Adenosine/β-Cyclodextrin-Based Metal–Organic Frameworks as a Potential Material for Cancer Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of β-CD-K MOFs
2.3. ADN Loading to β-CD-K MOFs (ADN:β-CD-K MOFs)
2.4. Details of Quantum Mechanical Calculations
2.5. In-Vitro Release Profile of ADN from MOFs
2.6. In-Vitro Cytotoxic Assay
2.7. Characterization of ADN:β-CD-K MOFs
3. Results and Discussion
3.1. Examination of the Interaction of ADN and β-CD-K MOFs in the Virtual State
3.1.1. Energetically Favorable Orientation via Single-Point Energy Computation
3.1.2. ΔE between HOMO and LUMO of Frontier Molecular Orbitals of ICs
3.2. Spectral Analysis of ADN:β-CD-K MOFs
3.2.1. XRD Pattern Analysis
3.2.2. DSC Analysis
3.2.3. FE-SEM Analysis
3.2.4. AFM Analysis
3.2.5. XPS Analysis
3.2.6. FT-IR Spectral Interpretation
3.2.7. Raman Spectral Interpretation
3.2.8. 1H NMR Spectral Interpretation
1H NMR Spectral Interpretation of β-CD-K MOFs
1H NMR Spectral Interpretation of ADN
1H NMR Spectral Interpretation of ADN:β-CD-K MOFs
3.3. In Vitro Release Profile of ADN from ADN:β-CD-K MOFs
3.4. In Vitro Cytotoxicity on Cell Lines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Wöll, C. Surface-supported metal–organic framework thin films: Fabrication methods, applications and challenges. Chem. Soc. Rev. 2017, 46, 5730–5770. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; García, H. Metal–Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angew. Chem. Int. Ed. 2016, 55, 5414–5445. [Google Scholar] [CrossRef]
- Billeci, F.; D’Anna, F.; Marullo, S.; Noto, R. Self-assembly of fluorescent diimidazolium salts: Tailor properties of the aggregates changing alkyl chain features. RSC Adv. 2016, 6, 59502–59512. [Google Scholar] [CrossRef]
- Gröttrup, J.; Paulowicz, I.; Schuchardt, A.; Kaidas, V.; Kaps, S.; Lupan, O.; Adelung, R.; Mishra, Y.K. Three-dimensional flexible ceramics based on interconnected network of highly porous pure and metal alloyed ZnO tetrapods. Ceram. Int. 2016, 42, 8664–8676. [Google Scholar] [CrossRef]
- Jin, K.; Lee, B.; Park, J. Metal-organic frameworks as a versatile platform for radionuclide management. Coord. Chem. Rev. 2021, 427, 213473. [Google Scholar] [CrossRef]
- Park, J.; Perry, Z.; Chen, Y.-P.; Bae, J.; Zhou, H.-C. Chromium(II) Metal–Organic Polyhedra as Highly Porous Materials. ACS Appl. Mater. Interfaces 2017, 9, 28064–28068. [Google Scholar] [CrossRef]
- Li, X.; Porcino, M.; Qiu, J.; Constantin, D.; Martineau-Corcos, C.; Gref, R. Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings: Insights on Drug Location by Solid State NMR Spectroscopy. Nanomaterials 2021, 11, 945. [Google Scholar] [CrossRef]
- Qiaojuan, J.; Zhenzhen, L.; Chuanpan, G.; Xiaoyu, H.; Yingpan, S.; Nan, Z.; Minghua, W.; Zhihong, Z.; Linghao, H.; Miao, D. A γ-cyclodextrin-based metal–organic framework embedded with graphene quantum dots and modified with PEGMA via SI-ATRP for anticancer drug delivery and therapy. Nanoscale 2019, 11, 20956–20967. [Google Scholar]
- Wang, Y.; Yan, J.; Wen, N.; Xiong, H.; Cai, S.; He, Q.; Hu, Y.; Peng, D.; Liu, Z.; Liu, Y. Metal-organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619. [Google Scholar] [CrossRef]
- Yin, M.; Chen, M.; Chiou, B.S.; Liu, F. Construction of cyclodextrin-based organic frameworks with adjustable size: Enhanced the physicochemical stability and controlled release characteristics of apigenin. Food Biosci. 2023, 53, 102683. [Google Scholar] [CrossRef]
- Yu, J.; Li, Z.; Xia, M.; Zhang, L.; Zhao, D.; Li, B.; Chen, C.; Jiao, Y.; Xu, Y.; Lin, H. Green and edible cyclodextrin metal-organic frameworks modified polyamide thin film nanocomposite nanofiltration membranes for efficient desalination. J. Membr. Sci. 2023, 679, 121714. [Google Scholar] [CrossRef]
- Cheng, Q.; Ma, Q.; Pei, H.; Liang, H.; Zhang, X.; Jin, X.; Liu, N.; Guo, R.; Mo, Z. Chiral metal-organic frameworks materials for racemate resolution. Coord. Chem. Rev. 2023, 484, 215120. [Google Scholar] [CrossRef]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Wang, J.L.; Wang, C.; Lin, W. Metal-Organic Frameworks for Light Harvesting and Photocatalysis. ACS Catal. 2012, 2, 2630–2640. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhao, S.N.; Zang, S.Q.; Li, J. Functional Metal-Organic Frameworks as Effective Sensors of Gases and Volatile Compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef]
- Wang, H.-S. Metal-Organic Frameworks for Biosensing and Bioimaging Applications. Coord. Chem. Rev. 2017, 349, 139–155. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, M.; Xie, Z. Nanoscale Metal-Organic Frameworks for Drug Delivery: A Conventional Platform with New Promise. J. Mater. Chem. B 2018, 6, 707–717. [Google Scholar] [CrossRef]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Indranil, R.; Fraser, S. Cyclodextrin Metal–Organic Frameworks and Their Applications. Acc. Chem. Res. 2021, 54, 1440–1453. [Google Scholar]
- Sugato, H.; Manisha, S.; Aneeta Manjari, P.; Lee, I.S.; Yi, D.K.; Alagarsamy, P.; Nanda, S.S.; Kim, H.J. A green metal–organic framework-cyclodextrin MOF: A novel multifunctional material based triboelectric nanogenerator for highly efficient mechanical energy harvesting. Adv. Funct. Mater. 2021, 31, 2101829. [Google Scholar]
- Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493. [Google Scholar] [CrossRef]
- Patricia, H.; Tamim, C.; Christian, S.; Brigitte, G.; Catherine, S.; Tarek, B.; Jarrod, F.E.; Daniela, H.; Pascal, C.; Christine, K.; et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172–178. [Google Scholar]
- Yang, X.; Ahmed, K.R.; Ahmed, I.O.; Eman, M.A.; Ahmed, M.E.; Abdelazeem, S.E.; Mirna, O.; Yuting, L.; Abul-Hamd, E.M.; Wei, C.; et al. Cyclodextrin-based metal-organic frameworks: From synthesis to applications in drug delivery and catalysis. Environ. Chem. Lett. 2023, 21, 447–477. [Google Scholar]
- Yang, J.; Yang, Y.W. Metal–Organic Frameworks for Biomedical Applications. Small 2020, 16, 1906846. [Google Scholar] [CrossRef]
- Mohamed, A.E.; Mohamed, G.E.; Ashraf, A.E. Metal–organic frameworks encapsulated with an anticancer compound as drug delivery system: Synthesis, characterization, antioxidant, anticancer, antibacterial, and molecular docking investigation. Appl. Organomet. Chem. 2022, 36, e6660. [Google Scholar]
- Seda, K.; Seda, K. Biomedical Applications of Metal Organic Frameworks. Ind. Eng. Chem. Res. 2011, 50, 1799–1812. [Google Scholar]
- Tooba, R.; Reihaneh, F.-Z.; Afsaneh, K.; Ali, A.E. Metal-organic frameworks for pharmaceutical and biomedical applications. J. Pharm. Biomed. Anal. 2022, 221, 115026. [Google Scholar]
- Stock, N.; Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev. 2012, 112, 933–969. [Google Scholar] [CrossRef]
- Amo-Ochoa, P.; Givaja, G.; Miguel, P.J.S.; Castillo, O.; Zamora, F. Microwave assisted hydrothermal synthesis of a novel CuI-sulfate-pyrazine MOF. Inorg. Chem. Commun. 2007, 10, 921–924. [Google Scholar] [CrossRef]
- Wei, F.-H.; Chen, D.; Liang, Z.; Zhao, S.-Q.; Luo, Y. Synthesis and characterization of metal–organic frameworks fabricated by microwave-assisted ball milling for adsorptive removal of Congo red from aqueous solutions. RSC Adv. 2017, 7, 46520–46528. [Google Scholar] [CrossRef]
- Hwang, J.; Ejsmont, A.; Freund, R.; Goscianska, J.; Schmidt, B.V.K.J.; Wuttke, S. Controlling the morphology of metal–organic frameworks and porous carbon materials: Metal oxides as primary architecture-directing agents. Chem. Soc. Rev. 2020, 49, 3348–3422. [Google Scholar] [CrossRef]
- Smaldone, R.A.; Forgan, R.S.; Furukawa, H.; Gassensmith, J.J.; Slawin, A.M.Z.; Yaghi, O.M.; Stoddart, J.F. Metal–Organic Frameworks from Edible Natural Products. Angew. Chem. Int. Ed. 2010, 49, 8630–8634. [Google Scholar] [CrossRef]
- Sivakumar, K.; Komathi, V.; Murali Krishnan, M. Dinitrophenylhydrazine: β-cyclodextrin inclusion complex as a novel fluorescent chemosensor probe for Ce4+. Res. Chem. Intermed. 2018, 44, 5301–5327. [Google Scholar] [CrossRef]
- Sivakumar, K.; Parinamachivayam, G.; Murali Krishnan, M.; Sujay, C.; Bharathi, A. Preparation, characterization and molecular modeling studies of the beta-cyclodextrin inclusion complex with benzoguanamine and its analytical application as chemosensor for the selective sensing of Ce4+. Spectrochim. Acta A 2018, 200, 212–225. [Google Scholar] [CrossRef]
- Arumugam, P.; Samikannu, P.; Fatiha, M.; Rajaram, R. Theoretical Investigation of Inclusion Complexes of 3-Hydroxyflavone and Quercetin as Guests with Native and Modified β-Cyclodextrins as Hosts. Polycycl. Aromat. Compd. 2023, 43, 141–153. [Google Scholar]
- Moorthiraman, M.; Rajaram, R.; Arumugam, A.; Madi, F. Non-Covalent Bonding Interaction between Primaquine as Guest and 2-(Hydroxypropyl)-β-Cyclodextrin as Host. Polycycl. Aromat. Compd. 2022, 42, 1861–1878. [Google Scholar]
- Liu, J.; Bao, T.-Y.; Yang, X.-Y.; Zhu, P.-P.; Wu, L.-H.; Sha, J.-Q.; Zhang, L.; Dong, L.-Z.; Cao, X.-L.; Lan, Y.-Q. Controllable porosity conversion of metal-organic frameworks composed of natural ingredients for drug delivery. Chem. Commun. 2017, 53, 7804–7807. [Google Scholar] [CrossRef]
- Ding, H.; Wu, L.; Guo, T.; Zhang, Z.; Bello, M.G.; Gao, G.; He, S.; Zhang, W.; Chen, Y.; Lin, Y.; et al. CD-MOFs crystal trans-formation from dense to highly porous form for efficient drug loading. Cryst. Growth Des. 2019, 19, 3888–3894. [Google Scholar] [CrossRef]
- Hasmukh, A.P.; Timur, I.; Zhichang, L.; Siva Krishna Mohan, N.; Avik, S.; Ommid, A.; Christos, D.M.; Omar, K.F.; Fraser, S. Noninvasive Substitution of K+ Sites in Cyclodextrin Metal−Organic Frameworks by Li+ Ions. J. Am. Chem. Soc. 2017, 139, 11020–11023. [Google Scholar]
- Li, Y.; Huang, H.; Ding, C.; Zhou, X.; Li, H. β-Cyclodextrin-based metal-organic framework as a carrier for zero-order drug delivery. Mater. Lett. 2021, 300, 129766. [Google Scholar] [CrossRef]
- Liu, C.; Wang, P.; Liu, X.; Yi, X.; Zhou, Z.; Liu, D. Multifunctional β-Cyclodextrin MOF-Derived Porous Carbon as Efficient Herbicides Adsorbent and Potassium Fertilizer. ACS Sustain. Chem. Eng. 2019, 7, 14479–14489. [Google Scholar] [CrossRef]
- Samikannu, P.; Krishnamoorthy, S.; Rajaram, R. Supramolecular assembly between adenocard and native beta-cyclodextrin: Preparation, characterization and in-vitro cytotoxic evaluation. Spect. Lett. 2018, 51, 496–509. [Google Scholar]
- Susumu, K.; Kouki, J.; Akira, O. Thermal decomposition of cyclodextrins (α, β, and γ, and modified β-CyD) and of metal-(β-CyD) complexes in the solid phase. Thermochim. Acta 1993, 217, 187–198. [Google Scholar]
- Rajaram, R.; Chaitany, J.R.; Seong-Cheol, K.; Mani, M.K.; Yong Rok, L. Supramolecular β-Cyclodextrin-Quercetin Based Metal–Organic Frameworks as an Efficient Antibiofilm and Antifungal Agent. Molecules 2023, 28, 3667. [Google Scholar]
- Xiong, Y.; Wu, L.; Guo, T.; Wang, C.; Wu, W.; Tang, Y.; Xiong, T.; Zhou, Y.; Zhu, W.; Zhang, J. Crystal Transformation of β-CD-MOF Facilitates Loading of Dimercaptosuccinic Acid. AAPS PharmSciTech 2019, 20, 224. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Shan, Y.; Xu, C.; Bilal, M.; Zhao, P.; Cao, C.; Zhang, H.; Huang, Q.; Cao, L. Multifunc-tional γ-Cyclodextrin-Based Metal–Organic Frameworks as Avermectins Carriers for Controlled Release and Enhanced Aca-ricidal Activity. ACS Agric. Sci. Technol. 2023, 3, 190–202. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, J.; Zhang, H.; Qin, Y.; Xu, X.; Jin, Z. Novel Approach with Controlled Nucleation and Growth for Green Synthesis of Size-Controlled Cyclodextrin-Based Metal–Organic Frameworks Based on Short-Chain Starch Nanoparticles. J. Agric. Food Chem. 2018, 66, 9785–9793. [Google Scholar] [CrossRef]
- Li, H.; Zhu, J.; Wang, C.; Qin, W.; Hu, X.; Tong, J.; Yu, L.; Zhang, G.; Ren, X.; Li, Z.; et al. Paeonol loaded cyclodextrin metal-organic framework particles for treatment of acute lung injury via inhalation. Int. J. Pharm. 2020, 587, 119649. [Google Scholar] [CrossRef]
- Hao, P.; Zhu, T.; Su, Q.; Lin, J.; Cui, R.; Cao, X.; Wang, Y.; Pan, A. Electrospun Single Crystalline Fork-Like K2V8O21 as High-Performance Cathode Materials for Lithium-Ion Batteries. Front. Chem. 2018, 6, 195. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Shao, G.; Zhao, H.; Yang, L.; Zhu, L.; Liu, H.; Cui, B.; Zhu, D.; Li, J.; He, Y. Covering soy polysaccharides gel on the surface of β-cyclodextrin-based metal–organic frameworks. J. Mater. Sci. 2021, 56, 3049–3061. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, J. In Situ Growth of Cyclodextrin-Based Metal Organic Framework Air Filters for Reusable SO2 Adsorbent Applications. Macromol. Mater. Eng. 2023, 308, 2200645. [Google Scholar] [CrossRef]
- Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L.G.; Li, D.; Tan, H.Q.; Zhao, Z.; Xie, Z.G.; Sun, Z.C. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277. [Google Scholar] [CrossRef] [PubMed]
- Che, J.; Chen, K.; Song, J.; Tu, Y.; Reymick, O.O.; Chen, X.; Nengguo Tao, N. Fabrication of γ-cyclodextrin-Based met-al-organic frameworks as a carrier of cinnamaldehyde and its application in fresh-cut cantaloupes. Curr. Res. Food Sci. 2022, 5, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Tatyana, V.; Artem, S.; Irina, T. Metal–organic frameworks based on b-cyclodextrin: Design and selective entrapment of nonsteroidal anti-inflammatory drugs. J. Mater. Sci. 2020, 55, 13193–13205. [Google Scholar]
- Kundu, J.; Neumann, O.; Janesko, B.G.; Zhang, D.; Lal, S.; Barhoumi, A.; Scuseria, G.E.; Halas, N.J. Adenine and Adenosine Monophosphate (AMP)—Gold Binding Interactions Studied by Surface-Enhanced Raman and Infrared Spectroscopies. J. Phys. Chem. C 2009, 113, 14390–14397. [Google Scholar] [CrossRef]
- Carmen, T.; Cristina, M.M.; Ioan, B.; Konstantinos, N.; Volker, D. (Sub)picosecond processes in DNA and RNA constituents: A Raman spectroscopic assessment. Polym. Bull. 2017, 74, 4087–4100. [Google Scholar]
- Lee, S.A.; Anderson, A.; Smith, W.; Griffey, R.H.; Mohan, V. Temperature-dependent Raman and infrared spectra of nucleosides. Part I—Adenosine. J. Raman Spectrosc. 2000, 31, 891–896. [Google Scholar] [CrossRef]
- Magnotti, G.; Kc, U.; Varghese, P.L.; Barlow, R.S. Raman Spectra of Methane, Ethylene, Ethane, Dimethyl Ether, Formaldehyde and Propane for Combustion Applications. J. Quant. Spectrosc. Radiat. Transf. 2015, 163, 80–101. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Shi, L.; Li, C.; Fu, X.; Huang, Q.; Zhang, B. Metal–Organic Framework Based on α-Cyclodextrin Gives High Ethylene Gas Adsorption Capacity and Storage Stability. ACS Appl. Mater. Interfaces 2020, 12, 34095–34104. [Google Scholar] [CrossRef]
- Morris, J.R.; Ross, H.H.; Roosevelt, T. N6-(Δ2-Isopentenyl)adenosine. A Component of the Transfer Ribonucleic Acid of Yeast and of Mammalian Tissue, Methods of Isolation, and Characterization. Biochemistry 1967, 6, 1837–1848. [Google Scholar]
- Hu, X.; Wang, X.; Li, X.; Zhou, W.; Song, W. Antibacterial Electrospun Polyvinyl Alcohol Nanofibers Encapsulating Berberine-Hydroxypropyl-beta-cyclodextrin inclusion complex. J. Drug Deliv. Sci. Technol. 2021, 64, 102649. [Google Scholar] [CrossRef]
- Cao, C.; Zhao, J.; Lu, M.; Garvey, C.J.; Stenzel, M.H. Correlation between Drug Loading Content and Biological Activity: The Complexity Demonstrated in Paclitaxel-Loaded Glycopolymer Micelle System. Biomacromolecules 2019, 20, 1545–1554. [Google Scholar] [CrossRef] [PubMed]
- Rajaram, R.; Chaitany, J.R.; Seong-Cheol, K.; Sekar, A.; Yong Rok, L. Novel microwave synthesis of copper oxide nanoparticles and appraisal of the antibacterial application. Micromachines 2023, 14, 456. [Google Scholar]
- Chen, J.; Zhang, Z.; Ma, J.; Nezamzadeh-Ejhieh, A.; Lu, C.; Pan, Y.; Liu, J.Q.; Bai, Z. Current status and prospects of MOFs in controlled delivery of Pt anticancer drugs. Dalton Trans. 2023, 52, 6226. [Google Scholar] [CrossRef] [PubMed]
- Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J.; Marino, M.; Martinez-Chantar, M.L.; Nawroth, R.; Sanchez-Garcia, I.; et al. Sustained Proliferation in Cancer: Mechanisms and Novel Therapeutic Targets. Semin. Cancer Biol. 2015, 35, S25–S54. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Chen, Y.; Shi, J. Tumor-specific chemotherapy by nanomedicine-enabled differential stress sensitization. Angew. Chem. Int. Ed. Engl. 2020, 59, 9693–9701. [Google Scholar] [CrossRef]
Parameter | EOpt (KJ/mol) | ΔE (KJ/mol) | |
---|---|---|---|
ADN | PM3 | −463.111 | - |
β-CD-K MOFs | −5762.710 | - | |
Orientation 1 | −6331.656 | −105.835 | |
Orientation 2 | −6318.266 | −92.445 |
Orientation 1 | Orientation 2 | ||
---|---|---|---|
Bonding between the Atoms | Bonding Distance (Å) | Bonding between the Atoms | Bonding Distance (Å) |
160 (N)-142 (H) | 3.082 | 174 (H)-37 (O) | 2.563 |
180 (H)-119 (O) | 2.536 | 176 (H)-15 (O) | 2.649 |
179 (O)-12 (H) | 2.860 | 169 (N)-8 (H) | 3.038 |
177 (O)-45 (H) | 3.079 | 166 (N)-12 (H) | 2.890 |
175 (O)-24 (H) | 2.617 | ||
176 (H)-37 (O) | 2.545 |
Materials | HOMO Value (eV) | LUMO Value (eV) | EHOMO-ELUMO Value (eV) |
---|---|---|---|
ADN | −8.8050 | −0.413 | 8.392 |
β-CD-K MOFs | −12.449 | −2.687 | 9.762 |
Orientation 1 | −10.716 | −2.450 | 8.265 |
Orientation 2 | −11.501 | −3.073 | 8.428 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajamohan, R.; Ashokkumar, S.; Murali Krishnan, M.; Murugavel, K.; Murugan, M.; Lee, Y.R. Adenosine/β-Cyclodextrin-Based Metal–Organic Frameworks as a Potential Material for Cancer Therapy. Biomolecules 2023, 13, 1154. https://doi.org/10.3390/biom13071154
Rajamohan R, Ashokkumar S, Murali Krishnan M, Murugavel K, Murugan M, Lee YR. Adenosine/β-Cyclodextrin-Based Metal–Organic Frameworks as a Potential Material for Cancer Therapy. Biomolecules. 2023; 13(7):1154. https://doi.org/10.3390/biom13071154
Chicago/Turabian StyleRajamohan, Rajaram, Sekar Ashokkumar, Mani Murali Krishnan, Kuppusamy Murugavel, Moorthiraman Murugan, and Yong Rok Lee. 2023. "Adenosine/β-Cyclodextrin-Based Metal–Organic Frameworks as a Potential Material for Cancer Therapy" Biomolecules 13, no. 7: 1154. https://doi.org/10.3390/biom13071154
APA StyleRajamohan, R., Ashokkumar, S., Murali Krishnan, M., Murugavel, K., Murugan, M., & Lee, Y. R. (2023). Adenosine/β-Cyclodextrin-Based Metal–Organic Frameworks as a Potential Material for Cancer Therapy. Biomolecules, 13(7), 1154. https://doi.org/10.3390/biom13071154