Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection
Abstract
:1. Introduction
2. Targeting Cell Wall Biopolymers
2.1. Mycolic Acids Biosynthesis
2.2. Arabinogalactan (AG) Biosynthesis
2.3. Peptidoglycan Layer
3. Lipoarabinomannan (LAM) Biosynthesis
4. Targeting the Secretory Systems
4.1. Sec Export Pathway
4.2. ESX Export Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Randall, P.J.; Hsu, N.-J.; Quesniaux, V.; Ryffel, B.; Jacobs, M. Mycobacterium Tuberculosis Infection of the ‘Non-Classical Immune Cell. Immunol. Cell Biol. 2015, 93, 789–795. [Google Scholar] [CrossRef]
- Sia, J.K.; Rengarajan, J. Immunology of Mycobacterium Tuberculosis Infections. Microbiol. Spectr. 2019, 7, 6. Available online: https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247(22)00359-7/fulltext (accessed on 4 February 2023).
- WHO’s Global Tuberculosis Report 2022—The Lancet Microbe. Available online: https://www.thelancet.com/journals/lanmic/article/PIIS2666-5247 (accessed on 28 April 2023).
- Chai, Q.; Zhang, Y.; Liu, C.H. Mycobacterium Tuberculosis: An Adaptable Pathogen Associated With Multiple Human Diseases. Front. Cell. Infect. Microbiol. 2018, 8, 158. [Google Scholar] [CrossRef] [PubMed]
- Miggiano, R.; Rizzi, M.; Ferraris, D.M. Mycobacterium Tuberculosis Pathogenesis, Infection Prevention and Treatment. Pathogens 2020, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Barliana, M.I.; Afifah, N.N.; Yunivita, V.; Ruslami, R. Genetic polymorphism related to ethambutol outcomes and susceptibility to toxicity. Front. Genet. 2023, 14. [Google Scholar] [CrossRef] [PubMed]
- Goulding, C.W.; Perry, L.J.; Anderson, D.; Sawaya, M.R.; Cascio, D.; Apostol, M.I.; Chan, S.; Parseghian, A.; Wang, S.-S.; Wu, Y.; et al. Structural Genomics of Mycobacterium Tuberculosis: A Preliminary Report of Progress at UCLA. Biophys. Chem. 2003, 105, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Ocampo, M.; Patarroyo, M.A.; Vanegas, M.; Alba, M.P.; Patarroyo, M.E. Functional, Biochemical and 3D Studies of Mycobacterium Tuberculosis Protein Peptides for an Effective Anti-Tuberculosis Vaccine. Crit. Rev. Microbiol. 2014, 40, 117–145. [Google Scholar] [CrossRef] [PubMed]
- Truong, T.; Penn, B.H. An M. Tuberculosis Metabolic Enzyme Moonlights as an Anti-Inflammatory Effector Protein. Cell Host Microbe 2020, 27, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Grundner, C.; Ng, H.-L.; Alber, T. Mycobacterium Tuberculosis Protein Tyrosine Phosphatase PtpB Structure Reveals a Diverged Fold and a Buried Active Site. Structure 2005, 13, 1625–1634. [Google Scholar] [CrossRef] [Green Version]
- Kalscheuer, R.; Palacios, A.; Anso, I.; Cifuente, J.; Anguita, J.; Jacobs, W.R.; Guerin, M.E.; Prados-Rosales, R. The Mycobacterium Tuberculosis Capsule: A Cell Structure with Key Implications in Pathogenesis. Biochem. J. 2019, 476, 1995–2016. [Google Scholar] [CrossRef]
- Dulberger, C.L.; Rubin, E.J.; Boutte, C.C. The Mycobacterial Cell Envelope—A Moving Target. Nat. Rev. Microbiol. 2020, 18, 47–59. [Google Scholar] [CrossRef]
- Backus, K.M.; Dolan, M.A.; Barry, C.S.; Joe, M.; McPhie, P.; Boshoff, H.I.M.; Lowary, T.L.; Davis, B.G.; Barry, C.E. The Three Mycobacterium Tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-Active Site Regions. J. Biol. Chem. 2014, 289, 25041–25053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savintseva, L.A.; Steshin, I.S.; Avdoshin, A.A.; Panteleev, S.V.; Rozhkov, A.V.; Shirokova, E.A.; Livshits, G.D.; Vasyankin, A.V.; Radchenko, E.V.; Ignatov, S.K.; et al. Conformational Dynamics and Stability of Bilayers Formed by Mycolic Acids from the Mycobacterium Tuberculosis Outer Membrane. Molecules 2023, 28, 1347. [Google Scholar] [CrossRef] [PubMed]
- Alcaraz, M.; Sharma, B.; Roquet-Banères, F.; Conde, C.; Cochard, T.; Biet, F.; Kumar, V.; Kremer, L. Designing Quinoline-Isoniazid Hybrids as Potent Anti-Tubercular Agents Inhibiting Mycolic Acid Biosynthesis. Eur. J. Med. Chem. 2022, 239, 114531. [Google Scholar] [CrossRef] [PubMed]
- Kumar, G.; Kapoor, S. Targeting Mycobacterial Membranes and Membrane Proteins: Progress and Limitations. Bioorg. Med. Chem. 2023, 81, 117212. [Google Scholar] [CrossRef]
- Modak, B.; Girkar, S.; Narayan, R.; Kapoor, S. Mycobacterial Membranes as Actionable Targets for Lipid-Centric Therapy in Tuberculosis. J. Med. Chem. 2022, 65, 3046–3065. [Google Scholar] [CrossRef]
- Kumar, P.; Capodagli, G.C.; Awasthi, D.; Shrestha, R.; Maharaja, K.; Sukheja, P.; Li, S.-G.; Inoyama, D.; Zimmerman, M.; Ho Liang, H.P.; et al. Synergistic Lethality of a Binary Inhibitor of Mycobacterium Tuberculosis KasA. mBio 2018, 9, e02101-17. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, D.; Joji, A.; Vijayakumar, B.G.; Sethumadhavan, A.; Mani, M.; Kannan, T. Indole Chalcones: Design, Synthesis, in Vitro and in Silico Evaluation against Mycobacterium Tuberculosis. Eur. J. Med. Chem. 2020, 198, 112358. [Google Scholar] [CrossRef]
- Vannelli, T.A.; Dykman, A.; Montellano, P.R.O.d. The Antituberculosis Drug Ethionamide Is Activated by a Flavoprotein Monooxygenase. J. Biol. Chem. 2002, 277, 12824–12829. [Google Scholar] [CrossRef] [Green Version]
- Millard, J.; Rimmer, S.; Nimmo, C.; O’donnell, M. Therapeutic Failure and Acquired Bedaquiline and Delamanid Resistance in Treatment of Drug-Resistant TB. Emerg. Infect. Dis. 2023, 29, 1081–1084. [Google Scholar] [CrossRef]
- Molecular Characterization of Prothionamide-Resistant Mycobacterium Tuberculosis Isolates in Southern China—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29250048/ (accessed on 9 May 2023).
- Alzain, A.A.; Makki, A.A.; Ibraheem, W. Insights into the Inhibition of Mycolic Acid Synthesis by Cytosporone E Derivatives for Tuberculosis Treatment Via an In Silico Multi-Target Approach. Chem. Afr. 2023, 1–21. [Google Scholar] [CrossRef]
- Al-Mutairi, N.M.; Ahmad, S.; Mokaddas, E.M. Molecular Characterization of Multidrug-Resistant Mycobacterium Tuberculosis (MDR-TB) Isolates Identifies Local Transmission of Infection in Kuwait, a Country with a Low Incidence of TB and MDR-TB. Eur. J. Med. Res. 2019, 24, 38. [Google Scholar] [CrossRef] [PubMed]
- Abrahams, K.A.; Chung, C.; Ghidelli-Disse, S.; Rullas, J.; Rebollo-López, M.J.; Gurcha, S.S.; Cox, J.A.G.; Mendoza, A.; Jiménez-Navarro, E.; Martínez-Martínez, M.S.; et al. Identification of KasA as the Cellular Target of an Anti-Tubercular Scaffold. Nat. Commun. 2016, 7, 12581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Wang, J.; Li, F.; Zhu, B. Polysaccharides and Glycolipids of Mycobacterium Tuberculosis and Their Induced Immune Responses. Scand. J. Immunol. 2023, 97, e13261. [Google Scholar] [CrossRef]
- Escuyer, V.E.; Lety, M.-A.; Torrelles, J.B.; Khoo, K.-H.; Tang, J.-B.; Rithner, C.D.; Frehel, C.; McNeil, M.R.; Brennan, P.J.; Chatterjee, D. The Role of the EmbA and EmbB Gene Products in the Biosynthesis of the Terminal Hexaarabinofuranosyl Motif of Mycobacterium SmegmatisArabinogalactan. J. Biol. Chem. 2001, 276, 48854–48862. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhao, Y.; Gao, Y.; Wu, L.; Gao, R.; Zhang, Q.; Wang, Y.; Wu, C.; Wu, F.; Gurcha, S.S.; et al. Structures of Cell Wall Arabinosyltransferases with the Anti-Tuberculosis Drug Ethambutol. Science 2020, 368, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, Y.; Gao, R.; Li, J.; Yang, X.; Gao, Y.; Zhao, W.; Gurcha, S.S.; Veerapen, N.; Batt, S.M.; et al. Cryo-EM Snapshots of Mycobacterial Arabinosyltransferase Complex EmbB2-AcpM2. Protein Cell 2020, 11, 505–517. [Google Scholar] [CrossRef]
- Cui, Z.; Li, Y.; Cheng, S.; Yang, H.; Lu, J.; Hu, Z.; Ge, B. Mutations in the EmbC-EmbA Intergenic Region Contribute to Mycobacterium Tuberculosis Resistance to Ethambutol. Antimicrob. Agents Chemother. 2014, 58, 6837–6843. [Google Scholar] [CrossRef] [Green Version]
- Goude, R.; Amin, A.G.; Chatterjee, D.; Parish, T. The Arabinosyltransferase EmbC Is Inhibited by Ethambutol in Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2009, 53, 4138–4146. [Google Scholar] [CrossRef] [Green Version]
- Ishizaki, Y.; Takahashi, Y.; Kimura, T.; Inoue, M.; Hayashi, C.; Igarashi, M. Synthesis and Biological Activity of Analogs of CPZEN-45, a Novel Antituberculosis Drug. J. Antibiot. 2019, 72, 970–980. [Google Scholar] [CrossRef]
- Poulton, N.C.; Azadian, Z.A.; DeJesus, M.A.; Rock, J.M. Mutations in Rv0678 Confer Low-Level Resistance to Benzothiazinone DprE1 Inhibitors in Mycobacterium Tuberculosis. Antimicrob. Agents Chemother. 2022, 66, e00904-22. [Google Scholar] [CrossRef]
- Mitachi, K.; Siricilla, S.; Yang, D.; Kong, Y.; Skorupinska-Tudek, K.; Swiezewska, E.; Franzblau, S.G.; Kurosu, M. Fluorescence-Based Assay for Polyprenyl Phosphate-GlcNAc-1-Phosphate Transferase (WecA) and Identification of Novel Antimycobacterial WecA Inhibitors. Anal. Biochem. 2016, 512, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Moraes, G.L.; Gomes, G.C.; Monteiro de Sousa, P.R.; Alves, C.N.; Govender, T.; Kruger, H.G.; Maguire, G.E.M.; Lamichhane, G.; Lameira, J. Structural and Functional Features of Enzymes of Mycobacterium Tuberculosis Peptidoglycan Biosynthesis as Targets for Drug Development. Tuberc. Edinb. Scotl. 2015, 95, 95–111. [Google Scholar] [CrossRef] [Green Version]
- Chamaillard, M.; Hashimoto, M.; Horie, Y.; Masumoto, J.; Qiu, S.; Saab, L.; Ogura, Y.; Kawasaki, A.; Fukase, K.; Kusumoto, S.; et al. An Essential Role for NOD1 in Host Recognition of Bacterial Peptidoglycan Containing Diaminopimelic Acid. Nat. Immunol. 2003, 4, 702–707. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.J.; Reyes, C.N.; Liang, W.; Becker, C.; Shimada, K.; Wheeler, M.L.; Cho, H.C.; Popescu, N.I.; Coggeshall, K.M.; Arditi, M.; et al. Hexokinase Is an Innate Immune Receptor for the Detection of Bacterial Peptidoglycan. Cell 2016, 166, 624–636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortune, S.M.; Solache, A.; Jaeger, A.; Hill, P.J.; Belisle, J.T.; Bloom, B.R.; Rubin, E.J.; Ernst, J.D. Mycobacterium Tuberculosis Inhibits Macrophage Responses to IFN-γ through Myeloid Differentiation Factor 88-Dependent and -Independent Mechanisms1. J. Immunol. 2004, 172, 6272–6280. [Google Scholar] [CrossRef] [Green Version]
- Martinic, M.M.; Caminschi, I.; O’Keeffe, M.; Thinnes, T.C.; Grumont, R.; Gerondakis, S.; McKay, D.B.; Nemazee, D.; Gavin, A.L. The Bacterial Peptidoglycan-Sensing Molecules NOD1 and NOD2 Promote CD8+ Thymocyte Selection. J. Immunol. Baltim. Md 1950 2017, 198, 2649–2660. [Google Scholar] [CrossRef] [Green Version]
- LeMagueres, P.; Im, H.; Ebalunode, J.; Strych, U.; Benedik, M.J.; Briggs, J.M.; Kohn, H.; Krause, K.L. The 1.9 A Crystal Structure of Alanine Racemase from Mycobacterium Tuberculosis Contains a Conserved Entryway into the Active Site. Biochemistry 2005, 44, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Mdluli, K.; Spigelman, M. Novel Targets for Tuberculosis Drug Discovery. Curr. Opin. Pharmacol. 2006, 6, 459–467. [Google Scholar] [CrossRef]
- Bruning, J.B.; Murillo, A.C.; Chacon, O.; Barletta, R.G.; Sacchettini, J.C. Structure of the Mycobacterium Tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug d-Cycloserine. Antimicrob. Agents Chemother. 2011, 55, 291–301. [Google Scholar] [CrossRef] [Green Version]
- Batson, S.; de Chiara, C.; Majce, V.; Lloyd, A.J.; Gobec, S.; Rea, D.; Fülöp, V.; Thoroughgood, C.W.; Simmons, K.J.; Dowson, C.G.; et al. Inhibition of D-Ala:D-Ala Ligase through a Phosphorylated Form of the Antibiotic D-Cycloserine. Nat. Commun. 2017, 8, 1939. [Google Scholar] [CrossRef] [Green Version]
- Prosser, G.A.; de Carvalho, L.P.S. Kinetic Mechanism and Inhibition of Mycobacterium Tuberculosis D-Alanine:D-Alanine Ligase by the Antibiotic D-Cycloserine. FEBS J. 2013, 280, 1150–1166. [Google Scholar] [CrossRef] [PubMed]
- Eniyan, K.; Rani, J.; Ramachandran, S.; Bhat, R.; Khan, I.A.; Bajpai, U. Screening of Antitubercular Compound Library Identifies Inhibitors of Mur Enzymes in Mycobacterium Tuberculosis. SLAS Discov. Adv. Life Sci. R D 2020, 25, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Rani, J.; Silla, Y.; Borah, K.; Ramachandran, S.; Bajpai, U. Repurposing of FDA-Approved Drugs to Target MurB and MurE Enzymes in Mycobacterium Tuberculosis. J. Biomol. Struct. Dyn. 2020, 38, 2521–2532. [Google Scholar] [CrossRef] [PubMed]
- Shinde, Y.; Ahmad, I.; Surana, S.; Patel, H. The Mur Enzymes Chink in the Armour of Mycobacterium Tuberculosis Cell Wall. Eur. J. Med. Chem. 2021, 222, 113568. [Google Scholar] [CrossRef]
- Isa, M.A. Homology Modeling and Molecular Dynamic Simulation of UDP-N-Acetylmuramoyl-l-Alanine-d-Glutamate Ligase (MurD) from Mycobacterium Tuberculosis H37Rv Using in Silico Approach. Comput. Biol. Chem. 2019, 78, 116–126. [Google Scholar] [CrossRef]
- Ghazaei, C. Mycobacterium Tuberculosis and Lipids: Insights into Molecular Mechanisms from Persistence to Virulence. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2018, 23, 63. [Google Scholar] [CrossRef]
- Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence | Nature. Available online: https://www.nature.com/articles/31159 (accessed on 21 March 2023).
- Gilleron, M.; Nigou, J.; Nicolle, D.; Quesniaux, V.; Puzo, G. The Acylation State of Mycobacterial Lipomannans Modulates Innate Immunity Response through Toll-like Receptor 2. Chem. Biol. 2006, 13, 39–47. [Google Scholar] [CrossRef]
- Zhou, K.-L.; Li, X.; Zhang, X.-L.; Pan, Q. Mycobacterial Mannose-Capped Lipoarabinomannan: A Modulator Bridging Innate and Adaptive Immunity. Emerg. Microbes Infect. 2019, 8, 1168–1177. [Google Scholar] [CrossRef] [Green Version]
- Gazi, U.; Martinez-Pomares, L. Influence of the Mannose Receptor in Host Immune Responses. Immunobiology 2009, 214, 554–561. [Google Scholar] [CrossRef]
- Welin, A.; Winberg, M.E.; Abdalla, H.; Särndahl, E.; Rasmusson, B.; Stendahl, O.; Lerm, M. Incorporation of Mycobacterium Tuberculosis Lipoarabinomannan into Macrophage Membrane Rafts Is a Prerequisite for the Phagosomal Maturation Block. Infect. Immun. 2008, 76, 2882–2887. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, H.; Oshima, E.; Hotta, T.; Hanafusa, K.; Nakamura, K.; Yokoyama, N.; Ogawa, H.; Takamori, K.; Iwabuchi, K. Identification of Anti-Lipoarabinomannan Antibodies against Mannan Core and Their Effects on Phagocytosis of Mycobacteria by Human Neutrophils. Tuberculosis 2022, 132, 102165. [Google Scholar] [CrossRef] [PubMed]
- Almeida, P.E.; Pereira de Sousa, N.M.; Rampinelli, P.G.; Silva, R.V.d.S.; Correa, J.R.; D’Avila, H. Lipid Droplets as Multifunctional Organelles Related to the Mechanism of Evasion during Mycobacterial Infection. Front. Cell. Infect. Microbiol. 2023, 13, 150. [Google Scholar] [CrossRef] [PubMed]
- Taj, A.; Jia, L.; Sha, S.; Wang, C.; Ullah, H.; Haris, M.; Ma, X.; Ma, Y. Functional Analysis and Enzyme Characterization of Mannose-1-Phosphate Guanylyl Transferase (ManB) from Mycobacterium Tuberculosis. Res. Microbiol. 2022, 173, 103884. [Google Scholar] [CrossRef]
- Lowary, T.L.; Achkar, J.M. Tailor Made: New Insights into Lipoarabinomannan Structure May Improve TB Diagnosis. J. Biol. Chem. 2022, 298, 101678. [Google Scholar] [CrossRef] [PubMed]
- Cantera, J.L.; Lillis, L.M.; Peck, R.B.; Moreau, E.; Schouten, J.A.; Davis, P.; Drain, P.K.; Andama, A.; Pinter, A.; Kawasaki, M.; et al. Performance of Novel Antibodies for Lipoarabinomannan to Develop Diagnostic Tests for Mycobacterium Tuberculosis. PLoS ONE 2022, 17, e0274415. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274415 (accessed on 15 April 2023). [CrossRef]
- Pal, R.; Bisht, M.K.; Mukhopadhyay, S. Secretory Proteins of Mycobacterium Tuberculosis and Their Roles in Modulation of Host Immune Responses: Focus on Therapeutic Targets. FEBS J. 2022, 289, 4146–4171. [Google Scholar] [CrossRef]
- van Winden, V.J.C.; Houben, E.N.G.; Braunstein, M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol. Spectr. 2019, 7, 23. [Google Scholar] [CrossRef]
- Zulauf, K.E.; Sullivan, J.T.; Braunstein, M. The SecA2 Pathway of Mycobacterium Tuberculosis Exports Effectors That Work in Concert to Arrest Phagosome and Autophagosome Maturation. PLoS Pathog. 2018, 14, e1007011. [Google Scholar] [CrossRef]
- Cheng, Y.; Schorey, J.S. Mycobacterium Tuberculosis–Induced IFN-β Production Requires Cytosolic DNA and RNA Sensing Pathways. J. Exp. Med. 2018, 215, 2919–2935. Available online: https://rupress.org/jem/article/215/11/2919/120270/Mycobacterium-tuberculosis-induced-IFN-production (accessed on 27 April 2023). [CrossRef] [Green Version]
- Lochab, S.; Singh, Y.; Sengupta, S.; Nandicoori, V.K. Mycobacterium Tuberculosis Exploits Host ATM Kinase for Survival Advantage through SecA2 Secretome. eLife 2020, 9, e51466. [Google Scholar] [CrossRef]
- Cui, J.; Jin, J.; Hsieh, Y.-H.; Yang, H.; Ke, B.; Damera, K.; Tai, P.C.; Wang, B. Design, Synthesis and Biological Evaluation of Rose Bengal Analogues as SecA Inhibitors. ChemMedChem 2013, 8, 1384–1393. [Google Scholar] [CrossRef]
- Jin, J.; Chaudhary, A.; Hsieh, Y.-H.; Fante, B.; Wang, B.; Tai, P.C. Thiouracil SecA Inhibitors: Bypassing the Effects of Efflux Pumps and Attenuating Virulence Factor Secretion in MRSA and Bacillus Anthracis. Med. Chem. Res. 2021, 30, 1341–1347. [Google Scholar] [CrossRef]
- Khare, S.V.; Choudhari, S.P.; Phalle, S.P.; Kumbhar, S.S.; Choudhari, P.B.; Masal, S.R.; Patil, A.K.; Dhavale, R.P.; Bhagwat, D.A.; Kadam, A.M. Optimization of Thiazolidone Scaffolds Using Pocket Modeling for Development of Potential Secretory System Inhibitors of Mycobacterium Tuberculosis. Turk. J. Pharm. Sci. 2019, 16, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Drever, K.; Lim, Z.L.; Zriba, S.; Chen, J.M. Protein Synthesis and Degradation Inhibitors Potently Block Mycobacterium Tuberculosis Type-7 Secretion System ESX-1 Activity. ACS Infect. Dis. 2021, 7, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Meneghetti, F.; Barlocco, D. Special Issue “Novel Antibacterial Agents. ” Pharmaceuticals 2021, 14, 382. [Google Scholar] [CrossRef]
- Ho, V.Q.T.; Rong, M.K.; Habjan, E.; Bommer, S.D.; Pham, T.V.; Piersma, S.R.; Bitter, W.; Ruijter, E.; Speer, A. Dysregulation of Mycobacterium Marinum ESX-5 Secretion by Novel 1,2,4-Oxadiazoles. Biomolecules 2023, 13, 211. [Google Scholar] [CrossRef]
- Famelis, N.; Rivera-Calzada, A.; Degliesposti, G.; Wingender, M.; Mietrach, N.; Skehel, J.M.; Fernandez-Leiro, R.; Böttcher, B.; Schlosser, A.; Llorca, O.; et al. Architecture of the Mycobacterial Type VII Secretion System. Nature 2019, 576, 321–325. Available online: https://pubmed.ncbi.nlm.nih.gov/31597161/ (accessed on 27 February 2023).
- Izquierdo Lafuente, B.; Ummels, R.; Kuijl, C.; Bitter, W.; Speer, A. Mycobacterium Tuberculosis Toxin CpnT Is an ESX-5 Substrate and Requires Three Type VII Secretion Systems for Intracellular Secretion. mBio 2021, 12, e02983-20. [Google Scholar] [CrossRef]
- Fortune, S.M.; Jaeger, A.; Sarracino, D.A.; Chase, M.R.; Sassetti, C.M.; Sherman, D.R.; Bloom, B.R.; Rubin, E.J. Mutually Dependent Secretion of Proteins Required for Mycobacterial Virulence. Proc. Natl. Acad. Sci. USA 2005, 102, 10676–10681. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.; Manoranjan, J.; Pan, M.; Bohsali, A.; Xu, J.; Liu, J.; McDonald, K.L.; Szyk, A.; LaRonde-LeBlanc, N.; Gao, L.-Y. Evidence for Pore Formation in Host Cell Membranes by ESX-1-Secreted ESAT-6 and Its Role in Mycobacterium Marinum Escape from the Vacuole. Infect. Immun. 2008, 76, 5478–5487. [Google Scholar] [CrossRef] [Green Version]
- Ohol, Y.M.; Goetz, D.H.; Chan, K.; Shiloh, M.U.; Craik, C.S.; Cox, J.S. Mycobacterium Tuberculosis MycP1 Protease Plays a Dual Role in Regulation of ESX-1 Secretion and Virulence. Cell Host Microbe 2010, 7, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Tufariello, J.M.; Chapman, J.R.; Kerantzas, C.A.; Wong, K.-W.; Vilchèze, C.; Jones, C.M.; Cole, L.E.; Tinaztepe, E.; Thompson, V.; Fenyö, D.; et al. Separable Roles for Mycobacterium Tuberculosis ESX-3 Effectors in Iron Acquisition and Virulence. Proc. Natl. Acad. Sci. USA 2016, 113, E348–E357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shyam, M.; Shilkar, D.; Verma, H.; Dev, A.; Sinha, B.N.; Brucoli, F.; Bhakta, S.; Jayaprakash, V. The Mycobactin Biosynthesis Pathway: A Prospective Therapeutic Target in the Battle against Tuberculosis. J. Med. Chem. 2021, 64, 71–100. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.; Verboom, T.; Weerdenburg, E.; Gey van Pittius, N.; Mahasha, P.; Jimenez, C.; Parra, M.; Cadieux, N.; Brennan, M.; Appelmelk, B.; et al. PPE and PE_PGRS Proteins of Mycobacterium Marinum Are Transported via the Type VII Secretion System ESX-5. Mol. Microbiol. 2009, 73, 329–340. [Google Scholar] [CrossRef] [PubMed]
Target | Compound | Structure |
---|---|---|
Fad32 | Diarylcoumarins [17] Pre-clinical | |
InhA | Isoniazid [15] First line drug | |
1H-1,2,3 triazole-tethered quinoline-isoniazid conjugates [15] Pre-clinical | ||
MmpL3 | AU1235 [16] Phase I clinical trial | |
BM212 [16] Phase I clinical trial | ||
SQ109 [16] Phase II clinical trial | ||
KasA | GSK3011724A [18] Phase II | |
(E)-1-(furan-3-yl)-3-(1H-indol-3-yl)prop-2-en-1-one [19] Pre-clinical | ||
InhA/KasA /MmpL3 | Ethionamide [20] Second-line drug | |
Delamanid [21] Phase III clinical trial | ||
Prothionamide [22] Second-line drug | ||
Cytosporone E analogous [23] Pre-clinical |
Target | Compound | Structure |
---|---|---|
DprE1 | BTZ043 [16] Phase II clinical trial | |
BTZ169 [16] Phase II clinical trial | ||
MurX | Caprazene [32] Pre-clinical | |
WecA | CPZENE-45 [32] Pre-clinical |
Target | Compound | Structure |
---|---|---|
Alr/Ddl | D-cycloserine [44] Second-line drug | |
MurB | Sulfadoxine [46] FDA-approved drugs reproposed | |
Pyrimethamine [46] FDA-approved drugs reproposed | ||
MurE | Sildenafil [46] FDA-approved drugs reproposed | |
Lifitegrast [46] FDA-approved drugs reproposed | ||
MurD | ZINC11881196 [47] Pre-clinical | |
ZINC12247644 [47] Pre-clinical | ||
ZINC14995379 [47] Pre-clinical | ||
PubChem6185 (digossina) [47] Pre-clinical |
Target | Compound | Structure |
---|---|---|
Mannan core of LAM | TMDU3 [55] Pre-clinical | anti-LAM monoclonal IgMs |
La066 [55] Pre-clinical | anti-LAM monoclonal IgMs | |
LAM biosynthesis | Ethambutol [17] First-line drug |
Target | Compound | Structure |
---|---|---|
SecA2 ATPase component | Bengal analogs [65] Pre-clinical | |
SecA2 Ion-channel and ATPase activities | SCA-15 [66] Pre-clinical | |
SecA2 | Q30, M9, M26,U8,R26 Thiazolidone derivatives [67] Pre-clinical | |
ESX-1 Block the secretion | Chloramphenicol [68] Pre-clinical | |
Kanamycin [68] Second-line combinational drug | ||
Bortezomib [68] Pre-clinical | ||
ESX-3 MbtI | 5-(3-cyano-5-(trifluoromethyl) phenyl)furan-2-carboxylic acid [69] Pre-clinical | |
ESX-5 Blocks the export | 1,2,4-oxadiazole scaffold [70] Pre-clinical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Italia, A.; Shaik, M.M.; Peri, F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules 2023, 13, 999. https://doi.org/10.3390/biom13060999
Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules. 2023; 13(6):999. https://doi.org/10.3390/biom13060999
Chicago/Turabian StyleItalia, Alice, Mohammed Monsoor Shaik, and Francesco Peri. 2023. "Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection" Biomolecules 13, no. 6: 999. https://doi.org/10.3390/biom13060999
APA StyleItalia, A., Shaik, M. M., & Peri, F. (2023). Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules, 13(6), 999. https://doi.org/10.3390/biom13060999