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Abstract: Many diseases in the human body are related to the level of L-cysteine. Therefore, it is
crucial to establish an efficient, simple and sensitive platform for L-cysteine detection. In this work,
we synthesized platinum palladium bimetallic nanoparticles (Van-Ptm/Pdn NPs) using vancomycin
hydrochloride (Van) as a stabilizer, which exhibited high oxidase-like catalytic activity. In addition,
the catalytic kinetics of the Van-Pt1/Pd1 NPs followed the typical Michaelis–Menten equation,
exhibiting a strong affinity for 3,3′,5,5′-tetramethylbenzidine substrates. More importantly, we
developed a simple and effective strategy for the sensitive colorimetric detection of L-cysteine using
biocompatible Van-Pt1/Pd1 NPs. The detection limit was low, at 0.07 µM, which was lower than the
values for many previously reported enzyme-like detection systems. The colorimetric method of the
L-cysteine assay had good selectivity. The established method for the detection of L-cysteine showed
promise for biomedical analysis.

Keywords: bimetallic; nanozymes; colorimetric; L-cysteine; detection

1. Introduction

L-cysteine is one of the sulfur-containing α-amino acids with good water solubil-
ity. Meanwhile, L-cysteine is involved in the reduction process of cells and phospho-
lipid metabolism in the liver. The intracellular concentration of L-cysteine is usually
around 30–200 µM [1]. High or low levels of L-cysteine in the body can cause diseases [2].
Therefore, it is important to establish an efficient, reliable and sensitive L-cysteine assay plat-
form with which to detect its concentration. Currently, many methods have been reported
for the detection of L-cysteine, including electrochemical methods, high-performance
liquid chromatography, spin photometric methods, fluorescence detection and colorimet-
ric detection [3–6]. However, many detection methods are limited in terms of their wide
application by their cost, detection time, toxicity and environmental hazards.

In recent years, colorimetric detection has been considered as a promising method
for the detection of L-cysteine due to its simplicity of operation and good visualization [7].
Many natural enzymes have been widely used in colorimetric assays. For example,
Huang et al. [8] used the peroxidase activity of fig protease for the colorimetric assay
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of L-cysteine. The application of natural enzymes was limited due to shortcomings such as
their complex extraction process, fallibility and cost.

More recently, artificial enzymes with enzyme-like activities have been devel-
oped. Since the first study of Fe3O4 nanomaterials for peroxidase-like activity in
2007 [9], nanozyme-based colorimetric sensing platforms have contributed to the rapid
development of the diagnostic and bioanalytical fields. A variety of nanozymes in-
cluding noble metals [10], metal oxides [11,12], carbon-based materials [13,14] and other
nanomaterials [15–18] have been reported. Pandey et al. [19] reported the structural charac-
terization of noble metal monometallic, bimetallic and trimetallic nanoparticles, in addition
to evaluating their biocatalytic activity for the non-enzymatic sensing of glucose. In par-
ticular, artificial nanozymes composed of noble metal nanoparticles have a wide range of
applications due to their high interfacial stability, easy preparation and modification [20],
as in the case of Pt nanotubes [21], gold nanoparticles [22] and Pd nanoparticles. Compared
with monometallic nanoparticles, bimetallic nanoparticles with synergistic effects have re-
ceived widespread attention because of their higher catalytic activity [23,24]. Jang et al. [25]
reported a TiO2-loaded Pt-Pd bimetallic model catalyst. Compared with the monometallic
catalyst, the d electrons of Pt-Pd bimetallic nanoparticles were transferred from Pt 5d to
Pd 4d upon alloying and the orbital hybridization and electronic state broadening of Pt
and Pd. This led to a significant improvement in the catalytic performance of the bimetallic
Pt-Pd catalyst. The metals Pt and Pd are both face-centered, cubic-structured metals with
similar lattice constants; thus, they are more likely to form a homogeneous alloy. When Pt
and Pd form an alloy, the coupling between the metals can improve their catalytic perfor-
mance. Jin et al. [26] reported a Pd-Pt bimetallic alloy nanowire that exhibited excellent
oxidase activity in an acidic environment.

Despite their small size, noble metal nanoparticles have a large specific surface area
and high catalytic activity. But they tend to aggregate easily in solutions, leading to reduced
activity. Therefore, the introduction of various carriers to stabilize small nanoparticles is
considered one of the most effective ways to improve the catalytic activity and stability of
enzyme mimics [27]. Among the nanoparticles, the carriers usually serve as a backbone
to widely disperse and stabilize the active components, such as inorganic mesoporous
silica [28], polymeric carriers [29] and polysaccharides, etc. [30]. Because of their good bio-
compatibility and easy modification, peptides have become a good means of modification
on the surface of nanomaterials [31]. Vancomycin hydrochloride (Van), as an antibacterial
peptide, is a glycopeptide antibiotic with a molecular weight of 1486 and has great potential
for stabilizing precious metal nanoparticles.

In this study, we synthesized platinum palladium bimetallic nanoparticles (Van-
Ptm/Pdn NPs, m = 1, 2; n = 1, 2) using Van as a biological template for the first time.
The particle size of the Van-Ptm/Pdn NPs was around 5 nm. A high catalytic activity of the
Van-Pt1/Pd1 NPs was achieved by exploring the preparation method and the molar ratio
of platinum and palladium. Based on the Van-Pt1/Pd1 NPs’ oxidase-like and peroxidase-
like enzymatic activity, we developed a simple and effective colorimetric method for the
determination of L-cysteine with a low detection limit, a wide detection range and good
selectivity. Importantly, the use of Van may reduce the toxicity of noble metals, which may
offer the possibility for the wide application of noble metal nanozymes.

2. Materials and Methods
2.1. Materials

Vancomycin hydrochloride (Van), potassium tetrachloroplatinate (K2PtCl4), sodium tetra-
chloropalladate (Na2PdCl4), sodium borohydride (NaBH4), 3,3′,5,5′-tetramethylbenzidine (TMB),
H2O2, dopamine hydrochloride (DA·HCl), p-benzoquinone (BQ), sodium nitride (NaN3),
isopropyl alcohol (IPA), disodium ethylenediaminetetraacetate (EDTA-2Na) and dimethyl
sulfoxide (DMSO) were purchased from Aladdin (Shanghai, China). The HeLa cell is
a human cervical cancer cell line. Dialysis bags (MWCO = 14,000) were purchased from
Laboratories Inc. (Piscataway, NJ, USA).



Biomolecules 2023, 13, 1254 3 of 17

2.2. Synthesis of Van-Ptm/Pdn Nanoparticles

(a) A total of 73 µL of Van solution (10 mM) was added to a 2 mL polyethylene (PE) tube,
and then 98 µL of K2PtCl4 solution (10 mM) was added. The solution was incubated
at 25 ◦C at 600 rpm for 12 h. Then, 10 µL of NaBH4 solution (1 M, dissolved in 0.3 M
NaOH solution) was added, and hydrochloric acid (1 M) was added to adjust the
pH of the solution to approximately 7 after 3 h. Then, 48 µL of Na2PdCl4 solution
(10 mM) was added, and 10 µL of NaBH4 solution (1 M) was added after 12 h. After
24 h of dialysis, the product obtained was Van-Pt2-Pd1 NPs (Pt:Pd = 2:1).

(b) The Van-Pd1-Pt2 NPs (Pt:Pd = 2:1) were prepared in a similar manner to the synthesis
of Van-Pt2-Pd1 NPs. The order of the K2PtCl4 and Na2PdCl4 solutions was reversed.

(c) One-pot method: Van (73 µL, 10 mM), K2PtCl4 (98 µL, 10 mM) and Na2PdCl4 (48 µL,
10 mM) solutions were mixed in PE tubes and kept at 25 ◦C for 12 h. Then, 20 µL
of NaBH4 solution (1 M, dissolved in 0.3 M NaOH solution) was added and kept
at 25 ◦C for 12 h. The solution was dialyzed for 24 h to obtain Van-Pt2/Pd1 NPs
(Pt:Pd = 2:1). We prepared Van-Pt1/Pd1 NPs in the same way (Pt: Pd = 1:1). The
Pt1/Pd1 NPs were prepared in water, and the other conditions were the same as those
for the Van-Pt1/Pd1 NPs.

2.3. Characterization of Van-Ptm/Pdn Nanoparticles

The absorbance in the wavelength range of 200–800 nm was measured with a UV-vis
spectrophotometer. The morphology was photographed using transmission electron mi-
croscopy (TEM); the crystal structure of the nanoparticles was characterized using an X-ray
diffraction (XRD) meter with a diffraction ratio of 10◦–90◦; the elements and valence states
of the nanoparticles were determined via X-ray photoelectron spectroscopy (XPS); and the
hydrodynamic size and zeta potential were determined with a Zetasizer Nano-ZS90.

2.4. Activity of Van-Pt1/Pd1 Nanoparticles

The oxidase-like activity of the Van-Pt1/Pd1 nanoparticles was determined by mea-
suring the oxidized TMB. A total of 200 µL of Van-Pt1/Pd1 nanoparticles (CPt = 0.45 mM)
was added to a 2 mL PE tube. Then, 300 µL of 0.2 M HAc-NaAc solution (pH = 3) was
added, and 1000 µL of 0.2 M HAc-NaAc solution containing 0.6 mM TMB was added.
The samples were incubated in a constant-temperature mixer at 25 ◦C and 600 rpm for
5 min. The absorbance was measured using a UV-vis spectrophotometer. In addition, the
relative activity of the Van-Pt1/Pd1 NPs was determined at different pHs (pH = 1–12) and
temperatures (5–65 ◦C). The samples added to the PE tubes were varied according to the
experimental requirements.

The peroxidase-like activity of the Van-Pt1/Pd1 nanoparticles was determined by
assaying the oxidized TMB produced under hydrogen peroxide conditions. 200 µL of
Van-Pt1/Pd1 nanoparticles (CPt = 0.45 mM) were added to a 2 mL PE tube. Then, 300 µL,
0.2 M of HAc-NaAc solution (pH = 3) was added; 1000 µL of 0.2 M HAc-NaAc solution
containing 0.6 mM TMB was added, 100 µL, 0.03 M H2O2 solution was added. The samples
were incubated in a constant temperature mixer at 25 ◦C and 600 rpm for 2 min. The
absorbance was measured by UV-vis spectrophotometer.

2.5. Catalytic Kinetics of Van-Pt1/Pd1 Nanoparticles

In total, 200 µL of Van-Pt1/Pd1 nanoparticles (CPt = 0.45 mM) was added to a 2 mL PE
tube. Then, we added 0.2 M of HAc-NaAc solution (pH = 3) and 0.2 M HAc-NaAc solution
containing 0.6 mM TMB. The absorbance was measured using a UV-vis spectrophotometer.
The amount of buffer solution was 1200–300 µL at 100 µL intervals, and the amount of
buffer solution containing TMB was 100–1000 µL at 100 µL intervals. The total amount of
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liquid in the PE tube was 1500 µL. The affinity for the substrate and the maximum rate of
the catalytic reaction during enzyme catalysis was studied using Formula (1) [32].

v =
Vm[S]

Km + [S]
(1)

Here, Vm is the maximum reaction rate; [S] is the substrate concentration; and Km is
the Michaelis–Menten constant.

2.6. The Mechanism of Oxidase-Like Activity

The types of reactive oxygen species (ROS) produced during catalysis were studied
by adding different ROS inhibitors to the solution. A total of 200 µL of Van-Pt1/Pd1
NPs (CPt = 0.45 mM) was added to a 2 mL PE tube. Then, 1000 µL of 0.2 M HAc-NaAc
solution containing 0.6 mM TMB was added, and 200 µL of different solutions of re-
active oxygen inhibitor solutions (10 mM) was added. The samples were incubated in
a constant-temperature mixer at 30 ◦C and 600 rpm for 5 min. The absorbance was mea-
sured using a UV-vis spectrophotometer. The ROS inhibitors were p-benzoquinone (BQ),
sodium nitride (NaN3), isopropyl alcohol (IPA) and disodium ethylenediaminetetraacetate
(EDTA-2Na), respectively.

2.7. Detection of L-cysteine Using Van-Pt1/Pd1 Nanoparticles

A total of 50 µL of Van-Pt1/Pd1 nanozymes (CPt = 0.45 mM) was added to a 2 mL PE
tube, followed by 1000 µL of 0.2 M, pH = 3 HAc-NaAc solution containing 0.6 mM TMB,
and then 200 µL of aqueous L-cysteine solution at different concentrations. Then, the tube
was placed in a constant-temperature reaction at 30 ◦C and 600 rpm for 5 min. Finally,
the UV-vis spectrum was measured. The standard curve of the assay was obtained using
the difference in absorbance versus concentration. The real samples were replaced with
different samples with different concentrations of L-cysteine containing the spiked amount,
and the recoveries were calculated according to the spiked recovery Formula (2) [33].

recovery rate% =
Ai − A0

A∗i − A0
× 100 (2)

Ai
* is the theoretical absorbance, and Ai is the actual absorbance.

2.8. Biocompatibility Test

The biocompatibility of the nanozymes was determined using the MTT method. First,
cells were added to 96-well plates and incubated in a cell incubator for 24 h. Then, samples
(Csamples = 12.5–200 µg/mL) including Van and Van-Pt1/Pd1 NPs were added to the 96-well
tissue culture plates and incubated for 24 h. After that, MTT (100 µL, 500 µg/mL) was
added. After 4 h, the MTT solution was removed, and DMSO solution was added. Finally,
the absorbance of the 96-well plates was measured using a microplate reader.

3. Results and Discussion
3.1. Characterization of Van-Ptm/Pdn Nanoparticles

As shown in Figure 1A, a UV-vis spectrometer was used to scan the Van-Ptm/Pdn
nanoparticles within 250–700 nm. The characteristic bands of Pt2+ were at 392 nm and
329 nm, and Pd2+ had a distinct characteristic absorption band at 420 nm. The Van-Ptm/Pdn
NPs had no obvious characteristic absorption bands of Pt2+ or Pd2+, which may be because
Pt2+ and Pd2+ were reduced to Pt and Pd, respectively. The mere absence of Pt2+ and
Pd2+ transitions in the UV-vis spectra suggested that Van-Ptm/Pdn nanoparticles may have
formed. In addition, the color of the Van-Ptm/Pdn NPs was brown (Figure 1B), similar to
the color of previously reported Pt/Pd NPs [34]. All these results indicated the successful
synthesis of Van-Ptm/Pdn NPs.



Biomolecules 2023, 13, 1254 5 of 17
Biomolecules 2023, 13, x 5 of 18 
 

 
Figure 1. (A) UV-vis spectra of Van-Ptm/Pdn NPs. (B) Corresponding photographs of Van-Ptm/Pdn 
NPs and (C) schematic of the preparation of Van-Ptm/Pdn NPs (m = 1, 2; n = 1, 2). 

As shown in Figure 2A–H, the particle sizes of the Van-Pd1-Pt2 NPs, Van-Pt2-Pd1 NPs, 
Van-Pt2/Pd1 NPs and Van-Pt1/Pd1 NPs were 5.3 ± 0.2 nm, 4.8 ± 0.6 nm, 5.7 ± 0.4 nm and 5.5 
± 0.5 nm, respectively. There was no significant difference in the particle size of the nano-
particles using the three synthesis methods. The Van-Pt2-Pd1 NPs and Van-Pd1-Pt2 NPs 
had a slight degree of aggregation. The Van-Pt2/Pd1 NPs and Van-Pt1/Pd1 NPs had better 
dispersion. The size of the Van-Ptm/Pdn NPs was very small. The aggregation of the Van-
Pt2-Pd1 NPs and Van-Pd1-Pt2 NPs may be due to the long reaction time. 

Figure 1. (A) UV-vis spectra of Van-Ptm/Pdn NPs. (B) Corresponding photographs of Van-Ptm/Pdn

NPs and (C) schematic of the preparation of Van-Ptm/Pdn NPs (m = 1, 2; n = 1, 2).

As shown in Figure 2A–H, the particle sizes of the Van-Pd1-Pt2 NPs, Van-Pt2-Pd1 NPs,
Van-Pt2/Pd1 NPs and Van-Pt1/Pd1 NPs were 5.3 ± 0.2 nm, 4.8 ± 0.6 nm, 5.7 ± 0.4 nm and
5.5 ± 0.5 nm, respectively. There was no significant difference in the particle size of the
nanoparticles using the three synthesis methods. The Van-Pt2-Pd1 NPs and Van-Pd1-Pt2
NPs had a slight degree of aggregation. The Van-Pt2/Pd1 NPs and Van-Pt1/Pd1 NPs had
better dispersion. The size of the Van-Ptm/Pdn NPs was very small. The aggregation of the
Van-Pt2-Pd1 NPs and Van-Pd1-Pt2 NPs may be due to the long reaction time.

The catalytic reaction of the nanoparticles was carried out in aqueous solutions, the
hydrodynamic size and zeta potential of nanoparticles affect their catalytic activity. As
shown in Figure 3A, the hydrodynamic sizes of the Van-Pd1-Pt2 NPs, Van-Pt2-Pd1 NPs, Van-
Pt2/Pd1 NPs and Van-Pt1/Pd1 NPs were 36.9 ± 4.1 nm, 34.2 ± 1.6 nm, 18.2 ± 1.0 nm and
16.1 ± 1.2 nm, respectively. They were slightly larger than those observed using TEM. The
reason for this is that the water molecules form a thin water film around the nanoparticles
in solution, resulting in a larger hydrodynamic size than that observed with TEM [35].
Compared with the Van-Pd1-Pt2 NPs and Van-Pt2-Pd1 NPs, the Van-Pt2/Pd1 NPs and
Van-Pt1/Pd1 NPs prepared using the one-pot method exhibited a smaller hydrodynamic
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size, which may be due to the dispersion performance of the Van-Pt2/Pd1 NPs and Van-
Pt1/Pd1 NPs. In addition, the zeta potentials of the Van-Ptm/Pdn NPs were also determined
(Figure 3B). The zeta potentials of the Van-Pd1-Pt2 NPs, Van-Pt2-Pd1 NPs, Van-Pt2/Pd1
NPs and Van-Pt1/Pd1 NPs in aqueous solution were −28.5 ± 2.1 mV, −29.5 ± 3.2 mV,
−18.9 ± 2.5 mV and−20.6± 2.5 mV, respectively. The absolute values of the zeta potentials
of all four nanoparticles were greater than 18 mV. Their zeta potential favored their good
stability and maintenance of catalytic activity in the solution state.
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The catalytic activity of nanozymes is also closely related to their preparation methods
and reaction conditions. In order to obtain Van-Ptm/Pdn NPs with an excellent catalytic
performance, we prepared nanoparticles with different metal ratios and different synthesis
methods. Figure 3C shows that all the Van-Ptm/Pdn NPs had catalytic activity. Among
them, the Van-Pt1/Pd1 NPs prepared using the one-pot method exhibited the highest
catalytic ability for TMB oxidation. This indicated that the nanoparticles prepared using
the one-pot method had good catalytic activity. In this case, the reaction time of the Van-
Pt1/Pd1 NPs prepared using the one-pot method was 12 h, while the reaction time of the
Van-Pt1-Pd1 NPs and Van-Pd1-Pt1 NPs prepared in a stepwise manner was 24 h, which
caused the nanoparticles to become aggregated, leading to a decrease in the activity of
the oxidase-like nanoparticles as compared to those obtained using the one-pot method.
Meanwhile, we also compared other metal molar ratios of Van-Ptm/Pdn nanoparticles,
i.e., m:n = 1:1, 1:2, 2:1, 1:5, 5:1, 1:10 and 10:1, as shown in Figure S1. The results showed that
the Van-Pt1/Pd1 NPs had the highest catalytic activity for TMB.

In short, among the three synthesis methods, the nanoparticles synthesized using the
one-pot method had better dispersion and a smaller hydrodynamic size, which caused
the nanoparticles to have more active sites; hence, the one-pot method was chosen to
prepare the Pt Pd bimetallic nanoparticles. When comparing the catalytic activities of
the nanozymes prepared with different molar ratios of Pt to Pd, the Van-Pt1/Pd1 NPs
showed the highest catalytic activity; thus, we chose the Van-Pt1/Pd1 NPs for the
subsequent experiments.

To further test our successful synthesis of Van-Ptm/Pdn NPs, we performed XPS and
XRD characterizations of the Van-Pt1/Pd1 NPs. The XPS spectra of the Van-Pt1/Pd1 NPs
showed five elements, C, N, O, Pt and Pd, as demonstrated in Figure 4A. Three elements, C,
N and O, were derived from the biological template of Van, while Pt and Pd elements were
reduced from K2PtCl4 and Na2PdCl4, respectively. The binding energies at 71.2 eV and
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74.7 eV corresponded to the Pt 4f7/2 and Pt 4f5/2 orbitals of the Pt elements in Figure 4B,
respectively [36]. This binding energy coincided with the binding energy of the 4f orbital of
the Pt atom, which indicated that the Pt2+ in K2PtCl4 had been reduced to a Pt atom. In
addition, the binding energies in Figure S2 are 284.6 eV, 286.2 eV and 288.6 eV, for which the
corresponding chemical groups are C-C, C-O and C=O, respectively, and the C element was
provided by Van [37–39]. Figure 4C shows the XPS spectrum of Pd 3d. The binding energies
of 335.0 eV and 340.5 eV correspond to Pd 3d5/2 and Pd 3d3/2 orbitals, respectively, which
were consistent with the 3d orbital binding energy of Pd at a valency of 0 in the Pt/Pd
alloy [40]. Therefore, the successful loading of Pt/Pd alloy nanoparticles on the template of
Van could be determined using XPS spectra, further proving our successful synthesis of
Van-Pt1/Pd1 NPs. The XRD results showed that the diffraction peaks appeared at 39.76◦,
46.24◦, 67.45◦, 81.28◦ and 85.71◦, which correspond to the (1 1 1), (2 0 0), (2 2 0), (3 1 1) and
(2 2 2) crystal planes of Pd and Pt, respectively (Figure 4D). Among the peaks, 39.76◦ and
46.24◦ are attributed to the planar crystal structure of Pt and Pd nanoparticles. Comparing
the reference code 01-001-1194 for Pt and the reference pair 46–1043 for Pd, the diffraction
peak is slightly higher than that of Pt and slightly lower than that of Pd. It is clear that the
diffraction angles of the Van-Pt1/Pd1 NP alloy are in the middle of the diffraction peaks of
Pt and Pd [41]. Thus, the XRD of the Pt-Pd alloy nanoparticles proved that we successfully
synthesized Van-Pt1/Pd1 NPs using Van. The other peaks observed at 67.45◦, 81.28◦ and
85.71◦ were related to the planar formation of Pt and Pd in the Van-Pt1/Pd1 NPs.
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Figure 4. (A) XPS spectrum of Van-Pt1/Pd1 NPs, high-resolution XPS spectra of (B) Pt and (C) Pd,
and (D) XRD spectrum of Van-Pt1/Pd1 NPs.

3.2. Catalytic Activity of Van-Pt1/Pd1 NPs

To test the catalytic activity of the Van-Pt1/Pd1 NPs, we designed the following
groups: 1TMB, 2Van-Pt1/Pd1 NPs, 3TMB + Van-Pt1/Pd1 NPs and 4TMB+ Pt1/Pd1 NPs. As
shown in Figure 5A, the TMB + Van-Pt1/Pd1 NP group showed the highest characteristic
absorption peak, and this characteristic absorption peak was provided by the oxidized
TMB (oxTMB) [42,43]. During this experiment, the absorbance of the TMB and Van-Pt1/Pd1



Biomolecules 2023, 13, 1254 9 of 17

NPs at 652 nm was close to 0, while the absorbance of the TMB + Pt1/Pd1 NP group was
only 26% that of the TMB + Van-Pt1/Pd1 NPs group. Therefore, the oxidase-like activity
originated from the synthesized Van-Pt1/Pd1 NPs.
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We also designed different groups to investigate the peroxidase-like activity of Van-
Pt1/Pd1 NPs: 1TMB + H2O2, 2Van-Pt1/Pd1 NPs + H2O2, 3TMB + Van-Pt1/Pd1 NPs and
4TMB + Van-Pt1/Pd1 NPs + H2O2. As shown in Figure 5B, the characteristic absorption
peak of oxTMB at 652 nm was the highest in the Van-Pt1/Pd1 NPs + TMB + H2O2 group
after 2 min of reaction. In addition, the TMB + H2O2 and Van-Pt1/Pd1 NPs + H2O2 groups
did not show the characteristic absorption peak of oxTMB at 652 nm. Importantly, oxTMB
peaks were observed in the TMB + Van-Pt1/Pd1 NP group under the influence of Van-
Pt1/Pd1 NPs oxidase-like activity, but the absorbance was 25% lower than that of the
TMB + Van-Pt1/Pd1 NPs + H2O2 group. Therefore, the Van-Pt1/Pd1 NPs had not only
good oxidase-like activity but also peroxidase-like activity. The oxidase-like activity of the
Van-Pt1/Pd1 NPs was very high; thus, the oxidase-like activity of the Van-Pt1/Pd1 NPs
was investigated in the subsequent experiments.

The oxidase-like activity of Van-Pt1/Pd1 NPs is influenced by external conditions, the
main influencing factors being pH and temperature. In order to find the optimal conditions
for enzyme catalysis, the oxidase-like activity of the Van-Pt1/Pd1 NPs at different pHs and
temperatures was investigated. From Figure 5C, it can be seen that the Van-Pt1/Pd1 NPs
had the best oxidase-like activity at pH = 3. The oxidase-like activity of the Van-Pt1/Pd1 NPs
decreased at other pHs. Therefore, the optimal pH for the oxidase-like activity of the Van-
Pt1/Pd1 NPs was 3. The pH affects the binding of the TMB with the Van-Pt1/Pd1 NPs. The
substrate TMB should not be suitable for binding to the Van-Pt1/Pd1 NPs at a non-optimal
pH, leading to a decrease in oxidase-like activity. Furthermore, Van-Pt1/Pd1 NPs should
have the highest amount of reactive oxygen species at pH = 3. The effect of temperature
on the enzyme activity was then explored under the conditions of the optimal pH. In
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Figure 5D, it can be seen that the highest value of the nanozymes’ activity was reached
at 30 ◦C. The activity of the nanozymes decreased at all other temperatures. However,
the activity of the Van-Pt1/Pd1 NPs was maintained at a minimum of approximately
70%. Therefore, the optimal temperature for the Van-Pt1/Pd1 NPs was 30 ◦C, and they
had a wide temperature range of catalytic performance. Thus, we can define the optimal
conditions for the enzymatic activity of Van-Pt1/Pd1 NPs as pH = 3 and 30 ◦C. Subsequent
experiments could be performed under these conditions. In addition, the catalytic activity
of nanozymes is also related to nanoscale factors, such as their size, morphology and surface,
which significantly affect their activity. Nayak et al. [44] assembled polyoxometalate (POM)
(phosphotungstic acid (PTA)/phosphomolybdic acid (PMA)) nanoclusters and glucose
oxidase (GOx) into microsphere structures, which facilitated the better diffusion of the
reactants, intermediates and products due to the small size of the microspheres. This
resulted in a 3–5-fold increase in the peroxidase-like activity of the PTA nanoclusters in the
nanozyme microspheres.

To investigate the catalytic activity of the Van-Pt1/Pd1 NPs, the kinetic characterization
of the nanozymes was required. The reaction kinetics of the nanozymes were determined
by varying the concentration of the substrate TMB [32]. As shown in Figure 6A, the
catalytic reaction followed the Michaelis–Menten equation in the concentration range of
the substrate TMB (0.04–0.4 mM). As shown in Figure 6B, the standard equation was
obtained as y = 0.00899x + 0.04109 (R2 = 0.999) using the double-inverse data in Figure 6A.
The Km and Vmax values of the Van-Pt1/Pd1 NPs were 0.218 mM and 24.337 × 10−8

Ms−1, respectively. It can be seen from Table 1 that the Km of the Van-Pt1/Pd1 NPs was
smaller compared to the other nano-enzymes, such as ZIF-67 (13.69 mM), PdPt3-LNT
NDs (0.263 mM), CeM (0.66 mM) and Cy-AuNCs (1.925 mM). Thus, the Van-Pt1/Pd1 NPs
had an excellent affinity for TMB. In addition, the Van-Pt1/Pd1 NPs had a larger Vmax
(24.337 × 10−8 Ms−1) compared to the other nanomaterials, including the PdPt3-LNT NDs
(2.88 × 10−8 Ms−1), Pt-HMCN (15.4 × 10−8 Ms−1), Pd150-PCRP NPs (15.58 × 10−8 Ms−1)
and N-CQDs (4.49 × 10−8 Ms−1), which indicated that the Van-Pt1/Pd1 NPs had a better
catalytic effect compared to monometallic materials and non-precious metals. Therefore,
the Van-Pt1/Pd1 NPs had excellent oxidase-like activity, as shown not only by their larger
Vmax but also by their excellent affinity with TMB.

Table 1. Comparison of Km and Vmax.

Materials Substrate Km (mM) Vmax ( × 10−8 Ms−1) Reference

Van-Pt1/Pd1 NPs TMB 0.218 24.337 this work
PdPt3-LNT NDs TMB 0.263 2.88 [45]

Pt-HMCN TMB 0.124 15.4 [46]
Pd150-PCRP NPs TMB 0.2 15.58 [47]

N-CQDs TMB 0.515 4.49 [48]
CeM TMB 0.66 1.71 [49]

Cy-AuNCs TMB 1.925 212.3 [50]
ZIF-67 TMB 13.69 31.96 [51]

Meanwhile, the oxidase-like activity of the Van-Pt1/Pd1 NPs was maintained at
around 100% after one week of storage under ambient conditions, as shown in Figure 6C.
Although the oxidase-like activity of the Van-Pt1/Pd1 NPs fluctuated to some extent, the
variation was within the range of 98–102%. In addition, after 120 min of incubation in the
temperature range of 10–90 ◦C, the catalytic performance of the Van-Pt1/Pd1 NPs remained
around 90% in the range of 70–90 ◦C, as shown in Figure 6D. These findings indicated
that the Van-Pt1/Pd1 NPs had good stability in different pH conditions and temperature
tolerance, and they had good catalytic activity in extreme environments.
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3.3. Mechanism of the Oxidase-Like Activity of Van- Pt1/Pd1 NPs

The oxidation reaction of TMB based on Van-Pt1/Pd1 NPs is closely related to reactive
oxygen species [20]. Reactive oxygen species include as singlet oxygen (1O2), hydroxyl rad-
ical (·OH), superoxide anion (O2·−), etc. The mechanism of the oxidase-like activity of Van-
Pt1/Pd1 NPs was investigated by adding different reactive oxygen species inhibitors, such
as BQ, NaN3 and IPA, which have quenching effects on O2·−, 1O2 and ·OH, respectively.

To investigate the mechanism of the oxidase-like activity of Van-Pt1/Pd1 NPs, different
experimental groups were set up, as shown in Figure 7A. It showed that the addition
of NaN3 into the Van-Pt1/Pd1 NPs + TMB system (36%) had the greatest effect on the
absorbance of the reaction, followed by the effect of IPA (77%), while BQ (104%) had the
least effect and showed almost no difference compared with the control group of Van-
Pt1/Pd1 NPs + TMB (100%). Therefore, the type of reactive oxygen species produced by
the Van-Pt1/Pd1 NPs with oxidase-like activity was mainly 1O2, containing a small amount
of ·OH with no O2·− production.
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3.4. L-cysteine Assay

Here, the cytotoxicity of the Van-Pt1/Pd1 NPs and Van was explored using the MTT
assay. As shown in Figure 8A, when the concentration of the Van-Pt1/Pd1 NPs and
Van was 200 µg/mL, the cell viability was maintained above 90%. This indicated that
the Van-Pt1/Pd1 NPs were non-cytotoxic, as compared to previously reported Pt NPs
and Pd NPs [52]. Therefore, the Van-Pt1/Pd1 NPs synthesized using the bio-template
method have good biocompatibility. As shown in Figure 8B, L-cysteine is a reducing
biomass that can reduce oxTMB to TMB. Therefore, we could use the excellent oxidase-
like activity of Van-Pt1/Pd1 NPs to establish a standard curve for the L-cysteine assay.
The experimental system included Van-Pt1/Pd1 NPs, TMB and L-cysteine. The UV-vis
spectrum of the solution was detected using a UV-vis spectrophotometer. As shown in
Figure 8C, the calibration showed a good linear relationship with the absorbance value
at 652 nm. The standard detection equation of the Van-Pt1/Pd1 NPs for L-cysteine was
Y = 0.379 + 15.367 × CL-cysteine (R2= 0.997), while the corresponding detection range of the
L-cysteine concentration was 6–100 µM, and the detection limit was 0.0703 µM. Table 2
shows a comparison of the detection ranges and detection limits of L-cysteine for different
materials. The Van-Pt1/Pd1 NPs (6–100 µM) had a wider linear range than the other
sensors, including the MoS2-Au@Pt (0.8–54.4 µM), SPB@Pt NPs (0.4–3.5 µM) and Au-
Ag (0.075–2 µM). In addition, Van-Pt1/Pd1 NPs had a lower detection limit (0.07 µM)
than other sensors, such as PdPt3-LNT NDs (3.10 µM), Cu@Au/Pt (4.00 µM), VS4 NPs
(2.50 µM) and CuMnO2 NFs (11.26 µM). Therefore, the colorimetric method had a wide
linear detection range and a low sensitivity detection limit.

Table 2. Comparison of L-cysteine detection range and detection limit for different materials.

Materials Detection
Method

Linear Range
(µM) LOD (µM) Reference

Van-Pt1/Pd1 NPs Colorimetry 6–100 0.07 this work
PdPt3-LNT NDs Colorimetry 0–200 3.10 [45]

MoS2-Au@Pt Colorimetry 0.8–54.4 0.50 [53]
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Table 2. Cont.

Materials Detection
Method

Linear Range
(µM) LOD (µM) Reference

SPB@Pt NPs Colorimetry 0.4–3.5 0.11 [54]
Cu@Au/Pt Colorimetry 0–400 4.00 [55]

VS4 NPs Colorimetry 5–100 2.50 [56]
CuMnO2 NFs Colorimetry 20–300 11.26 [57]

OV-Mn3O4 NFs Colorimetry 5–800 1.31 [58]
Ag NPs Colorimetry 0.001–1 0.001 [59]

silver NPs Colorimetry 1.5–6 0.05 [60]
QX-AgNPs Colorimetry 10–60 0.0027 [61]

PQDs Fluorescence 0–800 28.11 [62]
Au-Ag Fluorescence 0.075–2 0.04 [63]
oPAD Electrochemical 10–800 5.50 [64]Biomolecules 2023, 13, x 14 of 18 
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The selectivity of the Van-Pt1/Pd1 NPs was investigated by detecting L-cysteine (L-cys)
and potentially interfering substances, such as Mg2+, alanine (Ala), phenylalanine (Phe),
leucine (Leu), glycine (Gly), proline (Pro), glutamic acid (Glu), maltose (Mal), lactose (Lac)
and fructose (Fru). As shown in Figure 8D, the absorbance of L-cysteine was much higher
than that of the other interfering agents, even when the concentration of interfering agents
was three times higher than that of L-cysteine. This indicated that the Van-Pt1/Pd1 NPs
had good selectivity as probes for detecting L-cysteine. The selectivity of the Van-Pt1/Pd1
NPs for L-cysteine was high and reasonable, as compared with other reports [58,62].
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To assess the potential for, and feasibility of, application in practical assays, different
L-cysteine levels in mouse serum were monitored using a standard addition method. As
shown in Table 3, the recoveries are 98.8% and 105.6%, respectively, indicating that the
nanozymes can be applied in real samples. The good detection performance of Van-Pt1/Pd1
NPs may be related to the smaller particle size and better stability of the nanoparticles.

Table 3. Recovery of L-cysteine assay in different samples.

Sample
Added L-cysteine

Concentration
(µM)

Found L-cysteine
Concentration

(µM)
Recovery (%) RSD (%)

Mouse serum
50 52.1 100.2 0.57
90 90.1 102.8 1.11

4. Conclusions

In conclusion, we successfully synthesized a Van-Pt1/Pd1 NP bimetallic nanozyme
with good oxidase-like activity and peroxidase-like activity by exploring the synthesis
methods and metal ratios. The catalytic kinetics of the Van-Pt1/Pd1 NPs was in accordance
with the typical Michaelis–Menten equation, and the smaller Km proved that the Van-
Pt1/Pd1 NPs had a good affinity for TMB. The Van-Pt1/Pd1 NPs had a good storage stability.
Meanwhile, the Van-Pt1/Pd1 NPs were almost non-cytotoxic, as measured using the MTT
assay. More importantly, a simple, fast and reliable L-cysteine assay was established using
the prepared Van-Pt1/Pd1 NPs with a wide detection range of 6–100 µM and a low detection
limit of 0.07 µM. In conclusion, stable Van-Pt1/Pd1 NPs were synthesized successfully and
could be applied in the field of biomass detection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biom13081254/s1, Figure S1: Oxidase-like activity of Van-Ptm/Pdn
NPs with different ratios of Pt and Pd at 652 nm; Figure S2: High-resolution XPS spectrum of C;
Figure S3: Infrared spectra of Van and Van-Pt1/Pd1 NPs.
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