Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Identification of Antimicrobial Peptides
2.3. OH-CATH30-PLGA Preparation of MS
2.4. Encapsulation Efficiency (EE) and Loading Capacity (LC)
2.5. MS Characterization Analysis
2.6. MS In Vitro Release Experiment
2.7. Bactericidal Activity
2.8. Chorioallantoic Membrane–Trypan Blue Staining Experiment (CAM-TBS)
2.9. Animal Experiments
2.9.1. Animal Sources
2.9.2. Ocular Irritation Study
2.9.3. In Vivo Treatment
2.9.4. Evaluation of Treatment
2.9.5. Histopathological Evaluation (HE)
2.10. Statistical Analyses
3. Results
3.1. OH-CATH30 Synthesis and Characterization
3.2. Preparation of PLGA-Loaded OH-CATH30 MS
3.3. Characterization of OH-CATH30 MS
3.4. OH-CATH30 Peptide Release Profile
3.5. Bactericidal Activity
3.6. Chorioallantoic Membrane–Trypan Blue Staining Experiment (CAM-TBS)
3.7. Ocular Tolerance Studies
3.8. Treatment Evaluation
3.9. Histological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daza, J.H.U.; Righetto, G.M.; Chaud, M.V.; da Conceição Amaro Martins, V.; Lopes Baratella da Cunha Camargo, I.; Maria de Guzzi Plepis, A. PVA/anionic collagen membranes as drug carriers of ciprofloxacin hydrochloride with sustained antibacterial activity and potential use in the treatment of ulcerative keratitis. J. Biomater. Appl. 2020, 35, 301–312. [Google Scholar] [CrossRef]
- Griffith, G.L.; Kasus-Jacobi, A.; Pereira, H.A. Bioactive antimicrobial peptides as therapeutics for corneal wounds and infections. Adv. Wound Care 2017, 6, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xin, D.; Gao, J.; Yi, Q.; Yuan, J.; Bao, Y.; Gong, Y. The protective effect of URP20 on ocular Staphylococcus aureus and Escherichia coli infection in rats. BMC Ophthalmol. 2022, 22, 517. [Google Scholar] [CrossRef]
- Jadi, P.K.; Sharma, P.; Bhogapurapu, B.; Roy, S. Alternative Therapeutic Interventions: Antimicrobial Peptides and Small Molecules to Treat Microbial Keratitis. Front. Chem. 2021, 9, 694998. [Google Scholar] [CrossRef] [PubMed]
- Buccini, D.F.; Cardoso, M.H.; Franco, O.L. Antimicrobial peptides and cell-penetrating peptides for treating intracellular bacterial infections. Front. Cell. Infect. Microbiol. 2021, 10, 612931. [Google Scholar] [CrossRef] [PubMed]
- McMillan, K.A.; Coombs, M.R.P. Examining the natural role of amphibian antimicrobial peptide magainin. Molecules 2020, 25, 5436. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. Why do we study animal toxins? Zool. Res. 2015, 36, 183. [Google Scholar]
- Zhao, H.; Gan, T.-X.; Liu, X.-D.; Jin, Y.; Lee, W.-H.; Shen, J.-H.; Zhang, Y. Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 2008, 29, 1685–1691. [Google Scholar] [CrossRef]
- Zhao, F.; Lan, X.Q.; Du, Y.; Chen, P.Y.; Zhao, J.; Zhao, F.; Lee, W.H.; Zhang, Y. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates. Zool. Res. 2018, 39, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Li, S.-A.; Liu, J.; Xiang, Y.; Wang, Y.-J.; Lee, W.-H.; Zhang, Y. Therapeutic potential of the antimicrobial peptide OH-CATH30 for antibiotic-resistant Pseudomonas aeruginosa keratitis. Antimicrob. Agents Chemother. 2014, 58, 3144–3150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhter, M.H.; Ahmad, I.; Alshahrani, M.Y.; Al-Harbi, A.I.; Khalilullah, H.; Afzal, O.; Altamimi, A.S.; Najib Ullah, S.N.M.; Ojha, A.; Karim, S. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022, 8, 82. [Google Scholar] [CrossRef]
- Sowers, A.; Wang, G.; Xing, M.; Li, B. Advances in Antimicrobial Peptide Discovery via Machine Learning and Delivery via Nanotechnology. Microorganisms 2023, 11, 1129. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yang, L.; Wan, F.; Bera, H.; Cun, D.; Rantanen, J.; Yang, M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int. J. Pharm. 2020, 585, 119441. [Google Scholar] [CrossRef]
- Andhariya, J.V.; Jog, R.; Shen, J.; Choi, S.; Wang, Y.; Zou, Y.; Burgess, D.J. Development of Level A in vitro-in vivo correlations for peptide loaded PLGA microspheres. J. Control. Release 2019, 308, 1–13. [Google Scholar] [CrossRef]
- Choi, Y.H.; Heo, S.C.; Kwon, Y.W.; Kim, H.D.; Kim, S.H.L.; Jang, I.H.; Kim, J.H.; Hwang, N.S. Injectable PLGA microspheres encapsulating WKYMVM peptide for neovascularization. Acta Biomater. 2015, 25, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Rosas, J.; Hernandez, R.; Gascon, A.; Igartua, M.; Guzman, F.; Patarroyo, M.; Pedraz, J. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 2001, 19, 4445–4451. [Google Scholar] [CrossRef]
- Jain, R.A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide)(PLGA) devices. Biomaterials 2000, 21, 2475–2490. [Google Scholar] [CrossRef]
- Ding, S.; Serra, C.A.; Vandamme, T.F.; Yu, W.; Anton, N. Double emulsions prepared by two–step emulsification: History, state-of-the-art and perspective. J. Control. Release 2019, 295, 31–49. [Google Scholar] [CrossRef]
- Chen, L.; Mei, L.; Feng, D.; Huang, D.; Tong, X.; Pan, X.; Zhu, C.; Wu, C. Anhydrous reverse micelle lecithin nanoparticles/PLGA composite microspheres for long-term protein delivery with reduced initial burst. Colloids Surf. B Biointerfaces 2018, 163, 146–154. [Google Scholar] [CrossRef]
- Brossault, D.F.; McCoy, T.M.; Routh, A.F. Preparation of multicore colloidosomes: Nanoparticle-assembled capsules with adjustable size, internal structure, and functionalities for oil encapsulation. ACS Appl. Mater. Interfaces 2021, 13, 51495–51503. [Google Scholar] [CrossRef]
- Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci. 2017, 242, 17–34. [Google Scholar] [CrossRef]
- Pardeshi, S.R.; More, M.P.; Patil, P.B.; Mujumdar, A.; Naik, J.B. Statistical optimization of voriconazole nanoparticles loaded carboxymethyl chitosan-poloxamer based in situ gel for ocular delivery: In vitro, ex vivo, and toxicity assessment. Drug Deliv. Transl. Res. 2022, 12, 3063–3082. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-H.; Wang, P.-Y.; Lin, I.-C.; Huang, H.; Liu, G.-S.; Tseng, C.-L. Ocular drug delivery: Role of degradable polymeric nanocarriers for ophthalmic application. Int. J. Mol. Sci. 2018, 19, 2830. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Giammanco, A.; Cardamone, C.; Oliveri, G.; Mascarella, C.; Capra, G.; Fasciana, T. Extra-Intestinal Fluoroquinolone-Resistant Escherichia coli Strains Isolated from Meat. Biomed. Res. Int. 2018, 2018, 8714975. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Wu, Y.; He, Y.; Nie, J. Micelles formed by self-assembly of hyperbranched poly[(amine-ester)-co-(D,L-lactide)] (HPAE-co-PLA) copolymers for protein drug delivery. Polym. Int. 2009, 58, 31–39. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, K.; Xie, F.; Zhao, Q. Screening and identification of lactic acid bacteria with antimicrobial abilities for aquaculture pathogens in vitro. Arch. Microbiol. 2022, 204, 689. [Google Scholar] [CrossRef] [PubMed]
- Mittal, A.; Kumar, N. Drug-loaded polymeric composite skin graft for infection-free wound healing: Fabrication, characterization, cell proliferation, migration, and antimicrobial activity. Pharm. Res. 2012, 29, 3110–3121. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, Y.; Zhang, X.; Fu, B.; Xu, W.; Xue, D.; Chen, N.; Wang, X.; Xie, Q. Construction of sodium alginate/konjac glucomannan/chitosan oligosaccharide/Zeolite P hydrogel microspheres loaded with potassium diformate for sustained intestinal bacterial inhibition. Eur. Polym. J. 2022, 172, 111233. [Google Scholar] [CrossRef]
- Scheel, J.; Kleber, M.; Kreutz, J.; Lehringer, E.; Mehling, A.; Reisinger, K.; Steiling, W. Eye irritation potential: Usefulness of the HET-CAM under the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). Regul. Toxicol. Pharmacol. 2011, 59, 471–492. [Google Scholar] [CrossRef]
- Mahor, A.; Prajapati, S.K.; Verma, A.; Gupta, R.; Iyer, A.K.; Kesharwani, P. Moxifloxacin loaded gelatin nanoparticles for ocular delivery: Formulation and in-vitro, in-vivo evaluation. J. Colloid Interface Sci. 2016, 483, 132–138. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Niu, C.; Yu, G.; Huang, X.; Shi, J.; Ma, D.; Lin, X.; Zhao, K. A NIR light-activated PLGA microsphere for controlled release of mono-or dual-drug. Polym. Test. 2022, 116, 107762. [Google Scholar] [CrossRef]
- Fredenberg, S.; Wahlgren, M.; Reslow, M.; Axelsson, A. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. Int. J. Pharm. 2011, 415, 34–52. [Google Scholar] [CrossRef]
- Piktel, E.; Suprewicz, Ł.; Depciuch, J.; Cieśluk, M.; Chmielewska, S.; Durnaś, B.; Król, G.; Wollny, T.; Deptuła, P.; Kochanowicz, J. Rod-shaped gold nanoparticles exert potent candidacidal activity and decrease the adhesion of fungal cells. Nanomedicine 2020, 15, 2733–2752. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Yuan, Z.; Zhang, W.; Wei, D.; Hu, N. Preparation, in vitro release and antibacterial activity evaluation of rifampicin and moxifloxacin-loaded poly(D,L-lactide-co-glycolide) microspheres. Artif. Cells Nanomed. Biotechnol. 2019, 47, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Lagarto, A.; Vega, R.; Guerra, I.; González, R. In vitro quantitative determination of ophthalmic irritancy by the chorioallantoic membrane test with trypan blue staining as alternative to eye irritation test. Toxicol. Vitr. 2006, 20, 699–702. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Tang, X.; Li, H.Y.; Liu, X.L. A lipid microsphere vehicle for vinorelbine: Stability, safety and pharmacokinetics. Int. J. Pharm. 2008, 348, 70–79. [Google Scholar] [CrossRef]
- Han, J.; Zhang, S.; Liu, X.; Xiao, C. Fabrication of capsaicin emulsions: Improving the stability of the system and relieving the irritation to the gastrointestinal tract of rats. J. Sci. Food Agric. 2020, 100, 129–138. [Google Scholar] [CrossRef]
- Sharma, A.; Vaghasiya, K.; Gupta, P.; Gupta, U.D.; Verma, R.K. Reclaiming hijacked phagosomes: Hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. Int. J. Pharm. 2018, 536, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Vaghasiya, K.; Ray, E.; Verma, R.K. Nano-encapsulated HHC10 host defense peptide (HDP) reduces the growth of Escherichia coli via multimodal mechanisms. Artif. Cells Nanomed. Biotechnol. 2018, 46, S156–S165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panyam, J.; Williams, D.; Dash, A.; Leslie-Pelecky, D.; Labhasetwar, V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J. Pharm. Sci. 2004, 93, 1804–1814. [Google Scholar] [CrossRef] [PubMed]
- Gomes dos Santos, A.L.; Bochot, A.; Doyle, A.; Tsapis, N.; Siepmann, J.; Siepmann, F.; Schmaler, J.; Besnard, M.; Behar-Cohen, F.; Fattal, E. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J. Control. Release 2006, 112, 369–381. [Google Scholar] [CrossRef]
- Onugwu, A.L.; Nwagwu, C.S.; Onugwu, O.S.; Echezona, A.C.; Agbo, C.P.; Ihim, S.A.; Emeh, P.; Nnamani, P.O.; Attama, A.A.; Khutoryanskiy, V.V. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J. Control. Release 2023, 354, 465–488. [Google Scholar] [CrossRef]
- Aksungur, P.; Demirbilek, M.; Denkbaş, E.B.; Vandervoort, J.; Ludwig, A.; Unlü, N. Development and characterization of Cyclosporine A loaded nanoparticles for ocular drug delivery: Cellular toxicity, uptake, and kinetic studies. J. Control. Release 2011, 151, 286–294. [Google Scholar] [CrossRef]
- Kim, J.S.; Park, J.H.; Jeong, S.C.; Kim, D.S.; Yousaf, A.M.; Din, F.U.; Kim, J.O.; Yong, C.S.; Youn, Y.S.; Oh, K.T.; et al. Novel revaprazan-loaded gelatin microsphere with enhanced drug solubility and oral bioavailability. J. Microencapsul. 2018, 35, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Mobaraki, M.; Soltani, M.; Zare Harofte, S.; Zoudani, E.L.; Daliri, R.; Aghamirsalim, M.; Raahemifar, K. Biodegradable Nanoparticle for Cornea Drug Delivery: Focus Review. Pharmaceutics 2020, 12, 1232. [Google Scholar] [CrossRef] [PubMed]
- Li, S.-A.; Xiang, Y.; Wang, Y.-J.; Liu, J.; Lee, W.-H.; Zhang, Y. Naturally occurring antimicrobial peptide OH-CATH30 selectively regulates the innate immune response to protect against sepsis. J. Med. Chem. 2013, 56, 9136–9145. [Google Scholar] [CrossRef]
- Kowtharapu, B.S.; Murín, R.; Jünemann, A.G.; Stachs, O. Role of corneal stromal cells on epithelial cell function during wound healing. Int. J. Mol. Sci. 2018, 19, 464. [Google Scholar] [CrossRef] [Green Version]
- Varela-Fernández, R.; García-Otero, X.; Díaz-Tomé, V.; Regueiro, U.; López-López, M.; González-Barcia, M.; Isabel Lema, M.; Otero-Espinar, F.J. Mucoadhesive PLGA nanospheres and nanocapsules for lactoferrin controlled ocular delivery. Pharmaceutics 2022, 14, 799. [Google Scholar] [CrossRef]
- Vasconcelos, A.; Vega, E.; Perez, Y.; Gomara, M.J.; Garcia, M.L.; Haro, I. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery. Int. J. Nanomed. 2015, 10, 609–631. [Google Scholar] [CrossRef] [Green Version]
Formulations | Adverse Effect | Test Score | |||||||
---|---|---|---|---|---|---|---|---|---|
Time (h) | |||||||||
0.5 | 1 | 2 | 4 | 12 | 24 | 48 | 72 | ||
Saline | Discharge | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Cornea | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Conjunctiva | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Lids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Commercially available eye drops | Discharge | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Cornea | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Conjunctiva | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Lids | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | |
OH-CATH30 | Discharge | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
Cornea | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Conjunctiva | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Lids | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | |
PLGA-OH-CATH30 | Discharge | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Cornea | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Conjunctiva | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Lids | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Days | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
Redness | NT | 3.96 ± 0.23 | 3.37 ± 0.21 | 3.47 ± 0.45 | 3.45 ± 0.25 | 3.77 ± 0.25 |
OC | 3.57 ± 0.40 | 2.27 ± 0.45 | 1.36 ± 0.2 | 0.83 ± 0.25 | 0.37 ± 0.03 | |
POC | 3.43 ± 0.38 | 2.03 ± 0.25 | 1.03 ± 0.15 | 0.30 ± 0.44 | 0.06 ± 0.02 | |
CAE | 3.47 ± 0.38 | 2.09 ± 0.17 | 1.01 ± 0.26 | 0.22 ± 0.30 | 0.05 ± 0.01 | |
Lacrimal secretion | NT | 1.86 ± 0.1 | 1.93 ± 0.12 | 1.87 ± 0.32 | 1.83 ± 0.06 | 1.83 ± 0.06 |
OC | 1.73 ± 0.32 | 1.13 ± 0.12 | 0.97 ± 0.06 | 0.29 ± 0.05 | 0.13 ± 0.02 | |
POC | 1.5 ± 0.17 | 0.88 ± 0.26 | 0.62 ± 0.26 | 0.06 ± 0.01 | 0.00 ± 0.00 | |
CAE | 1.67 ± 0.42 | 0.84 ± 0.3 | 0.61 ± 0.36 | 0.07 ± 0.05 | 0.00 ± 0.00 | |
Mucoid discharge | NT | 2.93 ± 0.32 | 2.83 ± 0.31 | 2.73 ± 0.21 | 2.77 ± 0.23 | 2.83 ± 0.10 |
OC | 2.37± 0.2 | 1.55 ± 0.26 | 0.97 ± 0.32 | 0.67 ± 0.07 | 0.00 ± 0.00 | |
POC | 2.17 ± 0.31 | 1.34 ± 0.15 | 0.62 ± 0.12 | 0.06 ± 0.03 | 0.00 ± 0.00 | |
CAE | 2.21 ± 0.44 | 1.67 ± 0.36 | 0.51 ± 0.1 | 0.07 ± 0.02 | 0.00 ± 0.00 | |
Response to ocular stimulus | NT | 3.87 ± 0.72 | 3.53 ± 0.32 | 2.27 ± 0.25 | 1.9 ± 0.1 | 1.81± 0.26 |
OC | 3.53 ± 0.12 | 2.36 ± 0.26 | 0.83 ± 0.35 | 0.22 ± 0.06 | 0.00 ± 0.00 | |
POC | 3.32 ± 0.06 | 2.15 ± 0.17 | 0.68 ± 0.31 | 0.07 ± 0.05 | 0.00 ± 0.00 | |
CAE | 3.27 ± 0.06 | 2.07 ± 0.15 | 0.53 ± 0.15 | 0.09 ± 0.02 | 0.00 ± 0.00 | |
Swelling of the eyelid | NT | 3.72 ± 0.32 | 3.97 ± 0.06 | 3.64 ± 0.15 | 3.64 ± 0.06 | 3.71 ± 0.26 |
OC | 3.27 ± 0.06 | 2.77 ± 0.36 | 1.77 ± 0.31 | 0.07 ± 0.31 | 0.00 ± 0.00 | |
POC | 3.7 ± 0.26 | 2.73 ± 0.2 | 1.43 ±0.03 | 0.03 ± 0.01 | 0.00 ± 0.00 | |
CAE | 3.57 ± 0.35 | 2.82± 0.2 | 1.35 ± 0.4 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, X.; Dong, X.; Shan, H.; Qin, Z. Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach. Biomolecules 2023, 13, 1244. https://doi.org/10.3390/biom13081244
Jiao X, Dong X, Shan H, Qin Z. Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach. Biomolecules. 2023; 13(8):1244. https://doi.org/10.3390/biom13081244
Chicago/Turabian StyleJiao, Xiaoqian, Xufeng Dong, Hu Shan, and Zhihua Qin. 2023. "Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach" Biomolecules 13, no. 8: 1244. https://doi.org/10.3390/biom13081244
APA StyleJiao, X., Dong, X., Shan, H., & Qin, Z. (2023). Assessing the Efficacy of PLGA-Loaded Antimicrobial Peptide OH-CATH30 Microspheres for the Treatment of Bacterial Keratitis: A Promising Approach. Biomolecules, 13(8), 1244. https://doi.org/10.3390/biom13081244