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Abstract: Spatially resolved sequencing technologies help us dissect how cells are organized in
space. Several available computational approaches focus on the identification of spatially variable
genes (SVGs), genes whose expression patterns vary in space. The detection of SVGs is analogous
to the identification of differentially expressed genes and permits us to understand how genes
and associated molecular processes are spatially distributed within cellular niches. However, the
expression activities of SVGs fail to encode all information inherent in the spatial distribution of
cells. Here, we devised a deep learning model, Spatially Informed Artificial Intelligence (SPIN-AI), to
identify spatially predictive genes (SPGs), whose expression can predict how cells are organized in
space. We used SPIN-AI on spatial transcriptomic data from squamous cell carcinoma (SCC) as a
proof of concept. Our results demonstrate that SPGs not only recapitulate the biology of SCC but also
identify genes distinct from SVGs. Moreover, we found a substantial number of ribosomal genes that
were SPGs but not SVGs. Since SPGs possess the capability to predict spatial cellular organization,
we reason that SPGs capture more biologically relevant information for a given cellular niche than
SVGs. Thus, SPIN-AI has broad applications for detecting SPGs and uncovering which biological
processes play important roles in governing cellular organization.

Keywords: spatial transcriptomics; artificial intelligence; spatial gene regulation; cellular niche

1. Introduction

The burgeoning of single-cell sequencing technologies over the past decade [1] has
revolutionized our understanding of many important biological problems at single-cell
resolution. Among them are issues pertaining to cellular heterogeneity [2], cell subpopu-
lation [3], and fate determination of cell lineages [4] during embryonic development and
disease formation [5,6]. However, the process of dissociating cells from their tissue before
sequencing causes the loss of spatial information in single-cell RNA-seq data.

The coupling of novel next-generation sequencing-based [5,7,8] and imaging-based
capturing [9–11] spatial-based approaches over the last few years has inhibited the loss
of spatial information in cell sequencing. Spatially resolved transcriptomics has since
enabled researchers to chart how gene expression varies across different regions of a tissue
in unprecedented detail [12]. Although different spatial sequencing technologies have
their own limitations, such as resolution, sensitivity, throughput, and accessibility [13],
the availability of spatial transcriptomic data nonetheless allows researchers to address
long-awaited, important biological questions. For instance, spatial transcriptomic data have
allowed researchers to build detailed tissue expression atlases [14], trace tissue development
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at refined spatial resolutions [15] and dissect cell–cell communication patterns in cellular
niches [16].

More importantly, the advancement of spatial sequencing technologies has also un-
covered new computational challenges in revealing how the spatial arrangement of cells
affects gene expression or vice versa. That is, a cell’s local neighborhood in space may
determine how the cell expresses its genes, and the coordinated gene expression of cells in a
neighborhood shape the property of the niche in which they reside. As such, reconstructing
spatial positions and inferring genes whose expression patterns play key roles in molding
spatial organization are attractive computational problems.

Restoring lost spatial information from single-cell sequencing data via the in silico
reconstruction of spatial data has been an active research area in recent years. For example,
novoSpaRc was developed to reconstruct de novo cellular spatial locations of cells using
single-cell transcriptomic data without the need for spatial references [14]. The authors’
key assumption was that physically adjacent cells tend to share similar gene expression
profiles, and spatial position probabilities for individual cells can be formulated as optimal
transportation problems [17]. On the other hand, CSOmap was built using information
on ligand–receptor interactions to reconstruct cellular spatial organization from single-cell
RNA-seq data [11]. The underlying hypothesis of CSOmap is that the spatial organization
of cells is determined by their local ligand–receptor interaction profiles. By reconstructing
spatial organization, both methods also infer spatially informative expression programs.
The success of both novoSpaRc and CSOmap in reconstructing the spatial organization of
single-cell data, at least to a certain extent, indicates that gene expression profiles encode
the latent representations of cells in space.

Beyond reconstructing spatial information from single-cell RNA-sequencing, another
line of effort has employed spatially resolved transcriptomic data to explore the spatial
organization of gene expression. This includes the identification of spatially variable genes
(SVGs), whose expression patterns are significantly distinct across space. That is, the
expression of SVGs is highly localized to specific zones and demonstrates a spatial pattern,
whereas non-spatially variable genes are expressed in broad locations within cellular niches.
As such, most current computational methods for detecting SVGs are mainly based on
statistical hypothesis-testing frameworks, such as trendsceek, which uses spatial point
process models [18], or SpatialDE [19] and SPARK [20], which use Gaussian processes.
Hybrid methods that combine machine learning and statistical methods have also gained
interest, such as SOMDE, which combines self-organizing maps and Gaussian process
models to detect SVGs [21].

Both de novo computational methods for reconstructing spatial organization from
single-cell RNA-seq data (e.g., novoSpaRc and CSOmap) and statistical methods for detect-
ing SVGs (e.g., trendsceek, SpatialDE, SPARK, and SOMDE) assume that gene expression
(or interaction) programs that show similarities at adjacent localities are the most spatially
informative. However, expression in a spatial-dependent manner does not necessarily
imply that only SVGs are involved in the gene expression behaviors that coordinate the
spatial organization of cells. SVGs and non-SVGs may interact together to encode spatial
information. As such, we predict the existence of a new class of genes called spatially pre-
dictive genes (SPGs). Although SPGs are not necessarily spatially variable, their collective
expression levels nonetheless encode information for reconstructing the organization of
cells in space. The concept of an SPG, therefore, merges two different aspects of single-cell
analyses, i.e., the reconstruction of the spatial organization of cells and the detection of
spatially expressed genes, into one umbrella: genes whose expression activities predict the
coordinated distribution of cells in space.

In this study, we developed a deep learning computational pipeline called Spatially
Informed Artificial Intelligence (SPIN-AI) to identify SPGs without any prior assumptions
of spatial distribution. We used data on human squamous cell carcinoma from a study
by Ji et al. [22] in our case studies. SPIN-AI learns to reconstruct the spatial transcrip-
tomic slide of a cell using only its gene expression profiles by identifying SPGs during
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its training process. We hypothesize that some SPGs are potential players involved in
spatial-based regulatory mechanisms that determine and coordinate cellular distribution
in the pathological microenvironment. Our work shows that many SPGs are not SVGs,
indicating that SPGs are a new class of genes whose collective expression profiles encode
the spatial distribution of cells in a cellular niche. We also showed that SPG-enriched bio-
logical processes recapitulate the biological properties of squamous cell carcinoma. Hence,
SPIN-AI predicted that patient-specific SPGs will be of great value in understanding the
coordination of the gene activities that give rise to the spatial organization of cells in a
pathological microenvironment.

2. Materials and Methods
2.1. Packages

For this study, we used the following Seurat [23], STUtility, clusterProfiler, ggplot2,
data.table, spatialDE [19], ComplexHeatmap, circlize, tibble, openxlsx, VennDiagram,
and Python 3 packages: numpy, pandas, tensorflow, keras, deepexplain, seaborn, mat-
plotlib, itertools, sys, os, gc, and re. Information about the use of each package is listed
in Table S1 and Figure S1.

2.2. Data Pre-Processing

Human squamous cell carcinoma single-cell and spatial transcriptomic data were
obtained from Ji et al. [22] The data consisted of matched normal and tumor single-cell
RNA-seq as well as 10× Visium spatial transcriptomic profiles with matched histology
stains for 3 tumor tissue sections across 4 patients. We henceforth refer to the matched
spatial transcriptomic and histology stains as “slides,” with a total of 12 slides, or 3 for
each of the 4 patients. Both single-cell and spatial transcriptomic data were processed
using Seurat [21] and STutility [24], as described in Ji et al. [22] Briefly, for the single-cell
data, cells with <200 genes detected and >10% mitochondrial gene counts were filtered
out. The data were then normalized and scaled, while UMI counts and mitochondrial gene
percentages were regressed out. For the spatial transcriptomic data, spots with <200 genes
detected were removed as were genes with <10 reads or expression in <2 spots. Data were
then normalized (SCTransform function), while slide-specific effects and gene counts per
spot were regressed out.

2.3. Cellular Subpopulation and Cluster Analysis

We obtained single-cell identity annotations and computed spatial gene expression
clusters by following the procedure described by Ji et al. [22]. This information was used
for comparison against post-hoc models and was not included in our deep learning models.
From the single-cell RNA-seq data, we used pre-generated cell-type labels to conduct
a Bonferroni-corrected Fisher’s exact test to compare the cell-type proportions in tumor
samples from Patient 9 against those from Patients 2, 5, and 10 aggregated together, since
the model performance for Patient 9 was significantly reduced compared to these patients
(see Results Section). We then computed gene expression markers for spatial expression
clusters using Seurat’s FindAllMarkers function [23]. We computed another set of markers
using gene importance scores (as calculated in “Identification of Spatially Predictive Genes
(SPGs)”) for comparison against the expression-derived markers. Finally, we extracted the
200-gene signature for tumor-specific keratinocytes (TSKs) identified in Ji et al., generated
TSK scores, and identified the spatial expression clusters enriched for these cells using
Seurat’s AddModuleScore function [23].

2.4. SPIN-AI Training Procedure

SPIN-AI consists of a dense, feedforward neural network designed to take a spatial
transcriptomic spot’s gene expression as an input, with each node corresponding to one
gene, to predict its x and y spatial coordinates (Figure 1). Prior to training, genes with an
expression variance of <0.05 were filtered out. Each hidden layer of a model consists of a
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dense, fully connected layer followed by batch normalization. The number of hidden layers
was tuned between 1, 3, and 5 per patient, as described below. The total number of nodes
in the hidden, dense layers was fixed at approximately half of the input layer size, and the
distribution of nodes in a model was fixed at half the number of nodes from the preceding
layer, except for in the 2-node output layer for predicting x and y coordinates. For all dense
layers, we used a rectified linear unit (ReLu) activation function with He normal weight
initialization [25] and an Adam optimization function [26]. The ReLu activation function is
given as followed:

ReLu(x) = max(0, x), (1)

where x is the input to a neuron.
Each SPIN-AI model was built on a per-slide basis. The learning rate was tuned

between 0.1, 0.01, and 0.001 using 10-fold cross-validation. In each cross-validation iteration,
8 folds were used for training, 1 was selected for validation, and another was used for
testing. We trained each model using the mean Euclidean distance error (MDE) as a loss
function, measuring the average distance from each spot’s predicted location to their
actual location:

MDE =
1
N ∑N

n

√
(x′n − xn)

2 + (y′n − yn)
2, (2)

where N is the number of spots, (xn, yn) is a spot’s coordinate, and (x′n, y′n,) is the predicted
coordinate for spot n.

To prevent overfitting, we used early stopping within each fold alongside a batch
size of 32 and 100 epochs. After cross-validation, we selected the parameter combination
with the lowest cross-validation error and selected its corresponding set of within-fold
models. We collected the predictions for each models’ test fold for subsequent analysis
and computed gene contribution scores (detailed below) for the test-fold spots using their
respective models.

2.5. Model Validation

First, we verified that the cross-validation error could approximate the actual error
by using all three slides from each patient to train the models. Using slides from the
same patient, we trained each model on one selected slide with optimal hyperparameters
determined from the cross-validation procedure performed on that slide. Another slide was
used as a validation set with the remaining slide used as a test set. To ensure consistency
between each slide’s coordinates, we computed the centers of each slide by taking their
average x and y coordinates. We then computed the difference between the testing and
validation slides’ centers and the training slide center, and then translated the testing and
validation slides such that their translated image centers had the same coordinates as the
training slide. The train–validation–test slides were tested in the following combinations:
Slide 1, Slide 2, and Slide 3; Slide 2, Slide 3, and Slide 1; and Slide 3, Slide 1, and Slide 2.

2.6. Identification of Spatially Predictive Genes (SPGs)

We used DeepLift [27], as implemented in the DeepExplain library, to compute spot-
wise node contribution scores. For a specific spot s, outcome t, and nodes xs

1, xs
2, . . . , xs

n

where n is the number of nodes in a given layer l, DeepLift calculates the contribution Cs,l
i

for each node i ∈ n subject to the constraint that

∑n
i=1 Cs,l

i = t− t0, (3)

where t0 is the model output when all nodes in layer l are activated with a certain reference
input, which was 0 for our scenario. In essence, DeepLift calculates how much a given
node contributed to a prediction.
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Figure 1. Design of the Spatially Informed Artificial Intelligence (SPIN-AI) platform. SPIN-AI
consists of a dense, feedforward neural network where spatial transcriptomic gene expression is used
as an input with the goal of predicting the x and y coordinates of each spatial transcriptomic spot.
Each hidden layer of the model consists of a dense, fully connected layer. The number of hidden
layers was tuned between 1, 3, and 5. The number of nodes in the hidden layer was fixed at half the
input layer size and distributed such that each hidden layer had half of the previous layers’ number
of nodes. For a given slide, spots are randomized to different folds for k-fold cross-validation (k
= 4 shown for illustration purposes). A deep, feedforward neural network is then trained on the
training folds to predict spatial location from spatial gene expression and evaluated according to its
predictions for spots from the test fold. Test fold predictions are then aggregated for model evaluation
and feature importance is computed for each gene for each spot. Each dotted spot represents a spot
on the spatial transcriptomic slide.

Within an individual cross-validation iteration, we applied DeepLift to the input layer
of the trained model to compute how much each gene contributed to the prediction of the
location of each spot in the test set. From the cross-validation design, we then obtained the
gene contribution scores of all genes in all spots in a slide Cs

g, where g denotes the gene and
s denotes the spot. We henceforth refer to the magnitude of the gene contribution scores as
the “importance score,” or

Imps
g =

∣∣∣Cs
g

∣∣∣. (4)
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We evaluated gene importance across an entire slide by taking the sum of importance
scores as

MeanImpg =
1
|S|

S

∑
s

Imps
g (5)

where S is the set of all spots in a slide.
We then determined SPGs on a per-patient basis (Figure S2). First, we computed the

cross-slide mean importance (CSMI score) of each gene across each of the three slides for
a patient:

CSMIg =
1
|H|∑

H
h MeanImph

g, (6)

where h denotes each individual slide in the set of all slides H (|H| = 3 in this case).
Because MeanImp and, thus, CSMI are correlated with the average expression in a

slide/across slides (Figure S3), MeanImp may deprioritize genes with strong regional bias.
To account for genes with strong contribution scores in a subset of spots, we computed the
mean non-zero importance (MNI) for each gene on a per-slide basis as

MNIg =
1
n0

∑S
s Imps

g, (7)

where n0 is the number of spots with Imps
g > 0. We also computed the percentage of spots

with non-zero importance (PNI) as

PNIg = 100 ∗ n0

n
(8)

As with the CSMI, we calculated the cross-slide averaged MNI (CSMNI) and the
cross-slide averaged PNI (CSPNI) for each gene across all three patient slides:

CSMNI =
1
|H|∑

H
h MNIh

g and CSPNI =
1
|H|∑

H
h PNIh

g. (9)

To define a set of SPGs, we initially selected genes that had a CSMI > 0.15. Our choice
of CSMI cutoff was based on scores of 0.15 falling in between the 98th and 99th percentile
of importance scores across all genes and slides for each patient (98.47th percentile for
Patient 2, 99.22nd percentile for Patient 5, 98.25th percentile for Patient 9, 98.48th percentile
for Patient 10), providing a sufficiently selective cutoff. We then computed the minimum
CSMNI for genes in this initial set. Next, we selected genes with a CSMNI value and a
CSPNI > 20 (Figure S2) to help detect genes with strong importance in a reasonably sized
subset of spots. Adding these genes to the initial gene set formed the spatially predictive
genes (SPGs) of a patient. We compared the impacts between using means or medians
for equations 5, 6, 7, and 9. Since the Pearson correlation coefficients between the two
aggregations methods were strong (>0.9), we reasoned that no significant changes would be
expected when using either scoring scheme and, thus, used the mean for our calculations
(Figure S4). On a per-patient basis, we also used SpatialDE [19] to detect spatially variable
genes using an adjusted p-value threshold of 0.05.

2.7. Enrichment Analyses

To help interpret the gene importance scores and functionality of identified SPGs,
we conducted Gene Ontology overrepresentation analysis on spatially predictive features
(SPGs) using the biological process gene sets annotated in Gene Ontology (GO) with a
Benjamini–Hochberg corrected p-value < 0.05. A similar procedure was performed using
molecular-function gene sets to compare cluster markers and biological-process gene sets
to compare SPGs and SVGs.
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3. Results
3.1. Design of the Spatially Informed Artificial Intelligence (SPIN-AI) Platform

The underlying hypothesis for the design of SPIN-AI is that there exists a certain
class of genes, namely spatially predictive genes (SPGs), whose collective expression
activities encode information dictating the spatial distribution of cells in a given cellular
niche. This is unlike spatially variable genes (SVGs), which show differential expression
across space; SPGs themselves may not show considerable spatial variation, i.e., they can
express throughout cellular niches, but their collective expression profiles encode spatial
positioning. SPGs may also include SVGs and, hence, capture a broader set of genes than
SVGs [19].

Here, we designed SPIN-AI using a dense, feedforward deep neural network as a
computational framework for learning SPGs (Figure 1). As neural networks can accurately
model linear and non-linear systems, we reason that neural networks can learn SPGs via
a supervised learning process [28]. SPIN-AI takes gene expression per spot as an input
and is then trained to predict the x and y spatial coordinates of a spatial transcriptomic
slide. The learning rate hyperparameter and the number of hidden layers were tuned per
patient, as described in the methods. To assess model performance, spots were randomized
to different folds for 10-fold cross-validation. Test fold predictions were then aggregated for
model evaluation and used to create a predicted spatial distribution. The contribution of
each gene’s expression for predicting the spatial distribution of spots was scored according
to feature importance and used to derive SPGs (Figure S2).

3.2. Trained SPIN-AI Models Can Predict Spatial Organization of Spots on Slide Per Patient

We tested our modeling approach on a dataset of four squamous cell carcinoma
patients from Ji et al. [22] Each patient had three 10× Visium spatial transcriptomic slides
taken from their tumors. SPIN-AI models were trained and fine-tuned with respect to
each patient and slide, as the best model structure may vary. The best models across all
slides for Patients 2, 5, and 10 were the models with five hidden layers and a learning rate
of 0.001. The best model across all slides for Patient 9, was a model with three hidden
layers and a learning rate of 0.001. We tested the performance of these models for their
capability to predict spots in their respective locations on a slide per patient. The predicted
x and y coordinates for a given spot are assessed according to its actual x and y coordinates
using the mean distance error (MDE). Figure 2 shows that our trained models performed
reasonably well in predicting the x and y coordinates of spots on a slide, except for in
Patient 9, who showed a poorer performance than the others due to an increased presence
of migratory immune cells (T-cells, macrophages, dendritic cells). In addition, the models
also showed consistent performance for all three slides per patient, further indicating the
models’ ability to capture biological signals (Figure S5). The capability of trained SPIN-AI
models to predict spot locations on a slide-per-patient basis indicates that these models have
learned gene expression patterns that encode the spatial locations of cellular distributions.

3.3. SPIN-AI Recovers the Spatial Distribution of Gene Expression Clusters

Next, we investigated whether our model could recover the spatial distribution of
gene expression clusters as identified using spatial transcriptomics by Ji et al. [22] The total
number of gene expression clusters varied among patients (Patient 2, n = 11; Patient 5, n = 7;
Patient 9, n = 11; Patient 10, n = 6). We used the gene cluster membership to color the spatial
spots. The upper panels of Figure 3 and Figure S6 show the actual spatial distribution of
spatial spots in tumor slides while the lower panels show their SPIN-AI predicted spatial
locations. Our results show SPIN-AI models recover the relative spatial positions of gene
expression clusters across slides in each patient, indicating that our models have learned
underlying biological signals from the data. Thus, our study illustrated the capability of
SPIN-AI models to pick up meaningful spatially distributed gene activities represented as
distinct expression clusters.
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Figure 2. SPIN-AI Model performance for all patients and slides. Spatial transcriptomic spots
are arranged in their original positions and colored according to the distance from their predicted
locations to their actual locations. The MDE, averaged across CV folds (CV-MDE), is shown in the top
left corner. The model’s performance was evaluated using the best hyperparameter combination per
patient. For Patients 2, 5, and 10, the best models were those with five hidden layers and a learning
rate of 0.001. For Patient 9, the best model was the model with three hidden layers and a learning
rate of 0.001. Spots are approximately two coordinate units apart.

3.4. SPIN-AI Identifies SPGs

We then sought to identify spatially predictive genes (SPGs) whose expression can
predict the location of spots on a slide per patient. The procedure for finding SPGs is
summarized in Figure S2. Briefly, we used DeepLift to compute gene importance scores,
measuring how strongly a gene expression feature contributed to a spot’s prediction. We
then averaged individual importance scores across spots in a slide and across slides to
achieve an aggregate view of how each gene contributed to the reconstruction of the spatial
distribution of the whole tissue sample. SPGs for each patient are listed in Table S2.
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Figure 3. SPIN-AI encodes spatial gene expression cluster information. Actual (upper panel) vs.
predicted (lower panel) x and y coordinates of gene expression cluster with respect to each spatial
transcriptomic spot on a slide for Patient 2. Spots are colored according to cluster membership as
described in Ji et al. [22] See Figure S6 for spatial distribution of gene expression clusters with respect
to Patients 5, 9, and 10.

We first identified genes with high CSMI scores but also included genes that passed
CSMNI and CSPNI criteria. An inspection of CSMI and average expression scores (Figure S3A)
showed a non-linear relationship, suggesting that CSMI is biased towards genes that are
highly expressed. In turn, genes with larger expressions also possessed more information
for encoding spatial representation of cells. Conversely, genes with lower mean expressions
also showed spatial expression patterns, and we reason that CSMNI and CSPNI scores
aid with the detection of these genes. Figure S3B demonstrates that CSMI underweights
genes that have strong importance scores, but only in a limited number of spots. Thus, the
inclusion criteria for SPGs use CSMNI and CSPNI to include genes whose contribution is
strong and in a reasonably sized subset of spots.

3.5. SPGs Recapitulate the Biology of Squamous Carcinoma and Its Cellular Microenvironment

Figure 4A illustrates the top SPGs (a union of the top 15 SPGs) across each patient
ranked by their cross-slide mean non-zero importance, i.e., CSMNI scores. Our results
show that these top 15 SPGs are robust across four individual squamous cell carcinoma
patients, i.e., most of these SPGs show consistently high importance scores across patients.
A substantial number of keratin genes (KRT5, KRT6A, KRT6B, KRT6C, etc.) appeared as top
SPGs, indicating their roles in forming the cellular matrices that shape the organization of
cells in space. Actin-β (ACTB) and matrix metallopeptidase 1 (MMP1) are also found as top
SPGs. The finding of keratin genes, ACTB, and MMP1 as SPGs is not surprising, as they have
been known to be involved in cellular organization functions, particularly in squamous
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cell carcinoma [29,30]. This indicates that our trained SPIN-AI models indeed captured
meaningful gene activities that encode cellular organization in local niches. However,
the finding of mitochondrial-encoded genes (MT-CO1, MT-CO2, and MT-CO3), which are
pertinent to cytochrome-c oxidase activities, and solute carriers (S100A7, S100A8, S100A9,
etc.) as top SPGs is unexpected. This indicates unknown spatial-encoding properties of
these genes, at least in the case of squamous cell carcinoma, in addition to their known
biological functions.
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Figure 4. Top spatially predictive genes and their enriched biological functions. (A) Heatmap
showing the union of the top 15 SPGs ranked by CSMNI (cross-slide mean non-zero importance)
score per patient (n = 31 genes after merging). Heatmap is colored according to log (CSMNI score).
(B) Heatmap showing union of the top 15 enriched Gene Ontology biological processes of SPGs per
patient. Heatmap is colored according to −log10 (adjusted p-value).

Figure 4B shows the top enriched Gene Ontology biological processes of the SPGs
per patient. We show enriched biological processes pertinent to the skin cancer microenvi-
ronment, such as the skin’s development of keratinocyte differentiation and an immune
response. Our results suggest that SPGs play a role in shaping the microenvironment of
squamous cell carcinoma [31–33]. Complete enrichment results are listed in Table S3.

Next, we analyzed which SPGs serve as effective tumor markers for different spatial
clusters based on their contribution scores (Figure S7, Table S4). We used the tumor-specific
keratinocyte (TSK) gene signature derived by Ji et al. [22] and a single-cell RNA-seq to
derive the tumor TSK score and further pinpoint the key genes in each cluster. The clusters
were annotated with a tumor score, indicating which cluster is enriched for tumor-specific
keratinocytes. Few SPGs were commonly shared as cluster markers for the TSK-enriched
clusters across the four patients. Patients 2 and 5 shared MMP1, ACTB, and TGFB1 while
Patients 9 and 10 shared COL1A1, COL1A2, HLA-A, and HLA-B. These findings recapitulate
the importance of matrix remodeling and immune processes in the development of the
squamous cell carcinoma tumor microenvironment while highlighting how these processes
uniquely reflect the spatial organization of different patient’s tumors.

Since Cluster 10 is the most enriched for TSKs in Patient 2, for illustrative purposes,
we performed enrichment analyses to determine whether the enriched processes being
retrieved from importance scores or gene expression values was pertinent to the biology of
squamous cell carcinoma (Table S5). Figure 5A,B show the molecular functions enriched by
the importance scores of tumor marker genes compared against those enriched by the gene’s
expression scores. We enriched the molecular functions to examine the specific biochemical
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roles of our marker genes. Enrichment by both importance scores and expression values
revealed the involvement of processes such as extracellular matrix binding and structure,
cytoskeletal structure, and growth factor binding, which are pertinent to squamous cell
carcinoma progression. Further, nitric oxide synthase binding was also enriched, and the
role of nitric oxide in the progression of squamous cell carcinoma has been reported [34,35].
Our results show that gene importance scores, which measure a gene’s spatial predictive
power, do indeed capture meaningful biological information.

3.6. SPGs Discover Unique Biology

Next, we investigated the overlap between SPGs and SVGs. Figure 6A shows the
number of genes that possess spatially predictive and spatially variable properties across
four patients. Our results indicate that most genes are neither spatially predictive nor
spatially variable (upper left box of Figure 6A). Genes with spatially predictive properties,
i.e., SPGs, are those in the lower left and lower right boxes of Figure 6A. Likewise, genes
that show spatial variable gene expression, i.e., SVGs, are those in the lower right and
upper right boxes of Figure 6A. Genes that are both SPGs and SVGs are located in the lower
right boxes of Figure 6A. Our results show that many SPGs are distinct from SVGs, whose
expression does not exhibit spatial variability (upper right boxes in Figure 6A), particularly
those of Patients 5, 9, and 10. While the heatmap in Figure 6B shows that a large proportion
of high CSMNI scoring genes are SVGs, Figure 6A shows that many SVGs are not SPGs in
Patients 2 and 10. These results indicate that SPGs are a distinct but overlapping class of
genes compared to SVGs.

Since previous analyses showed that a substantial number of the top-ranked SPGs
comprise keratin, solute carriers, and mitochondrial-encoded genes (Figure 4A), we sought
to investigate how these SPGs are distributed as SVGs and non-SVGs. Intriguingly, a
substantial number of SPGs are ribosomal genes (>10 genes, SVG and non-SVG, per patient),
many of which are non-SVGs (Figure S8A). In Figure S8B, we illustrate two examples of
ribosomal genes that are SPGs, one for which expression is invariable across the slide
(RPLP2) and another that is spatially differentially expressed (RPS12), as an illustrative
example using Patient 10. On the other hand, keratin, solute carriers, and mitochondrial
genes have more equal blends of SVGs and non-SVGs. We then performed a GO-enrichment
analysis to understand what biological processes are enriched by the unique SPGs and SVGs
(SPG-only and SVG-only genes, respectively, Table S6). Unique SPGs were unexpectedly
enriched in their ribosomal functions across all four patients (Figure 6C). Although altered
ribosome biogenesis is known to play a pivotal role in tumorigenesis [36,37] and ribosome
composition can fluctuate to regulate protein synthesis for specialized functions [38,39],
the spatial modulatory roles of ribosomal genes in determining the properties of the tumor
microenvironment are presently not known. Recent evidence suggesting the tissue-specific
expression of ribosomal genes [40], stoichiometric regulation of ribosomal proteins [41],
and context-dependent specialization of ribosomal activities [42] may explain the spatial-
regulatory roles of ribosomal genes. As ribosome assembly exhibits context-dependency
and ribosomal genes tend to be SPGs and not SVGs, our results suggest that the interaction
between ribosomal genes contributes to the determination of the spatial architecture of
squamous cell carcinoma.

In the cases of Patients 5 and 9, antigen-processing functions were also enriched
alongside ribosomal processes (Figure 6C), matching the patterns in Figure 4B in which
cytoplasmic translation was enriched by SPGs across all patients while antigen processing
was primarily enriched in Patients 5 and 9, suggesting that these two patients’ tumors had
unique immune profiles. Unique SVGs were primarily enriched in skin differentiation and
peptidase activity regulation, which were common functions of many SPGs (Figure 4B).
Taken together, our results suggest that not only do SPGs capture similar information to
SVGs, but they can also capture unique biological contributors to spatial architecture.
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Figure 5. Comparison of GO terms detected by gene importance score and expression for the
top tumor specific keratinocyte (TSK) cluster in Patient 2. (A) Top five GO molecular functions
enriched by importance and expression markers. The expression markers overlap with importance
markers in enriched terms. Asterisks (*) denote that this term was one of the top five enriched terms
for the respective marker set. (B) All molecular functions enriched by importance markers. Terms
colored black are also enriched by expression markers and terms colored red are uniquely enriched
by importance markers. (C) Venn diagram comparing the number of marker genes by expression
and importance. (D) Venn diagram comparing the number of GO molecular functions enriched by
expression and importance markers. Count refers to the number of genes from the input gene list
associated with the term. Gene ratio is defined as the percentage of input genes associated with an
ontology term.
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Figure 6. Identity comparisons between spatially predictive genes (SPGs) and spatially variable
genes (SVGs). (A) Number and distribution of SPGs and SVGs across all four patients. (B) Fraction
of genes within gene importance bins that are SVGs. (C). Union of the top five most significant GO
biological processes enriched by unique SPGs and SVGs in each patient. Unique SPGs are SPGs
that are not SVGs, and unique SVGs are SVGs that are not SPGs. Gene ratio is the proportion of
SPGs/SVGs associated with a biological process. For Patient 9, unique SVGs were not enriched in
any biological processes. Asterisks (*) denote that this term was one of the top five enriched terms for
the respective marker set.
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4. Discussion

Technological advances in spatially resolved expression profiling [13] via imaging mass
cytometry [43,44], multiplexed ion beam imaging [45], and spatial transcriptomics have
opened new avenues for understanding spatial cellular distribution. Such data resolutions
allow for the deeper exploration of genes and the associated molecular processes that
modulate spatial architecture and cell–cell communication [46].

A number of computational approaches have been developed in recent years to
integrate single-cell and spatial transcriptomic data [47]. This includes methods such as
Seurat [23], SpaGE [48], and LIGER [49]. Beyond data integration, additional computational
methods such as trendsceek [18], SpatialDE [19], SPARK [20], and SOMDE [21] have
been developed to identify spatially variable genes (SVGs), whose expression patterns
are statistically distinct in space. The detection of SVGs is, in principle, similar to the
identification of differentially expressed genes in bulk RNA-seq (DEGs). Like DEGs, which
reveal which genes and associated pathways are activated or inactivated in comparison to
a particular biological state, SVGs can inform on genes and corresponding pathways that
show spatial activity variations in a tissue or cellular microenvironment.

Another line of effort focuses on building computational methods for reconstructing
cellular spatial organization using only single-cell transcriptomic data as an input [50].
These methods rely on certain educated assumptions, such as physically adjacent cells
tending to share similar gene expression profiles [17] and cellular spatial organization being
in part able to be recapitulated by local ligand–receptor interaction profiles [51]. Although
these assumptions have advantages, they do not fully answer “how cells know where they
are” [52]. Nevertheless, these methods show that single-cell transcriptomic data indeed
encode information about the spatial organization of cells in a biological niche.

Based on these observations, we therefore hypothesize that expression profiles of
certain genes carry information regarding the spatial organization of cells within tissues.
We termed such genes as spatially predictive genes (SPGs). However, unlike SVGs, SPGs do
not necessarily show expression variations in space, i.e., the expression of some SPGs can
be broadly distributed across regions in cellular niches and do not necessarily show similar
expression in adjacent cells. Rather, SPGs demonstrate predictive power in predicting
spatial locations.

We therefore sought to devise a totally unbiased strategy, i.e., without pre-defined as-
sumptions on spatial differential expression, for detecting SPGs using artificial intelligence
(AI) methods, particularly deep learning approaches. A number of artificial intelligence (AI)
methods involving deep learning have been applied to spatial transcriptomic data [53], in-
cluding SVG detection [21,54], cluster analysis [55–57], cell communication analysis [58,59],
and data imputation [60–63]. However, to our knowledge, no AI method has yet been
developed to detect SPGs.

In this work, we developed Spatially Informed AI (SPIN-AI), an AI platform consisting
of a deep, feedforward neural network that aims to predict the spatial locations, i.e., the x
and y coordinates, of a spot derived from 2D images of single-cell transcriptomic slides.
As deep neural networks possess the capability to detect nonlinear interactions between
input features, we reasoned that deep neural networks can better capture cooperative
signals from gene activities that relate to spatial location than conventional SVG detection
methods that test a single gene at a time. The ability of trained deep learning models to
predict the location of spatial transcriptomics would indicate that the model has learned
the identity of genes whose expression profiles are predictive of cell organization in space.
Here, we used spatial transcriptomic data obtained from squamous cell carcinoma [22] as a
proof-of-concept study. In particular, we devised gene importance scores to capture the
overall importance of a gene in predicting spatial locations of all spots in a slide image and
derived SPG candidates from these importance scores.

We showed that our trained deep learning model could predict spot locations in all
three slides for each patient, indicating that the model indeed captures gene expression
signals that are spatially predictive (Figures 2 and 3). We demonstrated that top-scored
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SPGs recapitulated the biology of squamous cell carcinoma, including in skin development
and humoral immune responses (Figures 4 and 5). Our results suggest that genes that play
important roles in tumorigenesis are not just involved in disease etiology but also play
key roles in remodeling the cellular niche and determining spatial cellular organization.
Next, we illustrated that SPGs are indeed a new class of genes that are distinct from SVGs
(Figure 6). In particular, we found a substantial number of ribosomal genes were SPGs,
whose expression profiles predicted spot location but were not differentially expressed in
space (i.e., not spatially variable). The discovery of ribosomal genes acting as SPGs was
unexpected; although they are known to play key roles in regulating protein synthesis in
tumor cells [64,65], their spatial-regulating roles in shaping cell organization in a disease
niche are not yet known.

While SPIN-AI can detect biologically informative SPGs, this pipeline can be improved
in several ways to help with the identification of SPGs. The CSMI threshold for determining
SPGs could be identified through a more data-driven process, and further exploration of
how threshold choice influences SPG identification is needed. The threshold is currently
programmed as a user-defined parameter to allow users to adjust it to their needs. Addi-
tionally, the use of importance scores in determining SPGs could be bypassed via feature
selection schemes, such as recursive feature elimination or relief feature selection. By
determining a smaller set of features that maintain or improve model performance, these
features may comprise a better-defined set of SPGs than those selected based on importance
scores. However, the lack of a ground-truth set of SPGs makes this comparison difficult.

Nevertheless, we have shown that SPIN-AI is an AI platform capable of detecting
SPGs that can be applied to a variety of biological conditions. We also anticipate that
the identification of SPGs could shed new light on spatial analyses and deepen our un-
derstanding of how the activities of genes determine cell organization and shape their
microenvironment to sustain cellular phenotypes in diseased tissue.
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//www.mdpi.com/article/10.3390/biom13060895/s1. Figure S1. Flowchart outlining key analysis
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(SPGs) in a single patient. Figure S3. SPIN-AI importance scores. Figure S4. Comparing mean
versus median for importance scoring. Figure S5. SPIN-AI cross-slide predictive performance.
Figure S6. Spatial distribution of gene expression clusters for Patients 5, 9, and 10. Figure S7. SPG
markers and tumor scores in each patient. Figure S8. Distribution of SPG genes per gene category.
Table S1. Brief description of which R and Python packages were used in this study. Table S2. SPIN-AI
gene annotations per patient. Genes are annotated according to whether they are SPGs and according
to their spatial variability, as determined using SpatialDE. Genes are annotated with CSMI, CSMNI,
and CSPNI as well as q-values, computed using SpatialDE. Table S3. GO-enrichment analysis
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four patients.
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