LVPT: Lazy Velocity Pseudotime Inference Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Data Collection and Preprocessing
2.3. Data Simulation Using Dyngen
2.4. Lazy Velocity Pseudotime Inference Model
2.5. Pseudotime Inference
2.6. Evaluation Metrics
3. Results
3.1. Overview
3.2. Evaluation of the LVPT Model on Simulated Datasets
3.3. Performance Evaluation of LVPT on Real Datasets
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shalek, A.K.; Satija, R.; Shuga, J.; Trombetta, J.J.; Gennert, D.; Lu, D.; Chen, P.; Gertner, R.S.; Gaublomme, J.T.; Yosef, N.; et al. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 2014, 510, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herring, C.A.; Chen, B.; McKinley, E.T.; Lau, K.S. Single-Cell Computational Strategies for Lineage Reconstruction in Tissue Systems. Cell Mol. Gastroenterol. Hepatol. 2018, 5, 539–548. [Google Scholar] [CrossRef] [Green Version]
- Kester, L.; van Oudenaarden, A. Single-Cell Transcriptomics Meets Lineage Tracing. Cell Stem Cell 2018, 23, 166–179. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Renia, L.; Ginhoux, F. Constructing cell lineages from single-cell transcriptomes. Mol. Asp. Med. 2018, 59, 95–113. [Google Scholar] [CrossRef]
- Sun, Y.; Yao, J.; Yang, L.; Chen, R.; Nowak, N.J.; Goodison, S. Computational approach for deriving cancer progression roadmaps from static sample data. Nucleic Acids Res. 2017, 45, e69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Fan, Z.; Zhao, W.; Zhou, X. Machine Intelligence in Single-Cell Data Analysis: Advances and New Challenges. Front. Genet. 2021, 12, 655536. [Google Scholar] [CrossRef]
- Qiu, X.; Mao, Q.; Tang, Y.; Wang, L.; Chawla, R.; Pliner, H.A.; Trapnell, C. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 2017, 14, 979–982. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Cacchiarelli, D.; Grimsby, J.; Pokharel, P.; Li, S.; Morse, M.; Lennon, N.J.; Livak, K.J.; Mikkelsen, T.S.; Rinn, J.L. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 2014, 32, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Mao, Q.; Wang, L.; Goodison, S.; Sun, Y. Dimensionality Reduction Via Graph Structure Learning. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015; pp. 765–774. [Google Scholar]
- Cao, J.; Spielmann, M.; Qiu, X.; Huang, X.; Ibrahim, D.M.; Hill, A.J.; Zhang, F.; Mundlos, S.; Christiansen, L.; Steemers, F.J.; et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 2019, 566, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Street, K.; Risso, D.; Fletcher, R.B.; Das, D.; Ngai, J.; Yosef, N.; Purdom, E.; Dudoit, S. Slingshot: Cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genom. 2018, 19, 477. [Google Scholar] [CrossRef] [Green Version]
- Shin, J.; Berg, D.A.; Zhu, Y.; Shin, J.Y.; Song, J.; Bonaguidi, M.A.; Enikolopov, G.; Nauen, D.W.; Christian, K.M.; Ming, G.L.; et al. Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis. Cell Stem Cell 2015, 17, 360–372. [Google Scholar] [CrossRef]
- Chen, H.; Albergante, L.; Hsu, J.Y.; Lareau, C.A.; Lo Bosco, G.; Guan, J.; Zhou, S.; Gorban, A.N.; Bauer, D.E.; Aryee, M.J.; et al. Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM. Nat. Commun. 2019, 10, 1903. [Google Scholar] [CrossRef] [Green Version]
- Haghverdi, L.; Buttner, M.; Wolf, F.A.; Buettner, F.; Theis, F.J. Diffusion pseudotime robustly reconstructs lineage branching. Nat. Methods 2016, 13, 845–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizvi, A.H.; Camara, P.G.; Kandror, E.K.; Roberts, T.J.; Schieren, I.; Maniatis, T.; Rabadan, R. Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nat. Biotechnol. 2017, 35, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Wolf, F.A.; Hamey, F.K.; Plass, M.; Solana, J.; Dahlin, J.S.; Gottgens, B.; Rajewsky, N.; Simon, L.; Theis, F.J. PAGA: Graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells. Genome Biol. 2019, 20, 59. [Google Scholar] [CrossRef] [Green Version]
- Reid, J.E.; Wernisch, L. Pseudotime estimation: Deconfounding single cell time series. Bioinformatics 2016, 32, 2973–2980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.; Bar-Joseph, Z. Continuous-state HMMs for modeling time-series single-cell RNA-Seq data. Bioinformatics 2019, 35, 4707–4715. [Google Scholar] [CrossRef]
- Bendall, S.C.; Davis, K.L.; Amirel, A.D.; Tadmor, M.D.; Simonds, E.F.; Chen, T.J.; Shenfeld, D.K.; Nolan, G.P.; Pe’er, D. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 2014, 157, 714–725. [Google Scholar] [CrossRef] [Green Version]
- Stassen, S.V.; Yip, G.G.K.; Wong, K.K.Y.; Ho, J.W.K.; Tsia, K.K. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nat. Commun. 2021, 12, 5528. [Google Scholar] [CrossRef]
- Bergen, V.; Lange, M.; Peidli, S.; Wolf, F.A.; Theis, F.J. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 2020, 38, 1408–1414. [Google Scholar] [CrossRef]
- La Manno, G.; Soldatov, R.; Zeisel, A.; Braun, E.; Hochgerner, H.; Petukhov, V.; Lidschreiber, K.; Kastriti, M.E.; Lonnerberg, P.; Furlan, A.; et al. RNA velocity of single cells. Nature 2018, 560, 494–498. [Google Scholar] [CrossRef] [Green Version]
- Schiebinger, G.; Shu, J.; Tabaka, M.; Cleary, B.; Subramanian, V.; Solomon, A.; Gould, J.; Liu, S.; Lin, S.; Berube, P.; et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming. Cell 2019, 176, 928–943 e922. [Google Scholar] [CrossRef] [Green Version]
- Forrow, A.; Schiebinger, G. LineageOT is a unified framework for lineage tracing and trajectory inference. Nat. Commun. 2021, 12, 4940. [Google Scholar] [CrossRef]
- Todorov, H.; Cannoodt, R.; Saelens, W.; Saeys, Y. TinGa: Fast and flexible trajectory inference with Growing Neural Gas. Bioinformatics 2020, 36, i66–i74. [Google Scholar] [CrossRef]
- Zhang, J.; Nie, Q.; Zhou, T. Revealing Dynamic Mechanisms of Cell Fate Decisions From Single-Cell Transcriptomic Data. Front. Genet. 2019, 10, 1280. [Google Scholar] [CrossRef] [Green Version]
- Bastidas-Ponce, A.; Tritschler, S.; Dony, L.; Scheibner, K.; Tarquis-Medina, M.; Salinno, C.; Schirge, S.; Burtscher, I.; Bottcher, A.; Theis, F.J.; et al. Comprehensive single cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development 2019, 146, dev.173849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannoodt, R.; Saelens, W.; Deconinck, L.; Saeys, Y. Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells. Nat. Commun. 2021, 12, 3942. [Google Scholar] [CrossRef] [PubMed]
- Traag, V.A.; Waltman, L.; van Eck, N.J. From Louvain to Leiden: Guaranteeing well-connected communities. Sci. Rep. 2019, 9, 5233. [Google Scholar] [CrossRef] [Green Version]
- Basso, K.; Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 2015, 15, 172–184. [Google Scholar] [CrossRef]
- De Silva, N.S.; Klein, U. Dynamics of B cells in germinal centres. Nat. Rev. Immunol. 2015, 15, 137–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coifman, R.R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Saelens, W.; Cannoodt, R.; Todorov, H.; Saeys, Y. A comparison of single-cell trajectory inference methods. Nat. Biotechnol. 2019, 37, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Weng, G.; Kim, J.; Won, K.J. VeTra: A tool for trajectory inference based on RNA velocity. Bioinformatics 2021, 37, 3509–3513. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X. Inference of high-resolution trajectories in single-cell RNA-seq data by using RNA velocity. Cell Rep. Methods 2021, 1, 100095. [Google Scholar] [CrossRef] [PubMed]
- Kriegstein, A.; Alvarez-Buylla, A. The glial nature of embryonic and adult neural stem cells. Annu. Rev. Neurosci. 2009, 32, 149–184. [Google Scholar] [CrossRef] [Green Version]
Metrics | Structures | LVPT | VPT | VeTra | CellPath | PAGA | Monocle2 | Slingshot | DPT | TSCAN |
---|---|---|---|---|---|---|---|---|---|---|
Correlation | Linear | 0.97 | 0.94 | 0.92 | 0.92 | 0.90 | 0.96 | 0.88 | 0.82 | 0.96 |
Bifurcating | 0.96 | 0.93 | 0.92 | 0.91 | 0.87 | 0.89 | 0.79 | 0.78 | 0.64 | |
Trifurcating | 0.91 | 0.89 | 0.87 | 0.88 | 0.85 | 0.82 | 0.73 | 0.68 | 0.67 | |
HIM | Linear | 0.95 | 0.94 | 0.89 | 0.92 | 0.93 | 0.91 | 0.90 | 0.79 | 0.83 |
Bifurcating | 0.92 | 0.85 | 0.73 | 0.62 | 0.86 | 0.79 | 0.83 | 0.70 | 0.60 | |
Trifurcating | 0.87 | 0.83 | 0.64 | 0.70 | 0.82 | 0.65 | 0.78 | 0.56 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, S.; Liu, J.; Zhao, W.; Zhou, X. LVPT: Lazy Velocity Pseudotime Inference Method. Biomolecules 2023, 13, 1242. https://doi.org/10.3390/biom13081242
Mao S, Liu J, Zhao W, Zhou X. LVPT: Lazy Velocity Pseudotime Inference Method. Biomolecules. 2023; 13(8):1242. https://doi.org/10.3390/biom13081242
Chicago/Turabian StyleMao, Shuainan, Jiajia Liu, Weiling Zhao, and Xiaobo Zhou. 2023. "LVPT: Lazy Velocity Pseudotime Inference Method" Biomolecules 13, no. 8: 1242. https://doi.org/10.3390/biom13081242
APA StyleMao, S., Liu, J., Zhao, W., & Zhou, X. (2023). LVPT: Lazy Velocity Pseudotime Inference Method. Biomolecules, 13(8), 1242. https://doi.org/10.3390/biom13081242