Active Estrogen–Succinate Metabolism Promotes Heme Accumulation and Increases the Proliferative and Invasive Potential of Endometrial Cancer Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Sample Collection
2.2. Cell Lines
2.3. Transfection
2.4. Immunohistochemistry (IHC)
2.5. The Treatment of Estrogen, Estrogen Receptor (ER) Antagonist, Succinate, and Heme
2.6. Measurement of the Heme Concentration
2.7. RNA Extraction and Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)
2.8. Integration Analysis of the Protein–Protein Interaction (PPI) Network
2.9. Cell Viability and Invasion Assays
2.10. Statistical Analysis
3. Results
3.1. The Expression of ALAS1 and SLC25A38 in Primary Tumors Is Significantly Higher than Those in Normal Tissues
3.2. Estrogen and Succinate Increase the Expression of ALAS1 and SLC25A38 in UECC
3.3. Estrogen Increases the Expression of ALAS1 and the Synthesis of Heme by the ERβ/NCOA1 Axis
3.4. Exposure to Heme Increases the Viability and Invasiveness of UECC
3.5. Silencing the NCOA1 Gene Weakens the Effect of Heme on Promoting Cell Viability and Invasiveness in UECC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dashti, S.G.; Simpson, J.A.; Viallon, V.; Karahalios, A.; Moreno-Betancur, M.; Brasky, T.; Pan, K.; Rohan, T.E.; Shadyab, A.H.; Thomson, C.A.; et al. Adiposity and breast, endometrial, and colorectal cancer risk in postmenopausal women: Quantification of the mediating effects of leptin, C-reactive protein, fasting insulin, and estradiol. Cancer Med. 2022, 11, 1145–1159. [Google Scholar] [CrossRef]
- Braun, M.M.; Overbeek-Wager, E.A.; Grumbo, R.J. Diagnosis and Management of Endometrial Cancer. Am. Fam. Physician 2016, 93, 468–474. [Google Scholar]
- Onstad, M.A.; Schmandt, R.E.; Lu, K.H. Addressing the Role of Obesity in Endometrial Cancer Risk, Prevention, and Treatment. J. Clin. Oncol. 2016, 34, 4225–4230. [Google Scholar] [CrossRef] [PubMed]
- Bidzinski, M.; Danska-Bidzinska, A.; Rychlik, A.; Kypryjanczyk, J.; Pyzlak, M.; Piatek, S. Molecular classification of endometrial carcinoma, is it the new era of precision medicine? Ginekol. Pol. 2022, 93, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Jiao, H.; Qu, L.; Liu, H. Association Between Hormone Replacement Therapy and Development of Endometrial Cancer: Results From a Prospective US Cohort Study. Front. Med. 2021, 8, 802959. [Google Scholar] [CrossRef] [PubMed]
- Amant, F.; Moerman, P.; Neven, P.; Timmerman, D.; Van Limbergen, E.; Vergote, I. Endometrial cancer. Lancet 2005, 366, 491–505. [Google Scholar] [CrossRef]
- Passarello, K.; Kurian, S.; Villanueva, V. Endometrial Cancer: An Overview of Pathophysiology, Management, and Care. Semin. Oncol. Nurs. 2019, 35, 157–165. [Google Scholar] [CrossRef]
- Zhou, W.J.; Zhang, J.; Yang, H.L.; Wu, K.; Xie, F.; Wu, J.N.; Wang, Y.; Yao, L.; Zhuang, Y.; Xiang, J.D.; et al. Estrogen inhibits autophagy and promotes growth of endometrial cancer by promoting glutamine metabolism. Cell Commun. Signal. 2019, 17, 99. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tuo, Z.; Zong, Y.; Liu, J. Succinate dehydrogenase 5 regulates lung cancer metastasis by reprogramming glucose metabolism. J. Thorac. Dis. 2021, 13, 6427–6438. [Google Scholar] [CrossRef]
- Bian, X.; Liu, R.; Meng, Y.; Xing, D.; Xu, D.; Lu, Z. Lipid metabolism and cancer. J. Exp. Med. 2021, 218, 1606–1614. [Google Scholar] [CrossRef]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eniafe, J.; Jiang, S. The functional roles of TCA cycle metabolites in cancer. Oncogene 2021, 40, 3351–3363. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, A.; Moussallieh, F.M.; Roche, P.; Battini, S.; Cicek, A.E.; Sebag, F.; Brunaud, L.; Barlier, A.; Elbayed, K.; Loundou, A.; et al. Metabolome profiling by HRMAS NMR spectroscopy of pheochromocytomas and paragangliomas detects SDH deficiency: Clinical and pathophysiological implications. Neoplasia 2015, 17, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Yang, H.; Chang, K.; Zhang, B.; Xie, F.; Ye, J.; Chang, R.; Qiu, X.; Wang, Y.; Qu, Y.; et al. Melatonin alleviates progression of uterine endometrial cancer by suppressing estrogen/ubiquitin C/SDHB-mediated succinate accumulation. Cancer Lett. 2020, 476, 34–47. [Google Scholar] [CrossRef]
- Ryter, S.W.; Tyrrell, R.M. The heme synthesis and degradation pathways: Role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radic. Biol. Med. 2000, 28, 289–309. [Google Scholar] [CrossRef]
- Yien, Y.Y.; Perfetto, M. Regulation of Heme Synthesis by Mitochondrial Homeostasis Proteins. Front. Cell Dev. Biol. 2022, 10, 895521. [Google Scholar] [CrossRef]
- Peoc’h, K.; Nicolas, G.; Schmitt, C.; Mirmiran, A.; Daher, R.; Lefebvre, T.; Gouya, L.; Karim, Z.; Puy, H. Regulation and tissue-specific expression of delta-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias. Mol. Genet. Metab. 2019, 128, 190–197. [Google Scholar] [CrossRef]
- Kafina, M.D.; Paw, B.H. Intracellular iron and heme trafficking and metabolism in developing erythroblasts. Metallomics 2017, 9, 1193–1203. [Google Scholar] [CrossRef]
- Creeden, J.F.; Gordon, D.M.; Stec, D.E.; Hinds, T.D., Jr. Bilirubin as a metabolic hormone: The physiological relevance of low levels. Am. J. Physiol. Endocrinol. Metab. 2021, 320, E191–E207. [Google Scholar] [CrossRef]
- Ali, F.F.; Abdelzaher, W.Y.; Ibrahim, R.A.; Elroby Ali, D.M. Amelioration of estrogen-induced endometrial hyperplasia in female rats by hemin via heme-oxygenase-1 expression, suppression of iNOS, p38 MAPK, and Ki67. Can. J. Physiol. Pharmacol. 2019, 97, 1159–1168. [Google Scholar] [CrossRef]
- Ruan, L.Y.; Lai, Z.Z.; Shi, J.W.; Yang, H.L.; Ye, J.F.; Xie, F.; Qiu, X.M.; Zhu, X.Y.; Li, M.Q. Excess Heme Promotes the Migration and Infiltration of Macrophages in Endometrial Hyperplasia Complicated with Abnormal Uterine Bleeding. Biomolecules 2022, 12, 849. [Google Scholar] [CrossRef]
- Peng, Q.; Hua, Y.; Xu, H.; Chen, X.; Xu, H.; Wang, L.; Zhao, H. The NCOA1-CBP-NF-kappaB transcriptional complex induces inflammation response and triggers endotoxin-induced myocardial dysfunction. Exp. Cell Res. 2022, 415, 113114. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, W.; Li, K.; Guo, Y.; Liu, D.; Yao, Z.; Lin, X.; Li, S.; Jiang, Z.; Liu, Q.; et al. The oncogenic roles of nuclear receptor coactivator 1 in human esophageal carcinoma. Cancer Med. 2018, 7, 5205–5216. [Google Scholar] [CrossRef] [PubMed]
- Muniz-Bongers, L.R.; McClain, C.B.; Saxena, M.; Bongers, G.; Merad, M.; Bhardwaj, N. MMP2 and TLRs modulate immune responses in the tumor microenvironment. JCI Insight 2021, 6, 913–917. [Google Scholar] [CrossRef]
- Liu, D.; Kang, H.; Gao, M.; Jin, L.; Zhang, F.; Chen, D.; Li, M.; Xiao, L. Exosome-transmitted circ_MMP2 promotes hepatocellular carcinoma metastasis by upregulating MMP2. Mol. Oncol. 2020, 14, 1365–1380. [Google Scholar] [CrossRef] [Green Version]
- Menon, S.S.; Guruvayoorappan, C.; Sakthivel, K.M.; Rasmi, R.R. Ki-67 protein as a tumour proliferation marker. Clin. Chim. Acta 2019, 491, 39–45. [Google Scholar] [CrossRef]
- Dutt, S.; Hamza, I.; Bartnikas, T.B. Molecular Mechanisms of Iron and Heme Metabolism. Annu. Rev. Nutr. 2022, 42, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Immenschuh, S.; Vijayan, V.; Janciauskiene, S.; Gueler, F. Heme as a Target for Therapeutic Interventions. Front. Pharmacol. 2017, 8, 146. [Google Scholar] [CrossRef] [Green Version]
- Wijayanti, N.; Kietzmann, T.; Immenschuh, S. Heme oxygenase-1 gene activation by the NAD(P)H oxidase inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride via a protein kinase B, p38-dependent signaling pathway in monocytes. J. Biol. Chem. 2005, 280, 21820–21829. [Google Scholar] [CrossRef] [Green Version]
- Canesin, G.; Muralidharan, A.M.; Swanson, K.D.; Wegiel, B. HO-1 and Heme: G-Quadruplex Interaction Choreograph DNA Damage Responses and Cancer Growth. Cells 2021, 10, 1801. [Google Scholar] [CrossRef]
- Dunneram, Y.; Greenwood, D.C.; Cade, J.E. Diet, menopause and the risk of ovarian, endometrial and breast cancer. Proc. Nutr. Soc. 2019, 78, 438–448. [Google Scholar] [CrossRef]
- Mahajan, V.; Gujral, P.; Jain, L.; Ponnampalam, A.P. Differential Expression of Steroid Hormone Receptors and Ten Eleven Translocation Proteins in Endometrial Cancer Cells. Front. Oncol. 2022, 12, 763464. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Xu, J. The cooperative function of nuclear receptor coactivator 1 (NCOA1) and NCOA3 in placental development and embryo survival. Mol. Endocrinol. 2010, 24, 1917–1934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miki, Y.; Iwabuchi, E.; Takagi, K.; Suzuki, T.; Sasano, H.; Yaegashi, N.; Ito, K. Co-expression of nuclear heterogeneous nuclear ribonucleic protein K and estrogen receptor alpha in endometrial cancer. Pathol. Res. Pract. 2022, 231, 153795. [Google Scholar] [CrossRef]
- Qin, L.; Xu, Y.; Xu, Y.; Ma, G.; Liao, L.; Wu, Y.; Li, Y.; Wang, X.; Wang, X.; Jiang, J.; et al. NCOA1 promotes angiogenesis in breast tumors by simultaneously enhancing both HIF1alpha- and AP-1-mediated VEGFa transcription. Oncotarget 2015, 6, 23890–23904. [Google Scholar] [CrossRef] [Green Version]
- Peng, M.; Zhao, G.; Yang, F.; Cheng, G.; Huang, J.; Qin, X.; Liu, Y.; Wang, Q.; Li, Y.; Qin, D. NCOA1 is a novel susceptibility gene for multiple myeloma in the Chinese population: A case-control study. PLoS ONE 2017, 12, e0173298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goebel, E.A.; Hernandez Bonilla, S.; Dong, F.; Dickson, B.C.; Hoang, L.N.; Hardisson, D.; Lacambra, M.D.; Lu, F.I.; Fletcher, C.D.M.; Crum, C.P.; et al. Uterine Tumor Resembling Ovarian Sex Cord Tumor (UTROSCT): A Morphologic and Molecular Study of 26 Cases Confirms Recurrent NCOA1-3 Rearrangement. Am. J. Surg. Pathol. 2020, 44, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Walsh, C.A.; Bolger, J.C.; Byrne, C.; Cocchiglia, S.; Hao, Y.; Fagan, A.; Qin, L.; Cahalin, A.; McCartan, D.; McIlroy, M.; et al. Global gene repression by the steroid receptor coactivator SRC-1 promotes oncogenesis. Cancer Res. 2014, 74, 2533–2544. [Google Scholar] [CrossRef] [Green Version]
- Luo, C.; Zhou, M.; Chen, C.; Li, S.; Li, Q.; Huang, Y.; Zhou, Z. A liposome-based combination strategy using doxorubicin and a PI3K inhibitor efficiently inhibits pre-metastatic initiation by acting on both tumor cells and tumor-associated macrophages. Nanoscale 2022, 14, 4573–4587. [Google Scholar] [CrossRef]
- Furuyama, K.; Kaneko, K.; Vargas, P.D. Heme as a magnificent molecule with multiple missions: Heme determines its own fate and governs cellular homeostasis. Tohoku J. Exp. Med. 2007, 213, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; Reuter, C.M.; Ruzhnikov, M.R.Z.; Beck, A.E.; Farrow, E.G.; Emrick, L.T.; Rosenfeld, J.A.; Mackenzie, K.M.; Robak, L.; Wheeler, M.T.; et al. De novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation. Am. J. Hum. Genet. 2020, 106, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Grevet, J.D.; Lan, X.; Hamagami, N.; Edwards, C.R.; Sankaranarayanan, L.; Ji, X.; Bhardwaj, S.K.; Face, C.J.; Posocco, D.F.; Abdulmalik, O.; et al. Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science 2018, 361, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastola, P.; Leiserowitz, G.S.; Chien, J. Multiple Components of Protein Homeostasis Pathway Can Be Targeted to Produce Drug Synergies with VCP Inhibitors in Ovarian Cancer. Cancers 2022, 14, 2949. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Liu, Y.K.; Hu, W.T.; Tang, L.L.; Sheng, Y.R.; Wei, C.Y.; Li, M.Q.; Zhu, X.Y. Elevated heme impairs macrophage phagocytosis in endometriosis. Reproduction 2019, 158, 257–266. [Google Scholar] [CrossRef] [PubMed]
Case | Age | Menopausal | Menstrual Phase | Type | Pathological Type | Grade | Stage | TNM |
---|---|---|---|---|---|---|---|---|
1 | 55 | Yes | / | I | Endometrioid carcinoma | G1 | IA | T1aNsn0M0 |
2 | 52 | Yes | / | I | Endometrioid carcinoma | G1 | IA | T1aNsn0M0 |
3 | 55 | Yes | / | I | Endometrioid carcinoma | G1 | IB | T1bNsn0M0 |
4 | 37 | No | Secretory phase | I | Endometrioid carcinoma | G1 | IIIC2 | T1aN2aM0 |
5 | 33 | No | Secretory phase | I | Endometrioid carcinoma | G1 | IA | T1aNsn0M0 |
6 | 52 | Yes | / | I | Endometrioid carcinoma | G2 | IIIA | T3aN0M0 |
Gene | Sequence |
---|---|
ATCB | Forward: GCCGACAGGATGCAGAAGGAGATCA |
Reverse: AAGCATTTGCGGTGGACGATGGA | |
ALAS1 | Forward: TCAACCCTCTTCACCCTGGCTAAG |
Reverse: TACTTTGGCACTCGGCTGTTTCG | |
SLC25A38 | Forward: ATGATTCAGAACTCACGTCCGT |
Reverse: CAGGCGTGTTTTAAGGAGATCC | |
HMOX1 | Forward: TGCCAGTGCCACCAAGTTCAAG |
Reverse: TGTTGAGCAGGAACGCAGTCTTG | |
ERα | Forward: GAAAGGTGGGATACGAAAAGACC |
Reverse: GCTGTTCTTCTTAGAGCGTTTGA | |
ERβ | Forward: TTCAAAGAGGGATGCTCACTTC |
Reverse: CCTTCACACGACCAGACTCC | |
NCOA1 | Forward: AATGAATACGAGCGTCTACAGC |
Reverse: TTTCGTCGTGTTGCCTCTTGA | |
MMP2 | Forward: TACAGGATCATTGGCTACACACC |
Reverse: GGTCACATCGCTCCAGACT | |
MMP9 | Forward: AGACCTGGGCAGATTCCAAAC |
Reverse: CGGCAAGTCTTCCGAGTAG | |
Ki-67 | Forward: ACGCCTGGTTACTATCAAAAGG |
Reverse: CAGACCCATTTACTTGTGTTGGA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.-J.; Zhang, X.; Abudukeyoumu, A.; Lai, Z.-Z.; Hou, D.-Y.; Wu, J.-N.; Tao, X.; Li, M.-Q.; Zhu, X.-Y.; Xie, F. Active Estrogen–Succinate Metabolism Promotes Heme Accumulation and Increases the Proliferative and Invasive Potential of Endometrial Cancer Cells. Biomolecules 2023, 13, 1097. https://doi.org/10.3390/biom13071097
Lu J-J, Zhang X, Abudukeyoumu A, Lai Z-Z, Hou D-Y, Wu J-N, Tao X, Li M-Q, Zhu X-Y, Xie F. Active Estrogen–Succinate Metabolism Promotes Heme Accumulation and Increases the Proliferative and Invasive Potential of Endometrial Cancer Cells. Biomolecules. 2023; 13(7):1097. https://doi.org/10.3390/biom13071097
Chicago/Turabian StyleLu, Jia-Jing, Xing Zhang, Ayitila Abudukeyoumu, Zhen-Zhen Lai, Ding-Yu Hou, Jiang-Nan Wu, Xiang Tao, Ming-Qing Li, Xiao-Yong Zhu, and Feng Xie. 2023. "Active Estrogen–Succinate Metabolism Promotes Heme Accumulation and Increases the Proliferative and Invasive Potential of Endometrial Cancer Cells" Biomolecules 13, no. 7: 1097. https://doi.org/10.3390/biom13071097
APA StyleLu, J. -J., Zhang, X., Abudukeyoumu, A., Lai, Z. -Z., Hou, D. -Y., Wu, J. -N., Tao, X., Li, M. -Q., Zhu, X. -Y., & Xie, F. (2023). Active Estrogen–Succinate Metabolism Promotes Heme Accumulation and Increases the Proliferative and Invasive Potential of Endometrial Cancer Cells. Biomolecules, 13(7), 1097. https://doi.org/10.3390/biom13071097