Improvement of the Physicochemical Limitations of Rhapontigenin, a Cytotoxic Analogue of Resveratrol against Colon Cancer
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Methods
2.2.1. Cell Line and Culture Conditions
2.2.2. Cell Viability Evaluation
2.2.3. Fluorescence Measurements
2.2.4. Mathematical Model to Calculate the Stoichiometry and Encapsulation Constants
2.2.5. Molecular Docking
2.2.6. Determination of the Thermodynamic Parameters of the Inclusion Complexes
2.2.7. Determination of Aqueous Solubility
2.2.8. Stability Test of Inclusion Complexes
2.2.9. Data Analysis
3. Results and Discussion
3.1. Cytotoxicity in Human Colorectal Cancer Cells Treated with RHA and Stilbene Analogues
3.2. Calculation of Stoichiometry and Selection of the Most Suitable CD to Complex RHA by Fluorescence Spectroscopy
3.3. Computational Selection of the Most Suitable CD to Complex RHA
3.4. Effect of pH on RHA Inclusion Complexes with HP-β-CD
3.5. Effect of Temperature on RHA Inclusion Complexes with HP-β-CD and Determination of Thermodynamic Parameters
3.6. Enhancement of the Water Solubility of RHA with HP-β-CD
3.7. Stability Test of CD Inclusion Complexes with RHA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Navarro-Orcajada, S.; Conesa, I.; Vidal-Sánchez, F.J.; Matencio, A.; Albaladejo-Maricó, L.; García-Carmona, F.; López-Nicolás, J.M. Stilbenes: Characterization, Bioactivity, Encapsulation and Structural Modifications. A Review of Their Current Limitations and Promising Approaches. Crit. Rev. Food Sci. Nutr. 2022, 1–19. [Google Scholar] [CrossRef]
- Tian, B.; Liu, J. Resveratrol: A Review of Plant Sources, Synthesis, Stability, Modification and Food Application. J. Sci. Food Agric. 2020, 100, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Orcajada, S.; Conesa, I.; Matencio, A.; Rodríguez-Bonilla, P.; García-Carmona, F.; López-Nicolás, J.M. The Use of Cyclodextrins as Solubility Enhancers in the ORAC Method May Cause Interference in the Measurement of Antioxidant Activity. Talanta 2022, 243, 123336. [Google Scholar] [CrossRef] [PubMed]
- Walle, T. Bioavailability of Resveratrol. Ann. N. Y. Acad. Sci. 2011, 1215, 9–15. [Google Scholar] [CrossRef]
- Ai, R.; Zhuang, X.-X.; Anisimov, A.; Lu, J.-H.; Fang, E.F. A Synergized Machine Learning plus Cross-Species Wet-Lab Validation Approach Identifies Neuronal Mitophagy Inducers Inhibiting Alzheimer Disease. Autophagy 2022, 18, 939–941. [Google Scholar] [CrossRef]
- Fan, Y. Cardioprotective Effect of Rhapontigenin in Isoproterenol-Induced Myocardial Infarction in a Rat Model. Pharmacology 2019, 103, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.-P.; Kim, J.-K.; Lim, Y.-H. Antihyperlipidemic Effects of Rhapontin and Rhapontigenin from Rheum Undulatum in Rats Fed a High-Cholesterol Diet. Planta Med. 2014, 80, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.-B.; Lee, H.-J.; Jeong, S.-J.; Lee, H.-J.; Lee, E.-O.; Kim, Y.C.; Ahn, K.S.; Chen, C.-Y.; Kim, S.-H. Rhapontigenin Inhibited Hypoxia Inducible Factor 1 Alpha Accumulation and Angiogenesis in Hypoxic PC-3 Prostate Cancer Cells. Biol. Pharm. Bull. 2011, 34, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huang, J.; Yi, Y.; Liu, S.; Liu, R.; Xiao, Z.; Li, C. Effects of Rhapontigenin as a Novel Quorum-Sensing Inhibitor on Exoenzymes and Biofilm Formation of Pectobacterium Carotovorum Subsp. Carotovorum and Its Application in Vegetables. Molecules 2022, 27, 8878. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Kang, K.A.; Piao, M.J.; Lee, K.H.; Jang, H.S.; Park, M.J.; Kim, B.J.; Kim, J.S.; Kim, Y.S.; Ryu, S.Y.; et al. Rhapontigenin from Rheum Undulatum Protects Against Oxidative-Stress-Induced Cell Damage Through Antioxidant Activity. J. Toxicol. Environ. Health A 2007, 70, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Applications of Cyclodextrins in Food Science. A Review. Trends Food Sci. Technol. 2020, 104, 132–143. [Google Scholar] [CrossRef]
- Molinar, C.; Navarro-Orcajada, S.; Ansari, I.A.; Conesa Valverde, I.; Hoti, G.; Khazaei Monfared, Y.; Matencio, A.; Scomparin, A.; López-Nicolás, J.; Cavalli, R.; et al. Cyclodextrins and Cyclodextrin-Based Nanosponges for Anti-Cancer Drug and Nutraceutical Delivery. In Targeted Cancer Therapy in Biomedical Engineering; Springer: Singapore, 2023; pp. 597–629. ISBN 978-981-19978-5-3. [Google Scholar]
- Matencio, A.; Navarro-Orcajada, S.; García-Carmona, F.; López-Nicolás, J.M. Encapsulation of Antimicrobial Compounds. In Functionality of Cyclodextrins in Encapsulation for Food Applications; Ho, T.M., Yoshii, H., Terao, K., Bhandari, B.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 169–186. ISBN 978-3-030-80056-7. [Google Scholar]
- Navarro-Orcajada, S.; Matencio, A.; Vicente-Herrero, C.; García-Carmona, F.; López-Nicolás, J.M. Study of the Fluorescence and Interaction between Cyclodextrins and Neochlorogenic Acid, in Comparison with Chlorogenic Acid. Sci. Rep. 2021, 11, 3275. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, J.M.; Rodríguez-Bonilla, P.; García-Carmona, F. Cyclodextrins and Antioxidants. Crit. Rev. Food Sci. Nutr. 2014, 54, 251–276. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; Navarro-Orcajada, S.; Garcia-Carmona, F.; López-Nicolás, J.M. Ellagic Acid-Borax Fluorescence Interaction. Application to a Novel Cyclodextrin-Borax Nanosensor for Analyzing Ellagic Acid in Food Samples. Food Funct. 2018, 9, 3683–3687. [Google Scholar] [CrossRef]
- Matencio, A.; Navarro-Orcajada, S.; González-Ramón, A.; García-Carmona, F.; López-Nicolás, J.M. Recent Advances in the Treatment of Niemann Pick Disease Type C: A Mini-Review. Int. J. Pharm. 2020, 584, 119440. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Benesi, H.A.; Hildebrand, J.H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons. J. Am. Chem. Soc. 1949, 71, 2703–2707. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Roupe, K.; Helms, G.; Halls, S.; Yáñez, J.; Davies, N. Preparative Enzymatic Synthesis and HPLC Analysis of Rhapontigenin: Applications to Metabolism, Pharmacokinetics and Anti-Cancer Studies. J. Pharm. Pharm. Sci. Publ. Can. Soc. Pharm. Sci. Société Can. Sci. Pharm. 2005, 8, 374–386. [Google Scholar]
- López-Nicolás, J.M.; García-Carmona, F. Rapid, Simple and Sensitive Determination of the Apparent Formation Constants of Trans-Resveratrol Complexes with Natural Cyclodextrins in Aqueous Medium Using HPLC. Food Chem. 2008, 109, 868–875. [Google Scholar] [CrossRef]
- Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. Encapsulation of Piceatannol, a Naturally Occurring Hydroxylated Analogue of Resveratrol, by Natural and Modified Cyclodextrins. Food Funct. 2016, 7, 2367–2373. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. The Inclusion Complex of Oxyresveratrol in Modified Cyclodextrins: A Thermodynamic, Structural, Physicochemical, Fluorescent and Computational Study. Food Chem. 2017, 232, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Orcajada, S.; Conesa, I.; Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. Molecular Encapsulation and Bioactivity of Gnetol, a Resveratrol Analogue, for Use in Foods. J. Sci. Food Agric. 2022, 102, 4296–4303. [Google Scholar] [CrossRef]
- D’Aria, F.; Pagano, B.; Giancola, C. Thermodynamic Properties of Hydroxypropyl-β-Cyclodextrin/Guest Interaction: A Survey of Recent Studies. J. Therm. Anal. Calorim. 2021, 147, 4889–4897. [Google Scholar] [CrossRef]
Cyclodextrin | R2 | KF (M−1) | Score | |
---|---|---|---|---|
1:1 Model | 1:2 Model | |||
α-CD | 0.993 | 0.881 | 520.32 ± 26.02 | −7.1 |
β-CD | 0.942 | 0.844 | 2990.11 ± 149.51 | −9.2 |
γ-CD | - | - | - | −6.5 |
HP-β-CD | 0.995 | 0.895 | 10,308.89 ± 515.44 | −10.2 |
M-β-CD | 0.994 | 0.891 | 5189.11± 259.46 | −9.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Orcajada, S.; Vidal-Sánchez, F.J.; Conesa, I.; Matencio, A.; López-Nicolás, J.M. Improvement of the Physicochemical Limitations of Rhapontigenin, a Cytotoxic Analogue of Resveratrol against Colon Cancer. Biomolecules 2023, 13, 1270. https://doi.org/10.3390/biom13081270
Navarro-Orcajada S, Vidal-Sánchez FJ, Conesa I, Matencio A, López-Nicolás JM. Improvement of the Physicochemical Limitations of Rhapontigenin, a Cytotoxic Analogue of Resveratrol against Colon Cancer. Biomolecules. 2023; 13(8):1270. https://doi.org/10.3390/biom13081270
Chicago/Turabian StyleNavarro-Orcajada, Silvia, Francisco José Vidal-Sánchez, Irene Conesa, Adrián Matencio, and José Manuel López-Nicolás. 2023. "Improvement of the Physicochemical Limitations of Rhapontigenin, a Cytotoxic Analogue of Resveratrol against Colon Cancer" Biomolecules 13, no. 8: 1270. https://doi.org/10.3390/biom13081270
APA StyleNavarro-Orcajada, S., Vidal-Sánchez, F. J., Conesa, I., Matencio, A., & López-Nicolás, J. M. (2023). Improvement of the Physicochemical Limitations of Rhapontigenin, a Cytotoxic Analogue of Resveratrol against Colon Cancer. Biomolecules, 13(8), 1270. https://doi.org/10.3390/biom13081270