Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy
Abstract
:1. Introduction
1.1. The Anatomical Differences in the Placenta between Humans and Rodents Limit the Direct Reproducibility
1.2. Vascular Heterogeneity: Lymphatic Mimicry in the Placenta
2. Materials and Methods
2.1. Animals
2.2. Preparation of the Placenta
2.3. Whole Mount Immunofluorescence Staining
2.4. Antibodies
2.5. Whole Mount Fluorescent Hematoxylin and Eosin (H&E) Staining
2.6. Light Sheet Microscopy
3. Results
3.1. Whole Mount Fluorescent H&E Staining
3.2. Whole Mount Immunofluorescent Staining of Mouse Placental Tissue
3.3. Light Sheet Three-Dimensional Reconstruction
4. Discussion
4.1. Lymphatic Mimicry during Spiral Artery Remodeling Can Be Detected Using Light Sheet Microscopy
4.2. A Spatial Visualization of the Spiral Arteries Is Mandatory for the Study of Fetal Trophoblast Invasion
4.3. Using Endothelial Markers Allows the Three-Dimensional Visualization of the Vascular Architecture
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soares, M.J.; Varberg, K.M.; Iqbal, K. Hemochorial placentation: Development, function, and adaptations. Biol. Reprod. 2018, 99, 196–211. [Google Scholar] [CrossRef] [Green Version]
- Staff, A.C.; Fjeldstad, H.E.; Fosheim, I.K.; Moe, K.; Turowski, G.; Johnsen, G.M.; Alnaes-Katjavivi, P.; Sugulle, M. Failure of physiological transformation and spiral artery atherosis: Their roles in preeclampsia. Am. J. Obstet. Gynecol. 2022, 226, S895–S906. [Google Scholar] [CrossRef]
- Burton, G.J.; Woods, A.W.; Jauniaux, E.; Kingdom, J.C.P. Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy. Placenta 2009, 30, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assali, N.S.; Douglass, R.A.; Baird, W.W.; Nicholson, D.B.; Suyemoto, R. Measurement of uterine blood flow and uterine metabolism. Am. J. Obstet. Gynecol. 1953, 66, 248–253. [Google Scholar] [CrossRef]
- Caluwaerts, S.; Vercruysse, L.; Luyten, C.; Pijnenborg, R. Endovascular trophoblast invasion and associated structural changes in uterine spiral arteries of the pregnant rat. Placenta 2005, 26, 574–584. [Google Scholar] [CrossRef]
- Soares, M.J. The prolactin and growth hormone families: Pregnancy-specific hormones/cytokines at the maternal-fetal interface. Reprod. Biol. Endocrinol. 2004, 2, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Maltepe, E.; Bakardjiev, A.I.; Fisher, S.J. The placenta: Transcriptional, epigenetic, and physiological integration during development. J. Clin. Investig. 2010, 120, 1016–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georgiades, P.; Ferguson-Smith, A.C.; Burton, G.J. Comparative Developmental Anatomy of the Murine and Human Definitive Placentae. Placenta 2002, 23, 3–19. [Google Scholar] [CrossRef]
- Soares, M.J.; Chakraborty, D.; Karim Rumi, M.A.; Konno, T.; Renaud, S.J. Rat placentation: An experimental model for investigating the hemochorial maternal-fetal interface. Placenta 2012, 33, 233–243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hägerling, R.; Drees, D.; Scherzinger, A.; Dierkes, C.; Martin-Almedina, S.; Butz, S.; Gordon, K.; Schäfers, M.; Hinrichs, K.; Ostergaard, P.; et al. VIPAR, a quantitative approach to 3D histopathology applied to lymphatic malformations. JCI Insight 2017, 2, e93424. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Alexander, J.S.; Gu, Y.; Zhang, Y.; Lewis, D.F.; Wang, Y. Expression of Lymphatic Vascular Endothelial Hyaluronan Receptor-1 (LYVE-1) in the Human Placenta. Lymphat. Res. Biol. 2006, 4, 11–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawlak, J.B.; Bálint, L.; Lim, L.; Ma, W.; Davis, R.B.; Benyó, Z.; Soares, M.J.; Oliver, G.; Kahn, M.L.; Jakus, Z.; et al. Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. J. Clin. Investig. 2019, 129, 4912–4921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staff, A.C. The two-stage placental model of preeclampsia: An update. J. Reprod. Immunol. 2019, 134–135, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S.A.; Cochran, R.Z.; Bolon, B.; Lubeck, B.; Mahler, B.; Sabio, D.; Ward, J.M. Histology Atlas of the Developing Mouse Placenta. Toxicol. Pathol. 2022, 50, 60–117. [Google Scholar] [CrossRef]
- Weber, M.; Mickoleit, M.; Huisken, J. Light Sheet Microscopy, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; Volume 123. [Google Scholar] [CrossRef]
- Hansmeier, N.R.; Büschlen, I.S.; Behncke, R.Y.; Ulferts, S.; Bisoendial, R.; Hägerling, R. 3D Visualization of Human Blood Vascular Networks Using Single-Domain Antibodies Directed against Endothelial Cell-Selective Adhesion Molecule (ESAM). Int. J. Mol. Sci. 2022, 23, 4369. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, J.N.; Innes, B.A.; Robson, S.C.; Lash, G.E. Transient loss of endothelial cells in human spiral artery remodelling during early pregnancy: Challenging the dogma. Placenta 2020, 101, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Vogtmann, R.; Kühnel, E.; Dicke, N.; Verkaik-Schakel, R.N.; Plösch, T.; Schorle, H.; Stojanovska, V.; Herse, F.; Köninger, A.; Kimmig, R.; et al. Human sFLT1 leads to severe changes in placental differentiation and vascularization in a transgenic hsFLT1/rtTA FGR mouse model. Front. Endocrinol. 2019, 10, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Vogtmann, R.; Heupel, J.; Herse, F.; Matin, M.; Hagmann, H.; Bendix, I.; Kräker, K.; Dechend, R.; Winterhager, E.; Kimmig, R.; et al. Circulating Maternal sFLT1 (Soluble fms-Like Tyrosine Kinase-1) Is Sufficient to Impair Spiral Arterial Remodeling in a Preeclampsia Mouse Model. Hypertension 2021, 78, 1067–1079. [Google Scholar] [CrossRef]
- Wilting, J.; Papoutsi, M.; Christ, B.; Nicolaides, K.H.; von Kaisenberg, C.S.; Borges, J.; Stark, G.B.; Alitalo, K.; Tomarev, S.I.; Niemeyer, C.; et al. The transcription factor Prox1 is a marker for lymphatic endothelial cells in normal and diseased human tissues. FASEB J. 2002, 16, 1271–1273. [Google Scholar] [CrossRef]
- Hong, Y.-K.; Harvey, N.; Noh, Y.-H.; Schacht, V.; Hirakawa, S.; Detmar, M.; Oliver, G. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev. Dyn. 2002, 225, 351–357. [Google Scholar] [CrossRef]
- Petrova, T.V. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO J. 2002, 21, 4593–4599. [Google Scholar] [CrossRef] [Green Version]
- Lash, G.E. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J. Leukoc. Biol. 2006, 80, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunk, C.; Ahmed, A. Expression of VEGF-C and activation of its receptors VEGFR-2 and VEGFR-3 in trophoblast. Histol. Histopathol. 2001, 16, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; McMaster, M.; Woo, K.; Janatpour, M.; Perry, J.; Karpanen, T.; Alitalo, K.; Damsky, C.; Fisher, S.J. Vascular Endothelial Growth Factor Ligands and Receptors That Regulate Human Cytotrophoblast Survival Are Dysregulated in Severe Preeclampsia and Hemolysis, Elevated Liver Enzymes, and Low Platelets Syndrome. Am. J. Pathol. 2002, 160, 1405–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, R.S.; Escobedo, N.; Yang, Y.; Interiano, A.; Dillard, M.E.; Finkelstein, D.; Mukatira, S.; Gil, H.J.; Nurmi, H.; Alitalo, K.; et al. The Prox1–Vegfr3 feedback loop maintains the identity and the number of lymphatic endothelial cell progenitors. Genes. Dev. 2014, 28, 2175–2187. [Google Scholar] [CrossRef] [Green Version]
- Baeyens, N.; Nicoli, S.; Coon, B.G.; Ross, T.D.; Dries, K.V.D.; Han, J.; Lauridsen, H.M.; Mejean, C.O.; Eichmann, A.; Thomas, J.-L.; et al. Vascular remodeling is governed by a VEGFR3-dependent fluid shear stress set point. eLife 2015, 4, e04645. [Google Scholar] [CrossRef]
- Knudson, C.B.; Knudson, W. Hyaluronan-binding proteins in development, tissue homeostasis, and disease. FASEB J. 1993, 7, 1233–1241. Available online: http://www.ncbi.nlm.nih.gov/pubmed/7691670 (accessed on 20 March 2023). [CrossRef]
- Banerji, S.; Ni, J.; Wang, S.X.; Clasper, S.; Su, J.; Tammi, R.; Jones, M.; Jackson, D.G. LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-specific Receptor for Hyaluronan. J. Cell Biol. 1999, 144, 789–801. [Google Scholar] [CrossRef] [Green Version]
- Prevo, R.; Banerji, S.; Ferguson, D.J.P.; Clasper, S.; Jackson, D.G. Mouse LYVE-1 Is an Endocytic Receptor for Hyaluronan in Lymphatic Endothelium. J. Biol. Chem. 2001, 276, 19420–19430. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.Y.; Lim, S.Y.; Tan, C.K.; Thiam, C.H.; Goh, C.C.; Carbajo, D.; Chew, S.H.S.; See, P.; Chakarov, S.; Wang, X.N.; et al. Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity 2018, 49, 326–341.e7. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Peng, D.; Huang, Y.; Cao, Y.; Li, H.; Zhang, X. Podoplanin: Its roles and functions in neurological diseases and brain cancers. Front. Pharmacol. 2022, 13, 964973. [Google Scholar] [CrossRef] [PubMed]
- Schacht, V. T1/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 2003, 22, 3546–3556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; Gu, Y.; Zhao, S.; Groome, L.J.; Alexander, J.S. D2-40/podoplanin expression in the human placenta. Placenta 2011, 32, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Pijnenborg, R.; Vercruysse, L.; Hanssens, M. The Uterine Spiral Arteries In Human Pregnancy: Facts and Controversies. Placenta 2006, 27, 939–958. [Google Scholar] [CrossRef]
- Kaufmann, P.; Black, S.; Huppertz, B. Endovascular Trophoblast Invasion: Implications for the Pathogenesis of Intrauterine Growth Retardation and Preeclampsia. Biol. Reprod. 2003, 69, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robson, A.; Lash, G.E.; Innes, B.A.; Zhang, J.Y.; Robson, S.C.; Bulmer, J.N. Uterine spiral artery muscle dedifferentiation. Hum. Reprod. 2019, 34, 1428–1438. [Google Scholar] [CrossRef]
- Annegowda, V.; Uma Devi, H.; Rao, K.; Smitha, T.; Sheethal, H.; Smitha, A. Immunohistochemical study of alpha-smooth muscle actin in odontogenic cysts and tumors. J. Oral. Maxillofac. Pathol. 2018, 22, 188. [Google Scholar] [CrossRef]
- Chen, L.; DeWispelaere, A.; Dastvan, F.; Osborne, W.R.A.; Blechner, C.; Windhorst, S.; Daum, G. Smooth Muscle-Alpha Actin Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Inhibiting Rac1 Activity. PLoS ONE 2016, 11, e0155726. [Google Scholar] [CrossRef] [Green Version]
- Newman, P.J. The biology of PECAM-1. J. Clin. Investig. 1997, 100 (Suppl. S11), S25–S29. Available online: http://www.ncbi.nlm.nih.gov/pubmed/9413397 (accessed on 20 March 2023). [CrossRef] [Green Version]
- Newman, P.J.; Newman, D.K. Signal Transduction Pathways Mediated by PECAM-1. Arter. Thromb. Vasc. Biol. 2003, 23, 953–964. [Google Scholar] [CrossRef] [Green Version]
- Carrithers, M.; Tandon, S.; Canosa, S.; Michaud, M.; Graesser, D.; Madri, J.A. Enhanced Susceptibility to Endotoxic Shock and Impaired STAT3 Signaling in CD31-Deficient Mice. Am. J. Pathol. 2005, 166, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Maas, M.; Stapleton, M.; Bergom, C.; Mattson, D.L.; Newman, D.K.; Newman, P.J. Endothelial cell PECAM-1 confers protection against endotoxic shock. Am. J. Physiol. Circ. Physiol. 2005, 288, H159–H164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.-X.; Hayball, J.D.; Hogarth, P.M.; Jackson, D.E. The Inhibitory Co-Receptor, PECAM-1 Provides a Protective Effect in Suppression of Collagen-Induced Arthritis. J. Clin. Immunol. 2005, 25, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Freitag, N.; Tirado-González, I.; Barrientos, G.; Herse, F.; Thijssen, V.L.J.L.; Weedon-Fekjær, S.M.; Schulz, H.; Wallukat, G.; Klapp, B.F.; Nevers, T.; et al. Interfering with Gal-1–mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proc. Natl. Acad. Sci. USA 2013, 110, 11451–11456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benton, R.L.; Maddie, M.A.; Minnillo, D.R.; Hagg, T.; Whittemore, S.R. Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J. Comp. Neurol. 2008, 507, 1031–1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malle, D.; Economou, L.; Sioga, A.; Toliou, T.H.; Galaktidou, G.; Foroglou, C.H. Somitogenesis in different mouse strains. Folia Anat. 2004, 32, 5–10. [Google Scholar]
- Rudzińska, M.; Mikula, M.; Arczewska, K.D.; Gajda, E.; Sabalińska, S.; Stępień, T.; Ostrowski, J.; Czarnocka, B. Transcription Factor Prospero Homeobox 1 (PROX1) as a Potential Angiogenic Regulator of Follicular Thyroid Cancer Dissemination. Int. J. Mol. Sci. 2019, 20, 5619. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freise, L.; Behncke, R.Y.; Allerkamp, H.H.; Sandermann, T.H.; Chu, N.H.; Funk, E.M.; Hondrich, L.J.; Riedel, A.; Witzel, C.; Hansmeier, N.R.; et al. Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy. Biomolecules 2023, 13, 1009. https://doi.org/10.3390/biom13061009
Freise L, Behncke RY, Allerkamp HH, Sandermann TH, Chu NH, Funk EM, Hondrich LJ, Riedel A, Witzel C, Hansmeier NR, et al. Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy. Biomolecules. 2023; 13(6):1009. https://doi.org/10.3390/biom13061009
Chicago/Turabian StyleFreise, Lennart, Rose Yinghan Behncke, Hanna Helene Allerkamp, Tim Henrik Sandermann, Ngoc Hai Chu, Eva Maria Funk, Lukas Jonathan Hondrich, Alina Riedel, Christian Witzel, Nils Rouven Hansmeier, and et al. 2023. "Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy" Biomolecules 13, no. 6: 1009. https://doi.org/10.3390/biom13061009
APA StyleFreise, L., Behncke, R. Y., Allerkamp, H. H., Sandermann, T. H., Chu, N. H., Funk, E. M., Hondrich, L. J., Riedel, A., Witzel, C., Hansmeier, N. R., Danyel, M., Gellhaus, A., Dechend, R., & Hägerling, R. (2023). Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy. Biomolecules, 13(6), 1009. https://doi.org/10.3390/biom13061009