Google Scholar] [CrossRef]
- Dawaliby, R.; Trubbia, C.; Delporte, C.; Masureel, M.; Van Antwerpen, P.; Kobilka, B.K.; Govaerts, C. Allosteric Regulation of G Protein-Coupled Receptor Activity by Phospholipids. Nat. Chem. Biol. 2016, 12, 35–39. [Google Scholar] [CrossRef]
- Gurevich, V.V.; Gurevich, E.V. How and Why Do GPCRs Dimerize? Trends Pharmacol. Sci. 2008, 29, 234–240. [Google Scholar] [CrossRef]
- Vischer, H.F.; Castro, M.; Pin, J.-P. G Protein-Coupled Receptor Multimers: A Question Still Open despite the Use of Novel Approaches. Mol. Pharmacol. 2015, 88, 561–571. [Google Scholar] [CrossRef]
- Devi, L.A. Heterodimerization of G-Protein-Coupled Receptors: Pharmacology, Signaling and Trafficking. Trends Pharmacol. Sci. 2001, 22, 532–537. [Google Scholar] [CrossRef]
- Canals, M.; Marcellino, D.; Fanelli, F.; Ciruela, F.; de Benedetti, P.; Goldberg, S.R.; Neve, K.; Fuxe, K.; Agnati, L.F.; Woods, A.S.; et al. Adenosine A2A-Dopamine D2 Receptor-Receptor Heteromerization: Qualitative and Quantitative Assessment by Fluorescence and Bioluminescence Energy Transfer. J. Biol. Chem. 2003, 278, 46741–46749. [Google Scholar] [CrossRef]
- Bouvier, M.; Hébert, T.E. CrossTalk Proposal: Weighing the Evidence for Class A GPCR Dimers, the Evidence Favours Dimmers. J. Physiol. 2014, 592, 2439–2441. [Google Scholar] [CrossRef]
- Franco, R.; Martínez-Pinilla, E.; Lanciego, J.L.; Navarro, G. Basic Pharmacological and Structural Evidence for Class A G-Protein-Coupled Receptor Heteromerization. Front. Pharmacol. 2016, 7, 76. [Google Scholar] [CrossRef]
- Schonenbach, N.S.; Rieth, M.D.; Han, S.; O’Malley, M.A. Adenosine A2a Receptors Form Distinct Oligomers in Protein Detergent Complexes. FEBS Lett. 2016, 590, 3295–3306. [Google Scholar] [CrossRef]
- Dathe, A.; Sielaff, H.; Heitkamp, T.; Börsch, M.; Pérez, I.; Westphal, A.; Reuter, S.; Mrowka, R. Observing Monomer: Dimer Transitions of Neurotensin Receptors 1 in Single SMALPs by HomoFRET and in an ABELtrap. In Proceedings of the SPIE 10884, Single Molecule Spectroscopy and Superresolution Imaging XII, Francisco, CA, USA, 22 February 2019; Gregor, I., Gryczynski, Z.K., Koberling, F., Eds.; SPIE: Bellingham, WA, USA, 2019. [Google Scholar]
- White, J.F.; Noinaj, N.; Shibata, Y.; Love, J.; Kloss, B.; Xu, F.; Gvozdenovic-Jeremic, J.; Shah, P.; Shiloach, J.; Tate, C.G.; et al. Structure of the Agonist-Bound Neurotensin Receptor. Nature 2012, 490, 508–513. [Google Scholar] [CrossRef]
- Krumm, B.E.; White, J.F.; Shah, P.; Grisshammer, R. Structural Prerequisites for G-Protein Activation by the Neurotensin Receptor. Nat. Commun. 2015, 6, 7895. [Google Scholar] [CrossRef]
- Krumm, B.E.; Lee, S.; Bhattacharya, S.; Botos, I.; White, C.F.; Du, H.; Vaidehi, N.; Grisshammer, R. Structure and Dynamics of a Constitutively Active Neurotensin Receptor. Sci. Rep. 2016, 6, 38564. [Google Scholar] [CrossRef]
- Yin, W.; Li, Z.; Jin, M.; Yin, Y.-L.; de Waal, P.W.; Pal, K.; Yin, Y.; Gao, X.; He, Y.; Gao, J.; et al. A Complex Structure of Arrestin-2 Bound to a G Protein-Coupled Receptor. Cell Res. 2019, 29, 971–983. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.E.; Zhang, Y.; Hu, H.; Suomivuori, C.-M.; Kadji, F.M.N.; Aoki, J.; Krishna Kumar, K.; Fonseca, R.; Hilger, D.; Huang, W.; et al. Conformational Transitions of a Neurotensin Receptor 1-Gi1 Complex. Nature 2019, 572, 80–85. [Google Scholar] [CrossRef]
- Huang, W.; Masureel, M.; Qu, Q. Structure of the Neurotensin Receptor 1 in Complex with Beta-Arrestin 1. Nature 2020, 579, 303–308. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, B.; Lebon, G. Human Adenosine A2A Receptor: Molecular Mechanism of Ligand Binding and Activation. Front. Pharmacol. 2017, 8, 898. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Bachhawat, P.; Chu, M.L.-H.; Wood, M.; Ceska, T.; Sands, Z.A.; Mercier, J.; Lebon, F.; Kobilka, T.S.; Kobilka, B.K. Crystal Structure of the Adenosine A2A Receptor Bound to an Antagonist Reveals a Potential Allosteric Pocket. Proc. Natl. Acad. Sci. USA 2017, 114, 2066–2071. [Google Scholar] [CrossRef]
- Noppes, S.; Müller, S.F.; Bennien, J.; Holtemeyer, M.; Palatini, M.; Leidolf, R.; Alber, J.; Geyer, J. Homo- and Heterodimerization Is a Common Feature of the Solute Carrier Family SLC10 Members. Biol. Chem. 2019, 400, 1371–1384. [Google Scholar] [CrossRef]
- Hu, N.-J.; Iwata, S.; Cameron, A.D.; Drew, D. Crystal Structure of a Bacterial Homologue of the Bile Acid Sodium Symporter ASBT. Nature 2011, 478, 408–411. [Google Scholar] [CrossRef]
- Zhou, X.; Levin, E.J.; Pan, Y.; McCoy, J.G.; Sharma, R.; Kloss, B.; Bruni, R.; Quick, M.; Zhou, M. Structural Basis of the Alternating-Access Mechanism in a Bile Acid Transporter. Nature 2014, 505, 569–573. [Google Scholar] [CrossRef]
- Asami, J.; Kimura, K.T.; Fujita-Fujiharu, Y.; Ishida, H.; Zhang, Z.; Nomura, Y.; Liu, K.; Uemura, T.; Sato, Y.; Ono, M.; et al. Structure of the Bile Acid Transporter and HBV Receptor NTCP. Nature 2022, 606, 1021–1026. [Google Scholar] [CrossRef]
- Bijsmans, I.T.; Bouwmeester, R.A.; Geyer, J. Homo- and Hetero-Dimeric Architecture of the Human Liver Na(+)-Dependent Taurocholate Co-Transporting Protein. Biochem. J. 2012, 441, 1007–1015. [Google Scholar] [CrossRef]
- Muraoka, M.; Kawakita, M.; Ishida, N. Molecular Characterization of Human UDP-Glucuronic Acid/UDP-N-Acetylgalactosamine Transporter, a Novel Nucleotide Sugar Transporter with Dual Substrate Specificity. FEBS Lett. 2001, 495, 87–93. [Google Scholar] [CrossRef]
- Maszczak-Seneczko, D.; Sosicka, P.; Kaczmarek, B.; Majkowski, M.; Luzarowski, M.; Olczak, T.; Olczak, M. UDP-Galactose (SLC35A2) and UDP-N-Acetylglucosamine (SLC35A3) Transporters Form Glycosylation-Related Complexes with Mannoside Acetylglucosaminyltransferases (Mgats). J. Biol. Chem. 2015, 290, 15475–15486. [Google Scholar] [CrossRef]
- Parker, J.L.; Newstead, S. Structural Basis of Nucleotide Sugar Transport across the Golgi Membrane. Nature 2017, 551, 521–524. [Google Scholar] [CrossRef]
No. | Gene Name | Protein Name | Source | UniProt ID | Localization |
---|---|---|---|---|---|
1 | Ntsr1 | rNTSR1 | Rattus norvegicus | P20789 | Plasma membrane |
2 | SLC10A1 | bNTCP | Bos taurus | Q2KJ85 | Plasma membrane |
3 | ADORA2A | hA2AR | Homo sapiens | P29274 | Plasma membrane |
4 | SLC6A1 | hGAT1 | Homo sapiens | P30531 | Plasma membrane |
5 | SLC35D1 | hUGTrel7 | Homo sapiens | Q9NTN3 | ER membrane |
6 | SLC35D2 | hUGTrel8 | Homo sapiens | Q76EJ3 | Golgi apparatus membrane |
Expression System | Medium | T in °C | Expression in Days | Gene Delivery |
---|---|---|---|---|
Sf9 | Sf-900 II SFM | 27/32 | 3 | Baculoviruses |
ExpiSf | ExpiSf CD | 27/32 | 3 | Baculoviruses |
High Five | EX-CELL 405 | 27/32 | 3 | PEI MAX 40K |
Expi293F | Expi293 expression medium | 30/37 | 3–6 | PEI MAX 40K |
ExpiCHO | ExpiCHO expression medium | 30/37 | 3–6 | ExpiFectamine CHO |
HEK293S GnTI-TetR | DMEM + 10% FBS | 30/37 | 3–6 | Lentivirus transduction |
No | Target Protein | Mass, kDa |
---|---|---|
1 | rNTSR1-eGFP | 76.3 |
2 | bNTCP-eGFP | 66.8 |
3 | hA2AR-eGFP | 73.3 |
4 | hGAT1-eGFP | 95.8 |
5 | hUGTrel7-eGFP | 67.9 |
6 | hUGTrel8-eGFP | 65.3 |
Protein Name | Estimated Protein Yield (µg Protein/100 mL Culture) | |||||
---|---|---|---|---|---|---|
Sf9 | ExpiSf | High Five | Expi293F | |||
27 °C | 32 °C | 27 °C | 32 °C | 27 °C | 30 °C | |
rNTSR1 | 220 | 130 | 310 | 250 | 350 | 600 |
bNTCP | 460 | 90 | 710 | 250 | 240 | 910 |
hA2AR | 340 | 100 | 390 | 230 | 380 | 360 |
hGAT1 | 210 | 60 | 330 | 1100 | 90 | 200 |
hUGTrel7 | 610 | 260 | 940 | 1500 | 220 | 180 |
hUGTrel8 | 490 | 200 | 680 | 1700 | 690 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaipa, J.M.; Krasnoselska, G.; Owens, R.J.; van den Heuvel, J. Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells. Biomolecules 2023, 13, 817. https://doi.org/10.3390/biom13050817
Kaipa JM, Krasnoselska G, Owens RJ, van den Heuvel J. Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells. Biomolecules. 2023; 13(5):817. https://doi.org/10.3390/biom13050817
Chicago/Turabian StyleKaipa, Jagan Mohan, Ganna Krasnoselska, Raymond J. Owens, and Joop van den Heuvel. 2023. "Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells" Biomolecules 13, no. 5: 817. https://doi.org/10.3390/biom13050817
APA StyleKaipa, J. M., Krasnoselska, G., Owens, R. J., & van den Heuvel, J. (2023). Screening of Membrane Protein Production by Comparison of Transient Expression in Insect and Mammalian Cells. Biomolecules, 13(5), 817. https://doi.org/10.3390/biom13050817