
Citation: Biagioni, A.; Peri, S.;

Versienti, G.; Fiorillo, C.; Becatti, M.;

Magnelli, L.; Papucci, L. Gastric

Cancer Vascularization and the

Contribution of Reactive Oxygen

Species. Biomolecules 2023, 13, 886.

https://doi.org/10.3390/

biom13060886

Academic Editor: Ruey-Bing Yang

Received: 4 April 2023

Revised: 19 May 2023

Accepted: 24 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

Gastric Cancer Vascularization and the Contribution of Reactive
Oxygen Species
Alessio Biagioni 1 , Sara Peri 2 , Giampaolo Versienti 1, Claudia Fiorillo 1 , Matteo Becatti 1 ,
Lucia Magnelli 1,*,† and Laura Papucci 1,*,†

1 Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence,
50134 Florence, Italy; alessio.biagioni@unifi.it (A.B.); giampaolo.versienti@unifi.it (G.V.);
claudia.fiorillo@unifi.it (C.F.); matteo.becatti@unifi.it (M.B.)

2 Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy;
sara.peri@unifi.it

* Correspondence: lucia.magnelli@unifi.it (L.M.); laura.papucci@unifi.it (L.P.)
† These authors contributed equally to this work.

Abstract: Blood vessels are the most important way for cancer cells to survive and diffuse in the
body, metastasizing distant organs. During the process of tumor expansion, the neoplastic mass
progressively induces modifications in the microenvironment due to its uncontrolled growth, gen-
erating a hypoxic and low pH milieu with high fluid pressure and low nutrients concentration.
In such a particular condition, reactive oxygen species play a fundamental role, enhancing tumor
proliferation and migration, inducing a glycolytic phenotype and promoting angiogenesis. Indeed, to
reach new sources of oxygen and metabolites, highly aggressive cancer cells might produce a new
abnormal network of vessels independently from endothelial cells, a process called vasculogenic
mimicry. Even though many molecular markers and mechanisms, especially in gastric cancer, are still
unclear, the formation of such intricate, leaky and abnormal vessel networks is closely associated with
patients’ poor prognosis, and therefore finding new pharmaceutical solutions to be applied along
with canonical chemotherapies in order to control and normalize the formation of such networks
is urgent.

Keywords: gastric cancer; angiogenesis; vasculogenic mimicry; epithelial-to-endothelial transition;
hypoxia; reactive oxygen species

1. Introduction

Tumor vascularization plays a fundamental role in cancer progression and metastasis,
allowing tumor cells to reach a continuous source of oxygen and nutrients and to evade
host immunosurveillance. Sprouting angiogenesis, intussusception, vasculogenesis, vessel
co-option, and vasculogenic mimicry (VM) are the main processes that contribute to tumor
vascularization, generating an intricate net of vessels, some of which are composed of a
mosaic of endothelial and tumor cells. While angiogenesis is commonly described as a
complex mechanism including the remodeling of the extracellular matrix, the formation of
the Tip-Stalk cells hierarchy and the involvement of pericytes, VM is typically characterized
by highly perfused vessels with a significant deposition of matrix proteins, and it is often
associated with highly invasive and metastatic tumors, frequently paired with a poor
patient prognosis [1]. In previous years, periodic acid-Schiff (PAS)-CD31 was deemed to be
the golden standard to distinguish between the two biological processes [2], but recently
an alternative method of vascularization, the Epithelial-to-Endothelial Transition (EET),
has been observed [3,4]. EET is the acquisition by epithelial cancer cells of endothelial
markers, such as CD31, VE-Cadherin, Ephrin A2 and others [3]. Although not completely
understood, it has been found that EET is induced by several microenvironmental factors
and is established in highly plastic cancer cells, the so-called cancer stem cells (CSCs).
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One of the master inducers of all the above-described phenomena is hypoxia, which is
undoubtedly one of the most typical features of the tumor microenvironment, determining
the activation of the hypoxia-inducible factors (HIF) which were first discovered and eluci-
dated by Semenza in 1992, who won the 2019 Nobel Prize in Physiology or Medicine along
with Ratcliffe and Kaelin [5–7]. In particular, HIF proteins also enhance the stem features of
cancer cells and contribute to their differentiation through the EET, by losing cell polarity,
increasing the invasive ability and upregulating Twist and Snail, causing the consequent
downregulation of the tight junction proteins, E-cadherin and Occludin, together with
the upregulation of angiogenesis-related molecules such as VE-cadherin, vitronectin and
fibronectin [8]. During severe hypoxic conditions, generated by tumor expansion, the im-
paired electron transport chain reactions and, more generally, mitochondrial dysfunctions,
induce high reactive oxygen species (ROS) production [9] which, consequently, affects
cancer cells’ proliferation, migration and metabolism. It is noteworthy that ROS may also
be generated during tumor growth by the increased activity of peroxisomes, oxidases,
cyclooxygenases, lipoxygenases and thymidine phosphorylase [10]. Gastric cancer (GC),
which is currently the fourth leading cause of cancer-related death and the sixth for inci-
dence globally [11,12], is closely dependent on vascularization. Indeed, several studies have
showed that Helicobacter pylori, which is related to more than half of GC cases, is able to
penetrate normal, metaplastic and neoplastic epithelia, triggering an immune-inflammatory
response, and thus not only promoting gastric carcinogenesis, but also stimulating the
release of cytokines, matrix metalloproteinases and angiogenic factors by gastric epithelial
cells upon NF-kB activation [13]. It is well established that H. pylori-infected GC patients
showed increased tumor vascularization compared to those who underwent H. pylori
eradication [14]. Moreover, elevated gastrin secretion was also associated with NF-kB acti-
vation, as well, enhancing ROS generation and vasculogenesis [15]. When ROS levels were
reduced by the use of N-Acetylcysteine, metastatic capability and chemoresistance resulted
in inhibition, demonstrating that ROS play a central role in GC pathogenesis. Moreover,
it was observed that inoperable GC patients subjected to chemotherapy demonstrated a
‘U-like’ association of mortality rate with vascular density, suggesting that very low and
very high vascularization are both linked to poor outcomes [16].

2. Tumor Angiogenesis and Vasculogenesis

Angiogenesis is a multistep process that involves the formation of new blood vessels
starting from pre-existing ones. During cancer development, the tumor mass constantly
grows until the oxygen concentration is too low and the catabolic products of the accelerated
glycolysis affect the microenvironmental pH. In particular, hypoxia often triggers the early
endothelial response by activating the production of pro-angiogenic factors such as the
vascular endothelial growth factor (VEGF), angiopoietin-2 (ANG-2), or fibroblast growth
factor-2 (FGF-2) [17]. These signals wake up the pericytes, detaching them from the vessel
wall and allowing the endothelial cells to degrade the basement membrane through the
activation of matrix metalloproteinases (MMPs). After such events, the endothelial cells
lose their junctions, the vessel dilates and several plasma proteins extravasate, creating
a new temporary matrix layer for ECs migration [17]. The endothelial cell closest to the
higher VEGF concentration gradient is then selected by the Notch-Dll4 axis as the “Tip”
cell [18], which will lead to the building of the nascent vessel, while neighbor cells will
be consequently selected as “Stalk” cells and they will divide to follow the Tip. Once the
vessel is mature, all the junctions between ECs have been restored, pericytes have covered
the vessel again and the basement membrane has been deposited, the blood will flow and
the new vessel will be completely perfused. However, while in physiological conditions
Dll4 selects the Tip cell only, activating the Notch pathway, in tumor-induced angiogenesis
Dll4 expression was observed in the majority of tumor vessels [19]. Sprouting angiogenesis
is a complex and long process, especially in tumors, where ECs often compete for the
leading positions, generating a continuous change between Tip and Stalk status. Therefore,
endothelial tip and stalk cells’ fate determination is not fixed by the initial conditions, but
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rather there is a constant dynamic phenotype switch [20]. Despite some interesting clinical
trials aimed at treating and controlling angiogenesis in GC, their efficacy in improving
patients’ Overall Survival (OS) remains limited. In 2011 and 2014, the trials AVAGAST
and AVATAR [21,22] demonstrated that the use of Bevacizumab, a monoclonal antibody
inhibiting VEGF-mediated angiogenesis by binding and inactivating the VEGF-A ligand,
was able to modestly increase the Overall Response Rate (ORR) and the Progression-Free
Survival (PFS) but with no significant improvement in the OS. Moreover, it clearly appeared
that the efficacy was dissimilar depending on territorial differences, which might be due
to different hospitalization conditions or genetic discrepancies [23]. Better results were
achieved through the trials REGARD and RAINBOW [24,25], which tested Ramucirumab,
a human monoclonal antibody binding to the extracellular region of VEGFR-2 and blocking
the downstream effects of VEGF, improving PFS and OS, especially when combined with
Paclitaxel. Such a promising result induced the American Society of Clinical Oncology to
confirm Ramucirumab as the second-most-effective targeted drug after Trastuzumab [26].
Although tyrosine kinase inhibitors (TKi) are not widely used in the treatment of GC,
here we report Sunitinib, one of the first TKi approved for use in imatinib-resistant GISTs.
Indeed, it not only blocks VEGFRs, PDGFR-α, PDGFR-β and c-Kit [27] molecules involved
in the vasculogenic process, but also exerts a possible ROS-mediated cytotoxic effect, albeit
one that is still not completely clear [28]. We also need to mention that such anti-angiogenic
therapies often result in only a transitory improvement of the clinical picture. Resistance
to such regimens is divided into two main categories: the first is defined as the evasive
or adaptive resistance to angiogenesis inhibitors, which involves revascularization due
to the upregulation of alternative pro-angiogenic signals, the protection of the tumor
vasculature by recruiting pro-angiogenic inflammatory cells or by increasing protective
pericyte coverage, the increased invasiveness of tumor cells into adjacent tissues to co-
opt normal vasculature and the augmented metastatic relapse and tumor cell growth in
lymph nodes and distant organs. The second one is called intrinsic resistance, and includes
those individuals who had never benefited from the anti-angiogenic treatments due to an
innate indifference, probably due to the redundancy of several pro-angiogenic signals, an
inflammatory cell-mediated vascular protection, and the invasive angiogenic-independent
co-option of normal vessels [29].

3. Vasculogenic Mimicry

Described for the first time in uveal melanoma by Maniotis et al., VM is a biologi-
cal mechanism exploited by several cancer histotypes to generate PAS-positive vessels
lined by tumor cells [30]. Although early evidence indicated that the inner wall of such
vessels was composed of only tumor cells, Chang et al. demonstrated that the luminal
surface might indeed be lined by an intricate mosaic of tumor and endothelial cells [31].
The intricate transformation that leads cancer cells to perform VM is, to date, not fully
understood, but accumulating evidence points to a close correlation between CSCs and
VM formation. Indeed, during VM, high plasticity cancer cells that do not express any
typical endothelial markers behave like proper endothelial cells to achieve new sources of
oxygen and nutrients. To distinguish between the two histotypes, the golden standard is the
immunohistochemical analysis of two endothelium-related proteins (CD31/CD34) coupled
with the PAS reaction [2]. Currently, very little is known about the formation of VM in GC.
A close association has been reported between GC patients with VM and the formation of
hematogenous metastasis, probably due to the aggressive features developed by cancer
cells and to the fact that, when lining the luminal surface of the vessels, cancer cells are
directly exposed to the bloodstream, increasing their proficiency to detach and form distant
metastases [32]. MMP-2 and MMP-9 have been positively correlated with VM, conferring
on cancer cells the capability to remodel the extracellular matrix and degrade the vascular
basement membrane [33], while EphA2 has been reported to be directly involved in the
formation of tubular networks [34]. These phenomena were confirmed by Sun et al., who
demonstrated that out of a collection of 84 specimens of gastrointestinal stromal tumors
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(GIST), 21 were found to be VM positive, with a high production of MMP-2 and MMP-9 [35].
Although GISTs are typically not aggressive tumors, patients with VM-enriched vessels
experienced a worse prognosis with respect to the ones with low VM-dependent vascu-
larization. VM is commonly associated with advanced-stage GCs and with patients’ poor
prognosis, although the vast majority of the data are available only in Eastern countries [36].
Moreover, one of the main issues in identifying VM in GC samples is the heterogeneous
mucous tissues of the gastrointestinal tract, which might lead to false PAS-positive results,
thus overestimating the VM histological grade. It is today well-known that cells resistant to
anti-angiogenic therapies, such as those reported above, are often more prone to generate
VM networks in vivo and in vitro, and therefore research into new therapeutic strategies to
target both phenomena at the same time is urgently needed.

4. Epithelial-to-Endothelial Transition

Under particular microenvironmental conditions, i.e., hypoxia, high tumor interstitial
fluid pressure and altered extracellular matrix, VM-prone cells begin to express typical
endothelial antigens through the so-called Epithelial-to-Endothelial transition. Hypoxia is
the best-known and most potent VM inducer, activating HIF-1α and HIF-2α, which in turn
bind to the hypoxia-response elements of target genes such as VEGF, VEGF receptors, EMT
inducers and stem-associated genes [37]. Under hypoxic conditions, Twist1 translocates
into the nucleus and promotes VE-Cadherin expression, triggering the transition of ep-
ithelial cells to an endothelial-like phenotype [38,39]. Indeed, VE-Cadherin activates PI3K
via EphA2 phosphorylation, promoting the matrix metalloproteinases secretion and thus
extracellular matrix remodeling [40]. In particular, HIF-1α involvement was reported to
promote the stabilization of Notch, a typical endothelial antigen, by binding to its intracellu-
lar domain and consequently promoting Nodal transcription [41]. It was recently reported
that the onset of chemoresistance, and in particular to 5-Fluorouracil, might induce the EET
in AGS cells via the upregulation of TYMP, EphA2 and VEGFR2 [42]. However, the EET is
still a poorly understood phenomenon, with narrow limits that denote the difference with
a proper VM process. Additionally, from the clinical point of view, the treatment of such a
biological event is currently debated as all the above-described anti-angiogenic therapies
might induce the onset of VM cells due to the generation of hypoxic regions. Even after dis-
continuing treatments, endothelial vessels might rebound and link to the neo-formed VM
channels [39]. To date, the only therapeutic options evaluated in vivo are the use of Doxy-
cycline, a tetracycline derivative, acting by the inhibition of the degradation of E-Cadherin
preventing in this way both the EET and VM [43], anti-Notch4 antibodies which down-
regulate Nodal expression [41] and dual antiplatelet therapy, a gamma-secretase inhibitor,
which was found to inhibit glioblastoma CSCs from differentiating into endothelial-like
progenitor cells through blockade of Dll4-Notch signaling [44]. However, no therapies nor
experimental drugs are currently reported for GC treatment.

5. Innovative Pharmacological Approaches

Even though no clinical trials with anti-VM drugs have been reported, we describe
here the use of Rapamycin, Genistein and Thalidomide. Rapamycin, a macrolide com-
pound used to coat coronary stents and to prevent organ transplant rejection, has a strong
immunosuppressive effect and acts by targeting mTOR, which is a crucial VM and an-
giogenic effector, especially when induced by hypoxic conditions [45,46]. Similarly to
Rapamycin, Everolimus, and Temsirolimus act as mTOR inhibitors for GIST treatment,
although it has still not been clarified whether their antitumor effect might be produced by
ROS mediation [47]. The use of EF24, a new curcumin analog, was evaluated by Chen et al.
in combination with Rapamycin for the treatment of advanced GC. Indeed, they demon-
strated that EF24 acted as an ROS inducer, sensitizing GC cells to Rapamycin-induced
growth inhibition, decreasing the mitochondrial membrane potential and leading cancer
cells to apoptosis [48]. The co-treatment of GC cells with MK-2206, an Akt inhibitor, and
EF24 induces ROS generation via the stimulation of the endoplasmic reticulum through
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the activation of CHOP and ATF-4, thus decreasing the mitochondrial membrane poten-
tial and inducing apoptosis via the Bcl-2/Bax protein ratio dysregulation [49]. Recently,
another curcuminoid analog, the B63 targeting TrxR1, has been reported to induce ROS-
mediated paraptosis-like cell death in GC cells, leading to the reduction of tumor growth
in vivo [50]. Genistein is a phytoestrogenic compound derived from soybean and is already
used in many in vitro experimentations in GC to induce apoptosis in a dose and time-
dependent manner by downregulating the expression of the antiapoptotic Bcl-2 protein
and upregulating the expression of proapoptotic Bax [51]. Physiologically, Genistein is
mainly metabolized through oxidation, sulfation, glucuronidation, hydroxylation or methy-
lation, and therefore its derivatives’ effects are still not well evaluated (although it was
speculated that the 5,7,39,49-tetrahydroxyisoflavone (THIF) and 2 glutathinyl conjugates
of THIF might be responsible for the angiogenesis inhibition and reduction in endothelial
cell proliferation) [52]. Moreover, it has been shown that THIF may induce the cycle arrest,
activate the p38 MAPK signaling pathway and induce DNA strand breakage via ROS for-
mation [53]. Moreover, increasing evidence suggests that gastric CSCs may be particularly
sensitive to a low dose of genistein (15 mM), leading to inhibited self-renewal ability, drug
resistance and tumorigenicity due to the suppression of ABCG2 expression and ERK1/2
activity [54], and to the downregulation of Gli1 and CD44 paired with a reduced migration
capability [55]. Thalidomide, involved in the 1950 scandal of several birth defects, is still
used for the treatment of some multiple myeloma cases even though its pharmacologic ac-
tion and targets are not completely clear. Kita et al. reported that several N(α)-phthalimide
glutarimide derivatives, similar to Thalidomide, are able to selectively target the platelet-
derived endothelial cell growth factor (PD–ECGF), which is structurally identical to the
thymidine phosphorylase (TYMP), an important enzyme for purine synthesis and one
closely involved in angiogenesis response [56]. It was also demonstrated that Thalidomide
in GC cells might partially revert chemoresistance to 5-Fluorouracil and inhibit invasion,
migration and VM capabilities [42]. All the above-described anti-angiogenesis and anti-VM
therapies are summarized in Table 1.

Table 1. Chemotherapies aimed to control tumor-induced vascularization.

Treatment Target Inhibited Phenomenon Reference

Bevacizumab VEGFA Angiogenesis [21,22]
Ramucirumab VEGFR2 Angiogenesis [24,25]

Rapamycin mTOR Angiogenesis/VM [45,46]
Genistein Bcl-2/ABCG2/ERK1/2/Gli1/CD44 Angiogenesis/VM [51,52,54,55]

Thalidomide Unknown Angiogenesis/VM [43,57]
Doxycycline E-Cadherin Angiogenesis/VM/EET [41]

Anti-Notch4 Antibodies Notch4 Angiogenesis/EET [43]
Dual Antiplatelet Therapy Dll4-Notch axis Angiogenesis/EET [44]

6. Gastric MALT Lymphoma

A particular and noteworthy case is gastrointestinal lymphomas (indolent B-cell non-
Hodgkin), of which the so-called MALT lymphoma (mucosa-associated-lymphoid tissue) is
the most common type. Such a kind of lymphoma may arise from any mucosal tissue, but
often is associated with the gastric one, where memory B cells may be subjected to chronic
inflammation and infection in the extranodal marginal zone of the mucosa-associated
lymphoid tissue [57]. Etiological agents such as the H. pylori may play an important role
in the pathogenesis of this disease. Indeed, H. pylori exposition leads to an increased
MALT accumulation and to the stimulation of tumor-infiltrating T cells, which generate
the chronically inflamed microenvironment [58]. The continuous antigenic stimulation,
which promotes B cell proliferation and neutrophils retrieval, induces the B cell population
to develop oligoclonal and/or monoclonal sub-populations, leading to the oncogenic
event [59]. Moreover, the release of ROS by neutrophils might spread a wide genotoxic
effect, allowing the amplification of genetic aberrations [60]. Currently, the gold standard
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therapy for H. pylori-positive gastric MALT lymphoma is based on a combination of three
drugs, a proton pump inhibitor, clarithromycin, and amoxicillin or metronidazole, while in
the case of failure or for H. pylori-negative MALT, patients commonly undergo involved-site
radiation therapy (ISRT) or Rituximab [61]. The MALT being histologically characterized by
an abundant distribution of the microvascular network, comprising immature capillaries,
lymphatics, and venules, Nakamura M et al. proposed a new pharmaceutical approach
based on an anti-VEGF antibody, such as bevacizumab or aflibercept, and celecoxib, a
cyclooxygenase-2 inhibitor with promising results [62].

7. Gastrointestinal Stromal Tumors

Gastrointestinal stromal tumors (GIST) are the most common mesenchymal cancers of
the gastrointestinal tract, albeit accounting for less than 1% of all gastrointestinal tumors [63].
They are classified as soft tissue sarcomas, and frequently arise from Cajal cells along the
digestive tube or, less frequently, from telocytes or smooth muscle cells [64–66]. Over the
years, GIST have been more and more precisely characterized from a molecular point of
view, and thus now they are enclosed in two main categories depending on the proto-
oncogene (KIT) or the platelet-derived growth factor receptor alpha gene (KIT/PDGFRA)
mutations. The ones (5–7.5% of all GIST) with KIT/PDGFRA wild-types are then sub-
classified depending on the functionality of the succinate dehydrogenase enzyme (SDH
B/C/D), which might be deficient due to mutation or epigenetic regulation. In the rare cases
when no KIT/PDGFRA mutations are detected and the SDH complex is functional, several
very rare driver alterations could have occurred in genes such as the RAS gene family,
BRAF, NF1, NTRK1–3, and FGFR1–4 [67]. To date, surgery is the only therapeutic option
in combination with adjuvant chemotherapy based on the tyrosine kinase inhibitor (TKi)
Imatinib mesylate for KIT/PDGFRA-mutated patients [68]. Xu et al. recently revealed that
the chronic administration of Imatinib might induce ROS accumulation over time, leading
to an increase and stabilization of HIF-1α, which in turn stimulates the phosphogluconate
dehydrogenase (PGD), resulting in a metabolic switch from a typical tricarboxylic acid
cycle with high oxidative phosphorylation to the exploitation of the pentose phosphate
pathway. PGD was observed to be upregulated in GIST, and especially in GIST cell lines
resistant to Imatinib when compared with sensitive ones, promoting cell proliferation and
apoptosis avoidance [69]. Indeed, a higher PGD expression produces an abundant quantity
of NADPH, providing reducing intermediates for the glutathione and thioredoxin systems
and, at last, reducing the ROS-dependent apoptosis and cell cycle arrest. Angiogenesis
is another important force affecting GIST malignancy [70]. For example, it was reported
that BRD4 upregulation enhanced GIST migration and invasion by regulating angiogenesis
through the NF-kB/CCL2 signaling pathway, while CCL2 is also useful to recruit tumor-
associated macrophages, increasing the cancer microvessel density and secreting several
pro-angiogenic molecules such as VEGFA, LOX and MMP9 [32,71]. Moreover, mutations
in the PPP2R1A gene are associated with a more aggressive tumor phenotype causing an
increased growth rate via stimulating the phosphorylation of c-kit, Akt1/2, ERK1/2 and
WNK1, of which the latter one regulates the angiogenetic response [72,73]. Furthermore,
GIST has also demonstrated a high capability for assessing vasculogenic mimicry, as
demonstrated by Sun B et al., observing that, in a retrospective study of 84 patients with
GIST, VM is associated with tumor size, mitotic rate and liver metastasis [35]. VM-positive
GIST patients correlate with a high risk of metastatic progression and with poor prognosis
according to the survival Kaplan–Meier curves. They also found an upregulation and
activation of MMP-2 and MMP-9, whilst not detecting any significant change in VEGF
expression. It was recently observed that epigenetic regulation might also play a major role
in GIST vascularization control, as the upregulation of the histone demethylase KDM4D
was demonstrated to affect promoters of the H3K9me3 and H3K36me3 genes, enhancing
the angiogenesis in vivo through the HIF1β/VEGFA pathway stimulation, leading to the
overexpression of CD31 [74]. It is also noteworthy that several TKi exert an anti-angiogenic
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effect, too. Indeed, Cabozantinib, as well as sorafenib, targets VEGFR2, Flt-3 and c-Kit,
leading to a diminished tumor microvascular density [75,76].

8. ROS-Induced Vascularization

Hypoxia in varying degrees commonly generates Reactive Oxygen Species (ROS),
probably affecting the complexes I, II and III of the mitochondrial electron transport chain
(ETC), even though the mechanism is still debated [77]. ROS are molecular oxygen-derived
molecules that are formed by reduction-oxidation reactions or by electronic excitation.
They contain one or more unpaired electrons, and are characterized by a highly reactive
status [78]. Cellular endogenous ROS are generated physiologically in the process of mito-
chondrial oxidative phosphorylation [79], as well as in cellular responses to xenobiotics,
cytokines, viruses and bacterial invasion, or they may arise from interactions with exoge-
nous sources [80]. When ROS concentration overwhelms the cellular antioxidant defense
system, oxidative stress occurs, inducing damage to proteins, lipids and nucleic acids,
contributing in this way to the pathogenesis of several human diseases such as neurodegen-
erative [81,82], cardiovascular [83,84], and inflammatory diseases [85], infertility [86,87],
aging [88,89] and cancer [90]. Three main classes of ROS are commonly produced: hy-
droxyl radicals characterized by a high reactivity and short half-life, superoxides with
low reactivity and the capacity to diffuse through anionic channels and hydroperoxides
with moderate reactivity and the capability of diffusing via aquaporins [9]. Superoxide,
hydrogen peroxide and peroxyl induce membrane lipid peroxidation, generating unstable
fatty acid radicals (lipid hydroperoxides) which rapidly degrade into cytotoxic ketones,
epoxides and reactive aldehydes released in the gastrointestinal compartment [91]. Their
plasma and urinary levels are indeed elevated due to the absorption in the intestines,
leading to a higher risk of mutagenesis and cancer progression [92,93]. Moreover, ROS’
intracellular accumulation results in the stabilization and activation of HIF-1α and the
degradation of SIRT3, leading to the transcription of VEGF, LDHA and PDK1, even under
normoxic conditions, promoting in such a way tumor angiogenesis and progression in
GC [94]. In particular, HIF-1α and HIF-2α regulate tumor cell proliferation, migration,
glycolysis and angiogenesis via endogenous ROS production [95]. Moreover, Park et al.
demonstrated that endogenously produced ROS or stimulation by H. pylori stabilize HIF-
1α protein in human GC cells even under normoxic conditions via non-mitochondrial
ROS [96]. Indeed, H. pylori is capable of producing ROS and reactive nitrogen species
(RNS) or inducing their production in neutrophils, endothelial cells, and gastric mucosal
cells [97]. Such particular bacteria are capable of survive in the host stomach, inducing
the expression of inducible NO synthase (iNOS) in gastric mucosal epithelial cells, vas-
cular endothelial cells, or infiltrated inflammatory cells [98]. H. pylori then translocates
into the cells through the cytotoxin-associated gene A (CagA), inducing the production
of ROS and triggering, in turn, a cascade response including the stimulation of cell cycle
progression, and therefore proliferation [99], and damages to mitochondrial and nuclear
DNA [100]. Cation transport regulator 1 overexpression in AGS cell lines infected with
CagA-positive H. pylori has also been demonstrated to reduce cellular glutathione levels
via the glutamylcyclotransferase, leading to the rapid accumulation of ROS [101]. Such
damages, which rapidly induce mutations and carcinogenesis, are also generated through
ROS promotion by another important H. pylori-associated virulence factor [102], the vacuo-
lating cytotoxin A (VacA) [103]. The combined effect of CagA and VacA is thus reported
to decrease cell autophagy in gastric epithelial cells by reducing intracellular glutathione
levels, increasing ROS accumulation, enhancing the resilience of H. pylori infection in the
stomach, and therefore promoting GC development [104]. On the other hand, VacA inhibits
the expression of integrin-linked kinase and endothelial nitric oxide synthase, leading to
decreased ROS production in macrophage/monocyte lineages in order to evade immune
system surveillance [105]. Recently, proton pump inhibitors have been used for the treat-
ment of peptic ulcers and for the H. pylori eradication therapy, being capable of suppressing
the effect of the bacterial-induced acid secretion. Rabeprazole has been reported to re-



Biomolecules 2023, 13, 886 8 of 16

duce H. pylori-induced gastric mucosal damage by increasing the concentration of reduced
glutathione [106], while lansoprazole and omeprazole have been observed to inhibit in-
flammatory cytokines’ production by stimulating gastric epithelial cells and endothelial
cells via the blockage of redox-sensitive transcription factor activation [107]. Lian et al.
demonstrated the complex interplay between ROS and angiogenesis in GC, exposing the
AGS cell line to nicotine and treating endothelial cells with the resulting tumor cell-derived
conditioned media. Indeed, they observed that nicotine promoted endothelial cells’ growth
and tube-like formation, induced by IL-8 expression via the stimulation of ROS/NF-κB and
ROS/MAPK (ERK1/2, p38)/AP-1 axes [108]. Gastrin, a major component of the gastric
juice, promotes angiogenesis by activating HIF-1α/β-catenin/VEGF signaling in GC [109]
and metastasis via the β-catenin-TCF4 pathway [110]. Liu et al. demonstrated that gastrin
regulates IκBα and NF-κB in GC cells, enhancing ROS generation and controlling the
anti-apoptotic Bcl-2 and pro-apoptotic Bax expression in a ROS-dependent manner [15]. It
has also been reported that EMT and metabolism alterations may depend on the ROS/NF-
κB/HIF-1α axis. Indeed, Qin et al. demonstrated that N-acetylcysteine-dependent ROS
scavenging diminished NF-κB and HIF-1α activation in autophagy-deficient GC cells,
preventing the metabolic switch (from mitochondrial oxidative phosphorylation to aerobic
glycolysis), which is closely associated with malignity and chemoresistance in GC [111].
Radiotherapy, as well as platinum-based drugs, might induce ROS generation by high en-
ergy ionizing radiation [112] or via NADPH oxidase, respectively [113,114]. In this context,
it has been already demonstrated that Oleocanthal, a minor polar compound extracted by
extra-virgin olive, causes cell cycle inhibition and ROS accumulation in AGS cells resistant
to 5-Fluorouracil and Paclitaxel, but not to Cisplatin. Indeed, Cisplatin-resistant cells seem
to be characterized by higher levels of antioxidant enzymes that are capable of counter-
acting the Oleocanthal-induced ROS accumulation [115]. Endogenous ROS, which are
able to directly affect GC cells, can also modulate tumor microenvironmental components.
Indeed, it was observed that tumor-infiltrating lymphocytes might be attracted by ROS,
exerting their typical antitumor effect [116]. Radiotherapy can damage cancer cells’ DNA,
dramatically increasing ROS levels, inducing vascular trauma, tissue self-healing, edema
and immune cell infiltration, and generating, in turn, an increased demand for oxygen
with consequent HIFs activation [117]. The immune cell infiltration, commonly composed
of tumor-associated macrophages, T-cells, B-cells, and myeloid-derived suppressor cells,
is influenced and recruited by severe hypoxic conditions [118]. The interaction among
ROS, angiogenesis and inflammation is an important pathogenic factor for GC progres-
sion, as inflammatory mediators can regulate ROS/RNS production [119]. ROS-activated
TNF-α has been reported to downregulate IκBα, mediating, in turn, the release of inflam-
matory mediators such as NOX2, IL-6, IL-2, IL-8 and CXCL12 [120]. Several enzymes
contribute to their production in three main cellular districts (mitochondria, cytosol and
single membrane-bound organelles (peroxisomes, endosomes and phagosomes)), and thus
ROS may diffuse through specific channels or be delivered by exosomes [121]. ROS play
also a major role in tumor angiogenesis by controlling VEGF expression. As reported
by Xia et al. the NADPH oxidase inhibitor DPI and the complex I inhibitor Rotenone
are capable of inhibiting VEGF protein and mRNA levels, probably via HIF-1α, reducing
neovascularization and tumor growth [122].

9. ROS Scavenging Activity

There are three main enzymatic components of the antioxidant defense system: the
metal ion-dependent superoxide dismutases (SODs) [123], the catalase and the glutathione
peroxidase (GPx) [124]. To the first family belongs two copper/zinc-containing members:
CuZnSOD (SOD1), localized within the cytosol, mitochondrial intermembrane space and
nucleus, and the extracellular SOD (EcSOD or SOD3), which is the predominant antioxi-
dant enzyme secreted into the extracellular space and the manganese-containing MnSOD
(SOD2), active into the mitochondrial matrix. Such particular enzymes require specific
metal cofactors for catalyzing the redox process of dismutation, i.e., the conversion of super-
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oxide molecules into oxygen and hydrogen peroxide. Of particular interest is that EcSOD is
commonly reported to be down-regulated in almost all cancer histotypes, albeit increased
in gastric adenocarcinoma and prolactinoma, a benign pituitary gland tumor [125,126].
However, the cause of such an increase in serum EcSOD remains unclear. Another funda-
mental enzyme with scavenging activity against intracellular ROS is the catalase, localized
in the peroxisomes, which converts hydrogen peroxide into water and oxygen. While SOD
and catalase do not need co-factors to function, GPx requires the co-factors and proteins
belonging to the glutathione system (glutathione reductase and glucose-6-phosphate dehy-
drogenase) to convert the hydrogen peroxide in water [127]. Even though the importance
of such a scavenging system is clearly remarkable, to date no scientific articles have been
produced about gastric cancer, and here lies the urgent need to stimulate the worldwide
community to improve the research on such an interesting topic.

10. The Role of NADPH Oxidase in GC

NADPH oxidases, one of the major ROS sources, are multi-subunit enzyme complexes
catalyzing the production of a superoxide-free radical by transferring one electron to oxygen
from NADPH with the extrusion of an H+ molecule. This highly conserved protein family
includes seven oxidases, namely NADPH oxidase 1 (NOX1), NOX2, NOX3, NOX4, NOX5,
Dual oxidase 1 (DUOX1) and DUOX2. It has been reported that p22phox expression, an
essential component of the membrane-associated enzyme NADPH-oxidase NOX1, NOX2
and NOX4, is more highly expressed in actively proliferating endothelial cells than in
quiescent cells, demonstrating that ROS produced by NADPH oxidase might sustain
endothelial cells’ proliferation [128]. NOX1 plays an important role in endothelial cell
proliferation, sprouting and migration by increasing ROS-sensitive transcription factors
and ROS-dependent phosphatases that block PPAR-α activity, which in turn is responsible
for NF-kB inhibition [129]. On the other hand, NOX2 is a critical ROS source in endothelial
cells and an important regulator of their function, as its genetic deficiency, i.e., the loss
of gp91phox expression, leads to the chronic granulomatous disease causing enhanced
endothelium-dependent vasorelaxation, the reduction of vascular aging markers and
oxidative stress by limiting NO bioavailability [130], whilst NOX5 is actively involved
in ROS-mediated proliferation and the formation of capillary-like structures in human
microvascular endothelial cells [131]. NOX3, DUOX1 and DUOX2’s involvement in cancer
angiogenesis has not yet been fully established (Figure 1). You et al. demonstrated that
NOX1/2/4 mRNA expression levels in GC tissues were higher than in normal tissues, while
NOX5 and DUOX1/2 expression levels were lower. Moreover, they observed that a high
NOX2 mRNA expression was associated with better OS, whilst NOX4 and DUOX1 were
closely correlated with a worse outcome, in particular in intestinal-type GC patients [132].
Similarly, Qiao and colleagues investigated the role of NOX4 in GC by observing its
upregulation in the tumor mass compared with adjacent non-tumor tissues, which was
correlated with higher invasive capability and a worse TNM stage [133]. Indeed, studies
indicated that lipopolysaccharides from H. pylori induced NOX1-derived ROS through
TLR4 in guinea pig gastric pit cells, in this way exploiting NOX1 as the trigger of the innate
immune responses against H. pylori [134]. Moreover, high levels of NOX1 were detectable
in GC cells (intestinal, diffuse or signet-ring cell type) but not in normal gastric mucosa
cells [135]. This points to an intriguing possibility that GC undergoes aberrant control of
NOX1 expression. Even though all these proofs clearly determine the deep involvement of
the NOX family, and in particular NOX1, in ROS-mediated GC progression, few works in
the literature are available to date. Of particular interest is the biological process termed
“ROS-induced ROS release” (RIRR), in which one cellular compartment generates and
releases ROS, stimulating ROS production by another adjacent compartment or organelle.
This phenomenon was initially described in cardiomyocytes, demonstrating that upon the
mitochondrial permeability transition pore opening the mitochondrial membrane potential
rapidly dissipates, triggering the so-called “burst phase” of ROS generation, which caused
a synchronous phenomenon in the contiguous mitochondria [136]. Indeed, this event
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might be considered a natural safety valve that prevents excessive ROS accumulation
inside the mitochondria, through the occasional opening of their pores to release ROS.
During pathologic conditions, i.e., cancer, such a release might trigger irreversible positive
feedback, leading to the activation of apoptotic or autophagic pathways [137]. Moreover,
Young-Mee et al. reported that, in endothelial cells, NOX2 is capable of sensing NOX4-
derived H2O2, inducing mitochondrial ROS production via pSer36-p66Shc and, lastly,
enhancing VEGFR2 activation, thus amplifying the angiogenesis signaling program [138].
Amongst the currently available clinical approaches, we report the use of Apatinib, which
is thought to be one of the most promising drugs, being a well-known anti-angiogenic
agent as a VEGFR2 selective inhibitor. Already approved for the treatment of metastatic
GC by the FDA [139], it is reported to affect ROS production via GPX4 and SREBP-1a [140].
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11. Conclusions

To date, the relationship between ROS and tumor vascularization is still debated, but
the urgency of learning how to treat and control cancer-induced angiogenesis, especially
when particular hostile conditions, such as hypoxia, start to be established in the tumor
microenvironment, is clear. Several attempts have been made to counteract tumor angio-
genesis, for example through treatment with Bevacizumab and Ramucirumab, which have
proven to be effective in the early tumor stages, but which often induce hypoxic regions,
selecting, in such a way, a pool of cancer cells with an endothelial behavior that in turn
might replace the proper endothelium. VM and EET molecular processes also need to
be further clarified in order to fully understand their genesis and the real contribution of
external factors and stimuli which might induce each kind of phenotype.
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