Peering into the Brain’s Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders
Abstract
:1. Introduction
2. Estrogen and Estrogen Receptors (ERs) in the Brain
3. Estrogen Receptors outside the Nucleus: Genomic vs. Non-Genomic Action of ERs
4. Estrogen, ERs, and Link to Brain Disorders
5. PET Imaging of ERs
6. The Need for a PET Tracer
7. Criteria for a Good CNS PET Tracer
8. Setback for Detection of ERs in the Brain
8.1. ERα or ERβ
8.2. Nuclear Receptors outside the Nucleus: mERα and mERβ
8.3. GPER
9. ADME-Driven Informed Selection of Ligands
10. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Compound | IUPAC Name |
AB-1 | (4-(5-(hydroxymethyl)-8-methyl3-oxabicyclo[3.3.1]non-7-en-2-yl)-phenol) |
E4 | (8R,9S,13S,14S,15R,16R,17R)-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthrene-3,15,16,17-tetrol |
Indazole chloride | 3-Chloro-2-(4-hydroxyphenyl)-2H-indazol-5-ol |
LY3201 | (3aS,4R,9bR)-2,2-difluoro-4-(4-hydroxyphenyl)-3,3a,4,9b-tetrahydro-1H-cyclopenta[c]chromen-8-ol |
WAY-200070 | 7-bromo-2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol |
ERB-041 | 7-ethenyl-2-(3-fluoro-4-hydroxyphenyl)-1,3-benzoxazol-5-ol |
DPN | 2,3-bis(4-hydroxyphenyl)propanenitrile |
WAY-166818 | 2-(4-hydroxyphenyl)-1,3-benzoxazol-5-ol |
LY-500307 | (3aS,4R,9bR)-4-(4-hydroxyphenyl)-1,2,3,3a,4,9b-hexahydrocyclopenta[c]chromen-8-ol |
PPT | 4,4′,4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol |
MPP | 1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride |
PaPE-1 | (S)-5-(4-Hydroxy-3,5-dimethyl-phenyl)-indan-1-ol |
PaPE-2 | 4-[4-[(1S)-1-hydroxyethyl]phenyl]-2,6-dimethylphenol |
PaPE-3 | (1S)-6-(4-hydroxy-3,5-dimethylphenyl)-1,2,3,4-tetrahydronaphthalen-1-ol |
G-1 | 1-[(3aS,4R,9bR)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]ethanone |
G-15 | (3aR,4R,9bS)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline |
References
- Young, L.J.; Pfaff, D.W. Sex differences in neurological and psychiatric disorders. Front. Neuroendocrinol. 2014, 35, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.P.; Potter, B.V.L. The structural biology of oestrogen metabolism. J. Steroid Biochem. Mol. Biol. 2013, 137, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Diotel, N.; Charlier, T.D.; Lefebvre d’Hellencourt, C.; Couret, D.; Trudeau, V.L.; Nicolau, J.C.; Meilhac, O.; Kah, O.; Pellegrini, E. Steroid transport, local synthesis, and signaling within the brain: Roles in neurogenesis, neuroprotection, and sexual behaviors. Front. Neurosci. 2018, 12, 336229. [Google Scholar] [CrossRef] [PubMed]
- Blakemore, J.; Naftolin, F. Aromatase: Contributions to physiology and disease in women and men. Physiology 2016, 31, 258–269. [Google Scholar] [CrossRef]
- Brann, D.W.; Lu, Y.; Wang, J.; Zhang, Q.; Thakkar, R.; Sareddy, G.R.; Pratap, U.P.; Tekmal, R.R.; Vadlamudi, R.K. Brain-derived estrogen and neural function. Neurosci. Biobehav. Rev. 2022, 132, 793–817. [Google Scholar] [CrossRef]
- Gillies, G.E.; McArthur, S. Estrogen Actions in the Brain and the Basis for Differential Action in Men and Women: A Case for Sex-Specific Medicines. Pharmacol. Rev. 2010, 62, 155–198. [Google Scholar] [CrossRef] [PubMed]
- Biegon, A. In vivo visualization of aromatase in animals and humans. Front. Neuroendocrinol. 2016, 40, 42–51. [Google Scholar] [CrossRef]
- Takahashi, K.; Hosoya, T.; Onoe, K.; Takashima, T.; Tanaka, M.; Ishii, A.; Nakatomi, Y.; Tazawa, S.; Takahashi, K.; Doi, H.; et al. Association between aromatase in human brains and personality traits. Sci. Rep. 2018, 8, 16841. [Google Scholar] [CrossRef] [PubMed]
- Biegon, A.; Alexoff, D.L.; Kim, S.W.; Logan, J.; Pareto, D.; Schlyer, D.; Wang, G.J.; Fowler, J.S. Aromatase Imaging with [N-Methyl-11C]Vorozole PET in Healthy Men and Women. J. Nucl. Med. 2015, 56, 580–585. [Google Scholar] [CrossRef]
- Na, W.; Lee, J.Y.; Kim, W.S.; Yune, T.Y.; Ju, B.G. 17β-Estradiol Ameliorates Tight Junction Disruption via Repression of MMP Transcription. Mol. Endocrinol. 2015, 29, 1347–1361. [Google Scholar] [CrossRef]
- Frick, K.M.; Kim, J.; Tuscher, J.J.; Fortress, A.M. Sex steroid hormones matter for learning and memory: Estrogenic regulation of hippocampal function in male and female rodents. Learn. Mem. 2015, 22, 472–493. [Google Scholar] [CrossRef] [PubMed]
- Mukai, H.; Kimoto, T.; Hojo, Y.; Kawato, S.; Murakami, G.; Higo, S.; Hatanaka, Y.; Ogiue-Ikeda, M. Modulation of synaptic plasticity by brain estrogen in the hippocampus. Biochim. Biophys. Acta—Gen. Subj. 2010, 1800, 1030–1044. [Google Scholar] [CrossRef] [PubMed]
- McCullough, L.D.; Blizzard, K.; Simpson, E.R.; Öz, O.K.; Hurn, P.D. Aromatase Cytochrome P450 and Extragonadal Estrogen Play a Role in Ischemic Neuroprotection. J. Neurosci. 2003, 23, 8701–8705. [Google Scholar] [CrossRef] [PubMed]
- Azcoitia, I.; Sierra, A.; Veiga, S.; Honda, S.I.; Harada, N.; Garcia-Segura, L.M. Brain aromatase is neuroprotective. J. Neurobiol. 2001, 47, 318–329. [Google Scholar] [CrossRef]
- McEwen, B.S.; Gould, E.; Orchinik, M.; Weiland, N.G.; Woolley, C.S. Oestrogens and the Structural and Functional Plasticity of Neurons: Implications for Memory, Ageing and Neurodegenerative Processes. Ciba Found. Symp. 1995, 191, 52–73. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Woolley, C.S. Estradiol and progesterone regulate neuronal structure and synaptic connectivity in adult as well as developing brain. Exp. Gerontol. 1994, 29, 431–436. [Google Scholar] [CrossRef]
- Arevalo, M.A.; Azcoitia, I.; Garcia-Segura, L.M. The neuroprotective actions of oestradiol and oestrogen receptors. Nat. Rev. Neurosci. 2014, 16, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Blaustein, J.D. Minireview: Neuronal Steroid Hormone Receptors: They’re Not Just for Hormones Anymore. Endocrinology 2004, 145, 1075–1081. [Google Scholar] [CrossRef]
- Tardy, J.; Pasqualini, J.R. Localization of [3H]-estradiol and gonadotropin-releasing hormone (GnRH) in the hypothalamus of the fetal guinea-pig. Exp. Brain Res. 1983, 49, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Sar, M.; Stumpf, W.E. Cellular Localization of Progestin and Estrogen in Guinea Pig Hypothalamus by Autoradiography. Anat. Neuroendocrinol. 1976, 142–152. [Google Scholar] [CrossRef]
- Martinez-Vargas, M.C.; Gibson, D.B.; Sar, M.; Stumpf, W.E. Estrogen Target Sites in the Brain of the Chick Embryo. Science 1975, 190, 1307–1308. [Google Scholar] [CrossRef] [PubMed]
- Sar, M. Estradiol Is Concentrated in Tyrosine Hydroxylase-Containing Neurons of the Hypothalamus. Science 1984, 223, 938–940. [Google Scholar] [CrossRef] [PubMed]
- Pfaff, D.; Keiner, M. Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J. Comp. Neurol. 1973, 151, 121–157. [Google Scholar] [CrossRef]
- Gréco, B.; Allegretto, E.A.; Tetel, M.J.; Blaustein, J.D. Coexpression of ERβ with ERα and Progestin Receptor Proteins in the Female Rat Forebrain: Effects of Estradiol Treatment. Endocrinology 2001, 142, 5172–5181. [Google Scholar] [CrossRef] [PubMed]
- Gundlah, C.; Kohama, S.G.; Mirkes, S.J.; Garyfallou, V.T.; Urbanski, H.F.; Bethea, C.L. Distribution of estrogen receptor beta (ERβ) mRNA in hypothalamus, midbrain and temporal lobe of spayed macaque: Continued expression with hormone replacement. Mol. Brain Res. 2000, 76, 191–204. [Google Scholar] [CrossRef]
- Doncarlos, L.L.; Monroy, E.; Morrell, J.I. Distribution of estrogen receptor-immunoreactive cells in the forebrain of the female guinea pig. J. Comp. Neurol. 1991, 305, 591–612. [Google Scholar] [CrossRef] [PubMed]
- Kruijver, F.P.M.; Balesar, R.; Espila, A.M.; Unmehopa, U.A.; Swaab, D.F. Estrogen receptor-α distribution in the human hypothalamus in relation to sex and endocrine status. J. Comp. Neurol. 2002, 454, 115–139. [Google Scholar] [CrossRef]
- Kruijver, F.P.M.; Balesar, R.; Espila, A.M.; Unmehopa, U.A.; Swaab, D.F. Estrogen-receptor-β distribution in the human hypothalamus: Similarities and differences with ERα distribution. J. Comp. Neurol. 2003, 466, 251–277. [Google Scholar] [CrossRef]
- Power, B.D.; Mitrofanis, J. Distribution of estrogen receptor β immunoreactivity in the rat central nervous system. J. Comp. Neurol. 2001, 436, 64–81. [Google Scholar] [CrossRef]
- Simerly, R.B.; Swanson, L.W.; Chang, C.; Muramatsu, M. Distribution of androgen and estrogen receptor mRNA-containing cells in the rat brain: An in situ hybridization study. J. Comp. Neurol. 1990, 294, 76–95. [Google Scholar] [CrossRef]
- Kelly, M.J.; Rønnekleiv, O.K. Membrane-initiated actions of estradiol that regulate reproduction, energy balance and body temperature. Front. Neuroendocrinol. 2012, 33, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Laflamme, N.; Nappi, R.E.; Drolet, G.; Labrie, C.; Rivest, S. Expression and neuropeptidergic characterization of estrogen receptors (ERα and ERβ) throughout the rat brain: Anatomical evidence of distinct roles of each subtype. J. Neurobiol. 1998, 36, 357–378. [Google Scholar] [CrossRef]
- Mitra, S.W.; Hoskin, E.; Yudkovitz, J.; Pear, L.; Wilkinson, H.A.; Hayashi, S.; Pfaff, D.W.; Ogawa, S.; Rohrer, S.P.; Schaeffer, J.M.; et al. Immunolocalization of Estrogen Receptor β in the Mouse Brain: Comparison with Estrogen Receptor α. Endocrinology 2003, 144, 2055–2067. [Google Scholar] [CrossRef] [PubMed]
- Shughrue, P.J.; Lane, M.V.; Merchenthaler, I. Comparative Distribution of Estrogen Receptor-and-mRNA in the Rat Central Nervous System. J. Comp. Neurol. 1997, 388, 507–525. [Google Scholar] [CrossRef]
- Warembourg, M.; Leroy, D. Comparative distribution of estrogen receptor α and β immunoreactivities in the forebrain and the midbrain of the female guinea pig. Brain Res. 2004, 1002, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Merchenthaler, I.; Lane, M.V.; Numan, S.; Dellovade, T.L. Distribution of estrogen receptor α and β in the mouse central nervous system: In vivo autoradiographic and immunocytochemical analyses. J. Comp. Neurol. 2004, 473, 270–291. [Google Scholar] [CrossRef]
- Bao, A.M.; Hestiantoro, A.; Van Someren, E.J.W.; Swaab, D.F.; Zhou, J.N. Colocalization of corticotropin-releasing hormone and oestrogen receptor-α in the paraventricular nucleus of the hypothalamus in mood disorders. Brain 2005, 128, 1301–1313. [Google Scholar] [CrossRef]
- Cardona-Gómez, G.P.; Doncarlos, L.; Garcia-Segura, L.M. Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain. Neuroscience 2000, 99, 751–760. [Google Scholar] [CrossRef]
- Shughrue, P.J.; Scrimo, P.J.; Merchenthaler, I. Evidence of the Colocalization of Estrogen Receptor-β mRNA and Estrogen Receptor-α Immunoreactivity in Neurons of the Rat Forebrain. Endocrinology 1998, 139, 5267–5270. [Google Scholar] [CrossRef]
- Hu, L.; Wada, K.; Mores, N.; Krsmanovic, L.Z.; Catt, K.J. Essential role of G protein-gated inwardly rectifying potassium channels in gonadotropin-induced regulation of GnRH neuronal firing and pulsatile neurosecretion. J. Biol. Chem. 2006, 281, 25231–25240. [Google Scholar] [CrossRef]
- Horvath, T.L.; Leranth, C.; Kalra, S.P.; Naftolin, F. Galanin neurons exhibit estrogen receptor immunoreactivity in the female rat mediobasal hypothalamus. Brain Res. 1995, 675, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Herbison, A.E.; Theodosis, D.T. Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat. Neuroscience 1992, 50, 283–298. [Google Scholar] [CrossRef] [PubMed]
- Herbison, A.E. Somatostatin-lmmunoreactive Neurones in the Hypothalamic Ventromedial Nucleus Possess Oestrogen Receptors in the Male and Female Rat. J. Neuroendocrinol. 1994, 6, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Flugge, G.; Oertel, W.H.; Wuttke, W. Evidence for Estrogen-Receptive GABAergic Neurons in the Preoptic/Anterior Hypothalamic Area of the Rat Brain. Neuroendocrinology 1986, 43, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Lehman, M.N.; Karsch, F.J. Do gonadotropin-releasing hormone, tyrosine hydroxylase-, and beta-endorphin-immunoreactive neurons contain estrogen receptors? A double-label immunocytochemical study in the Suffolk ewe. Endocrinology 1993, 133, 887–895. [Google Scholar] [CrossRef]
- Roepke, T.A.; Malyala, A.; Bosch, M.A.; Kelly, M.J.; Rønnekleiv, O.K. Estrogen Regulation of Genes Important for K+ Channel Signaling in the Arcuate Nucleus. Endocrinology 2007, 148, 4937–4951. [Google Scholar] [CrossRef]
- Skinner, D.C.; Herbison, A.E. Effects of Photoperiod on Estrogen Receptor, Tyrosine Hydroxylase, Neuropeptide Y, and β-Endorphin Immunoreactivity in the Ewe Hypothalamus. Endocrinology 1997, 138, 2585–2595. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Kalló, I.; Hajszán, T.; Shughrue, P.J.; Merchenthaler, I.; Liposits, Z. Expression of Estrogen Receptor-β Messenger Ribonucleic Acid in Oxytocin and Vasopressin Neurons of the Rat Supraoptic and Paraventricular Nuclei. Endocrinology 1998, 139, 2600–2604. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Shughrue, P.J.; Merchenthaler, I.; Hajszán, T.; Carpenter, C.D.; Liposits, Z.; Petersen, S.L. Detection of Estrogen Receptor-β Messenger Ribonucleic Acid and 125I-Estrogen Binding Sites in Luteinizing Hormone-Releasing Hormone Neurons of the Rat Brain. Endocrinology 2000, 141, 3506–3509. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Steinhauser, A.; Barabás, K.; Shughrue, P.J.; Petersen, S.L.; Merchenthaler, I.; Liposits, Z. Estrogen Receptor-β Immunoreactivity in Luteinizing Hormone-Releasing Hormone Neurons of the Rat Brain. Endocrinology 2001, 142, 3261–3264. [Google Scholar] [CrossRef]
- Isgor, C.; Cecchi, M.; Kabbaj, M.; Akil, H.; Watson, S.J. Estrogen receptor β in the paraventricular nucleus of hypothalamus regulates the neuroendocrine response to stress and is regulated by corticosterone. Neuroscience 2003, 121, 837–845. [Google Scholar] [CrossRef] [PubMed]
- Skynner, M.J.; Sim, J.A.; Herbison, A.E. Detection of Estrogen Receptor α and β Messenger Ribonucleic Acids in Adult Gonadotropin-Releasing Hormone Neurons. Endocrinology 1999, 140, 5195–5201. [Google Scholar] [CrossRef] [PubMed]
- Kalló, I.; Butler, J.A.; Barkovics-Kalló, M.; Goubillon, M.L.; Coen, C.W. Oestrogen Receptor β-Immunoreactivity in Gonadotropin Releasing Hormone-Expressing Neurones: Regulation by Oestrogen. J. Neuroendocrinol. 2001, 13, 741–748. [Google Scholar] [CrossRef]
- Hrabovszky, E.; Kalló, I.; Steinhauser, A.; Merchenthaler, I.; Coen, C.W.; Petersen, S.L.; Liposits, Z. Estrogen receptor-β in oxytocin and vasopressin neurons of the rat and human hypothalamus: Immunocytochemical and in situ hybridization studies. J. Comp. Neurol. 2004, 473, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Gundlah, C.; Lu, N.Z.; Mirkes, S.J.; Bethea, C.L. Estrogen receptor beta (ERβ) mRNA and protein in serotonin neurons of macaques. Mol. Brain Res. 2001, 91, 14–22. [Google Scholar] [CrossRef]
- Pietras, R.J.; Szego, C.M. Endometrial cell calcium and oestrogen action. Nature 1975, 253, 357–359. [Google Scholar] [CrossRef]
- Pietras, R.J.; Szego, C.M. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 1977, 265, 69–72. [Google Scholar] [CrossRef]
- Kelly, M.J.; Moss, R.L.; Dudley, C.A.; Fawcett, C.P. The specificity of the response of preoptic-septal area neurons to estrogen: 17α-estradiol versus 17β-estradiol and the response of extrahypothalamic neurons. Exp. Brain Res. 1977, 30, 43–52. [Google Scholar] [CrossRef]
- Kelly, M.J.; Moss, R.L.; Dudley, C.A. Differential sensitivity of preoptic-septal neurons to microelectrophoresed estrogen during the estrous cycle. Brain Res. 1976, 114, 152–157. [Google Scholar] [CrossRef]
- Kelly, M.J.; Moss, R.L.; Dudley, C.A. The effects of microelectrophoretically applied estrogen, cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrous cycle of the female rat. Exp. brain Res. 1977, 30, 53–64. [Google Scholar] [CrossRef]
- Minami, T.; Oomura, Y.; Nabekura, J.; Fukuda, A. 17β-Estradiol depolarization of hypothalamic neurons is mediated by cyclic AMP. Brain Res. 1990, 519, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Nabekura, J.; Oomura, Y.; Minami, T.; Mizuno, Y.; Fukuda, A. Mechanism of the Rapid Effect of 17β-Estradiol on Medial Amygdala Neurons. Science 1986, 233, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ramirez, V.D. Demonstration of membrane estrogen binding proteins in rat brain by ligand blotting using a 17β-estradiol-[125I]bovine serum albumin conjugate. J. Steroid Biochem. Mol. Biol. 1997, 62, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Levin, E.R.; Hammes, S.R. Nuclear receptors outside the nucleus: Extranuclear signalling by steroid receptors. Nat. Rev. Mol. Cell Biol. 2016, 17, 783–797. [Google Scholar] [CrossRef]
- Razandi, M.; Pedram, A.; Merchenthaler, I.; Greene, G.L.; Levin, E.R. Plasma Membrane Estrogen Receptors Exist and Functions as Dimers. Mol. Endocrinol. 2004, 18, 2854–2865. [Google Scholar] [CrossRef]
- Revankar, C.M.; Cimino, D.F.; Sklar, L.A.; Arterburn, J.B.; Prossnitz, E.R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005, 307, 1625–1630. [Google Scholar] [CrossRef]
- Funakoshi, T.; Yanai, A.; Shinoda, K.; Kawano, M.M.; Mizukami, Y. G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane. Biochem. Biophys. Res. Commun. 2006, 346, 904–910. [Google Scholar] [CrossRef]
- Hutson, D.D.; Gurrala, R.; Ogola, B.O.; Zimmerman, M.A.; Mostany, R.; Satou, R.; Lindsey, S.H. Estrogen receptor profiles across tissues from male and female Rattus norvegicus. Biol. Sex Differ. 2019, 10, 4. [Google Scholar] [CrossRef]
- Sakamoto, H.; Matsuda, K.I.; Hosokawa, K.; Nishi, M.; Morris, J.F.; Prossnitz, E.R.; Kawata, M. Expression of G Protein-Coupled Receptor-30, a G Protein-Coupled Membrane Estrogen Receptor, in Oxytocin Neurons of the Rat Paraventricular and Supraoptic Nuclei. Endocrinology 2007, 148, 5842–5850. [Google Scholar] [CrossRef]
- Levin, E.R. Invited review: Cell localization, physiology, and nongenomic actions of estrogen receptors. J. Appl. Physiol. 2001, 91, 1860–1867. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Lange, C.A.; Levin, E.R. Membrane-Initiated Estrogen, Androgen, and Progesterone Receptor Signaling in Health and Disease. Endocr. Rev. 2022, 43, 720–742. [Google Scholar] [CrossRef] [PubMed]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef] [PubMed]
- Bustamante-Barrientos, F.A.; Méndez-Ruette, M.; Ortloff, A.; Luz-Crawford, P.; Rivera, F.J.; Figueroa, C.D.; Molina, L.; Bátiz, L.F. The Impact of Estrogen and Estrogen-Like Molecules in Neurogenesis and Neurodegeneration: Beneficial or Harmful? Front. Cell. Neurosci. 2021, 15, 636176. [Google Scholar] [CrossRef]
- Del Río, J.P.; Alliende, M.I.; Molina, N.; Serrano, F.G.; Molina, S.; Vigil, P. Steroid Hormones and Their Action in Women’s Brains: The Importance of Hormonal Balance. Front. Public Health 2018, 6, 335107. [Google Scholar] [CrossRef]
- Jacobs, E.; D’Esposito, M. Estrogen Shapes Dopamine-Dependent Cognitive Processes: Implications for Women’s Health. J. Neurosci. 2011, 31, 5286–5293. [Google Scholar] [CrossRef] [PubMed]
- Halbreich, U.; Rojansky, N.; Palter, S.; Tworek, H.; Hissin, P.; Wang, K. Estrogen augments serotonergic activity in postmenopausal women. Biol. Psychiatry 1995, 37, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Hiroi, R.; Neumaier, J.F. Estrogen decreases 5-HT1B autoreceptor mRNA in selective subregion of rat dorsal raphe nucleus: Inverse association between gene expression and anxiety behavior in the open field. Neuroscience 2009, 158, 456–464. [Google Scholar] [CrossRef]
- Smith, L.J.; Henderson, J.A.; Abell, C.W.; Bethea, C.L. Effects of Ovarian Steroids and Raloxifene on Proteins that Synthesize, Transport, and Degrade Serotonin in the Raphe Region of Macaques. Neuropsychopharmacology 2004, 29, 2035–2045. [Google Scholar] [CrossRef]
- Barth, C.; Villringer, A.; Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 2015, 9, 113668. [Google Scholar] [CrossRef]
- McEwen, B.S.; Alves, S.E.; Bulloch, K.; Weiland, N.G. Ovarian steroids and the brain. Neurology 1997, 48, 8S–15S. [Google Scholar] [CrossRef]
- Lan, Y.L.; Zhao, J.; Li, S. Update on the Neuroprotective Effect of Estrogen Receptor Alpha Against Alzheimer’s Disease. J. Alzheimer’s Dis. 2015, 43, 1137–1148. [Google Scholar] [CrossRef]
- Yu, Z.; Gao, W.; Jiang, E.; Lu, F.; Zhang, L.; Shi, Z.; Wang, X.; Chen, L.; Lv, T. Interaction between IGF-IR and ER Induced by E2 and IGF-I. PLoS ONE 2013, 8, e62642. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Li, B.; Ou-Yang, L. Role of estrogen receptors in health and disease. Front. Endocrinol. 2022, 13, 839005. [Google Scholar] [CrossRef]
- Zhao, L.; Woody, S.K.; Chhibber, A. Estrogen receptor β in Alzheimer’s disease: From mechanisms to therapeutics. Ageing Res. Rev. 2015, 24, 178–190. [Google Scholar] [CrossRef]
- Lai, Y.J.; Yu, D.; Zhang, J.H.; Chen, G.J. Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity. Mol. Neurobiol. 2016, 54, 4113–4126. [Google Scholar] [CrossRef] [PubMed]
- Chhibber, A.; Woody, S.K.; Karim Rumi, M.A.; Soares, M.J.; Zhao, L. Estrogen receptor β deficiency impairs BDNF–5-HT2A signaling in the hippocampus of female brain: A possible mechanism for menopausal depression. Psychoneuroendocrinology 2017, 82, 107–116. [Google Scholar] [CrossRef]
- Roque, C.; Mendes-Oliveira, J.; Duarte-Chendo, C.; Baltazar, G. The role of G protein-coupled estrogen receptor 1 on neurological disorders. Front. Neuroendocrinol. 2019, 55, 100786. [Google Scholar] [CrossRef] [PubMed]
- Maioli, S.; Leander, K.; Nilsson, P.; Nalvarte, I. Estrogen receptors and the aging brain. Essays Biochem. 2021, 65, 913–925. [Google Scholar] [CrossRef] [PubMed]
- Hwang, W.J.; Lee, T.Y.; Kim, N.S.; Kwon, J.S. The Role of Estrogen Receptors and Their Signaling across Psychiatric Disorders. Int. J. Mol. Sci. 2020, 22, 373. [Google Scholar] [CrossRef]
- Mehra, R.D.; Sharma, K.; Nyakas, C.; Vij, U. Estrogen receptor α and β immunoreactive neurons in normal adult and aged female rat hippocampus: A qualitative and quantitative study. Brain Res. 2005, 1056, 22–35. [Google Scholar] [CrossRef]
- Waters, E.M.; Yildirim, M.; Janssen, W.G.M.; Lou, W.Y.W.; McEwen, B.S.; Morrison, J.H.; Milner, T.A. Estrogen and aging affect the synaptic distribution of estrogen receptor beta-immunoreactivity in the CA1 region of female rat hippocampus. Brain Res. 2011, 1379, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.M.; Fink, S.E.; Shah, R.A.; Janssen, W.G.M.; Hayashi, S.; Milner, T.A.; McEwen, B.S.; Morrison, J.H. Estrogen and Aging Affect the Subcellular Distribution of Estrogen Receptor-α in the Hippocampus of Female Rats. J. Neurosci. 2002, 22, 3608–3614. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.Y.; Qin, S.; Lu, Y.P.; Ravid, R.; Swaab, D.F.; Zhou, J.N. Decreased estrogen receptor-α expression in hippocampal neurons in relation to hyperphosphorylated tau in Alzheimer patients. Acta Neuropathol. 2003, 106, 213–220. [Google Scholar] [CrossRef]
- Hestiantoro, A.; Swaab, D.F. Changes in Estrogen Receptor-α and -β in the Infundibular Nucleus of the Human Hypothalamus Are Related to the Occurrence of Alzheimer’s Disease Neuropathology. J. Clin. Endocrinol. Metab. 2004, 89, 1912–1925. [Google Scholar] [CrossRef] [PubMed]
- Ishunina, T.A.; Swaab, D.F. Increased neuronal metabolic activity and estrogen receptors in the vertical limb of the diagonal band of broca in Alzheimer’s disease: Relation to sex and aging. Exp. Neurol. 2003, 183, 159–172. [Google Scholar] [CrossRef]
- Ishunina, T.A.; Kamphorst, W.; Swaab, D.F. Changes in metabolic activity and estrogen receptors in the human medial mamillary nucleus: Relation to sex, aging and Alzheimer’s disease. Neurobiol. Aging 2003, 24, 817–828. [Google Scholar] [CrossRef]
- Ishunina, T.A.; Swaab, D.F. Increased expression of estrogen receptor α and β in the nucleus basalis of Meynert in Alzheimer’s disease. Neurobiol. Aging 2001, 22, 417–426. [Google Scholar] [CrossRef]
- Long, J.; He, P.; Shen, Y.; Li, R. New Evidence of Mitochondria Dysfunction in the Female Alzheimer’s Disease Brain: Deficiency of Estrogen Receptor-β. J. Alzheimer’s Dis. 2012, 30, 545–558. [Google Scholar] [CrossRef]
- Perlman, W.R.; Tomaskovic-Crook, E.; Montague, D.M.; Webster, M.J.; Rubinow, D.R.; Kleinman, J.E.; Weickert, C.S. Alteration in Estrogen Receptor α mRNA Levels in Frontal Cortex and Hippocampus of Patients with Major Mental Illness. Biol. Psychiatry 2005, 58, 812–824. [Google Scholar] [CrossRef]
- Kealey, C.; Reynolds, A.; Mynett-Johnson, L.; Claffey, E.; McKeon, P. No evidence to support an association between the oestrogen receptor beta gene and bipolar disorder. Psychiatr. Genet. 2001, 11, 223–226. [Google Scholar] [CrossRef]
- Middle, F.; Jones, I.; Robertson, E.; Morey, J.; Lendon, C.; Craddock, N. Variation in the coding sequence and flanking splice junctions of the estrogen receptor alpha (ERα) gene does not play an important role in genetic susceptibility to bipolar disorder or bipolar affective puerperal psychosis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2003, 118, 72–75. [Google Scholar] [CrossRef]
- Orhan, F.Ö.; Kurutaş, E.B.; Doğaner, A.; Türker, E.; Taner Özcü, S.Ş.; Güngör, M.; Çakmak, S. Serum levels of GPER-1 in euthymic bipolar patients. Neuropsychiatr. Dis. Treat. 2018, 14, 855–862. [Google Scholar] [CrossRef]
- Sahin, N.; Altun, H.; Kurutaş, E.B.; Fındıklı, E. Evaluation of estrogen and G protein-coupled estrogen receptor 1 (GPER) levels in drug-naïve patients with attention deficit hyperactivity disorder (ADHD). Biomol. Biomed. 2018, 18, 126–131. [Google Scholar] [CrossRef]
- Fındıklı, E.; Camkurt, M.A.; Karaaslan, M.F.; Kurutas, E.B.; Altun, H.; İzci, F.; Fındıklı, H.A.; Kardas, S. Serum levels of G protein-coupled estrogen receptor 1 (GPER1) in drug-naive patients with generalized anxiety disorder. Psychiatry Res. 2016, 244, 312–316. [Google Scholar] [CrossRef]
- Findikli, E.; Kurutas, E.B.; Camkurt, M.A.; Karaaslan, M.F.; Izci, F.; Findikli, H.A.; Kardas, S.; Dag, B.; Altun, H. Increased Serum G Protein-coupled Estrogen Receptor 1 Levels and Its Diagnostic Value in Drug Naïve Patients with Major Depressive Disorder. Clin. Psychopharmacol. Neurosci. 2017, 15, 337–342. [Google Scholar] [CrossRef]
- Crider, A.; Thakkar, R.; Ahmed, A.O.; Pillai, A. Dysregulation of estrogen receptor beta (ERβ), aromatase (CYP19A1), and ER co-activators in the middle frontal gyrus of autism spectrum disorder subjects. Mol. Autism 2014, 5, 46. [Google Scholar] [CrossRef]
- Chakrabarti, B.; Dudbridge, F.; Kent, L.; Wheelwright, S.; Hill-Cawthorne, G.; Allison, C.; Banerjee-Basu, S.; Baron-Cohen, S. Genes related to sex steroids, neural growth, and social–emotional behavior are associated with autistic traits, empathy, and Asperger syndrome. Autism Res. 2009, 2, 157–177. [Google Scholar] [CrossRef]
- Moraga-Amaro, R.; van Waarde, A.; Doorduin, J.; de Vries, E.F.J. Sex steroid hormones and brain function: PET imaging as a tool for research. J. Neuroendocrinol. 2018, 30, e12565. [Google Scholar] [CrossRef] [PubMed]
- Khayum, M.A.; De Vries, E.F.J.; Glaudemans, A.W.J.M.; Dierckx, R.A.J.O.; Doorduin, J. In Vivo Imaging of Brain Estrogen Receptors in Rats: A 16α-18F-Fluoro-17β-Estradiol PET Study. J. Nucl. Med. 2014, 55, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Conlan, M.G.; de Vries, E.F.J.; Glaudemans, A.; Wang, Y.; Troy, S. Pharmacokinetic and Pharmacodynamic Studies of Elacestrant, A Novel Oral Selective Estrogen Receptor Degrader, in Healthy Post-Menopausal Women. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 675–689. [Google Scholar] [CrossRef] [PubMed]
- Ivanidze, J.; Subramanian, K.; Youn, T.; Cigler, T.; Osborne, J.R.; Magge, R.S.; Balogun, O.D.; Knisely, J.P.S.; Ramakrishna, R. Utility of [18F]-fluoroestradiol (FES) PET/CT with dedicated brain acquisition in differentiating brain metastases from posttreatment change in estrogen receptor-positive breast cancer. Neuro-Oncol. Adv. 2021, 3, vdab178. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Yoo, I.R.; Ha, S. 18F-FES PET/CT for Characterization of Brain and Leptomeningeal Metastasis in Double Primary Cancer Patient. Clin. Nucl. Med. 2022, 47, E554–E556. [Google Scholar] [CrossRef] [PubMed]
- Boers, J.; Schröder, C.P.; Hospers, G.A.P.; De Vries, E.F.J.; Glaudemans, A.W.J.M. Detection of Dural Metastases before the Onset of Clinical Symptoms by 16α-[18F]Fluoro-17β-Estradiol PET in a Patient with Estrogen Receptor-Positive Breast Cancer. Clin. Nucl. Med. 2021, 46, e165–e167. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Phoenix, S.; Lavallée, É.; Rousseau, J.A.; Guérin, B.; Turcotte, É.E.; Lecomte, R. Cross-Species Physiological Assessment of Brain Estrogen Receptor Expression Using 18F-FES and 18F-4FMFES PET Imaging. Mol. Imaging Biol. 2020, 22, 1403–1413. [Google Scholar] [CrossRef] [PubMed]
- Paquette, M.; Lavallée, É.; Phoenix, S.; Ouellet, R.; Senta, H.; Van Lier, J.E.; Guérin, B.; Lecomte, R.; Turcotte, É.E. Improved Estrogen Receptor Assessment by PET Using the Novel Radiotracer 18F-4FMFES in Estrogen Receptor–Positive Breast Cancer Patients: An Ongoing Phase II Clinical Trial. J. Nucl. Med. 2018, 59, 197–203. [Google Scholar] [CrossRef]
- Antunes, I.F.; Van Waarde, A.; Dierckx, R.A.J.O.; De Vries, E.G.E.; Hospers, G.A.P.; De Vries, E.F.J. Synthesis and Evaluation of the Estrogen Receptor β–Selective Radioligand 2-18F-Fluoro-6-(6-Hydroxynaphthalen-2-yl)Pyridin-3-ol: Comparison with 16α-18F-Fluoro-17β-Estradiol. J. Nucl. Med. 2017, 58, 554–559. [Google Scholar] [CrossRef]
- Yoo, J.; Dence, C.S.; Sharp, T.L.; Katzenellenbogen, J.A.; Welch, M.J. Synthesis of an estrogen receptor β-selective radioligand: 5-[ 18F]fluoro-(2R*,3S*)-2,3-bis(4-hydroxyphenyl) pentanenitrile and comparison of in vivo distribution with 16α-[ 18F]fluoro-17β-estradiol. J. Med. Chem. 2005, 48, 6366–6378. [Google Scholar] [CrossRef]
- Paquette, M.; Phoenix, S.; Ouellet, R.; Langlois, R.; Van Lier, J.E.; Turcotte, É.E.; Bénard, F.; Lecomte, R. Assessment of the novel estrogen receptor PET Tracer 4-Fluoro-11β- methoxy-16α-[18F]fluoroestradiol (4FMFES) by PET imaging in a breast cancer murine model. Mol. Imaging Biol. 2013, 15, 625–632. [Google Scholar] [CrossRef]
- Liu, X.; Tu, M.; Kelly, R.S.; Chen, C.; Smith, B.J. Development of a computational approach to predict blood-brain barrier permeability. Drug Metab. Dispos. 2004, 32, 132–139. [Google Scholar] [CrossRef]
- Zhang, L.; Villalobos, A. Strategies to facilitate the discovery of novel CNS PET ligands. EJNMMI Radiopharm. Chem. 2016, 1, 13. [Google Scholar] [CrossRef]
- McCluskey, S.P.; Plisson, C.; Rabiner, E.A.; Howes, O. Advances in CNS PET: The state-of-the-art for new imaging targets for pathophysiology and drug development. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 451–489. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, Y.; Chen, Y.; Xing, S.; Liao, Q.; Chen, Y.; Li, Q.; Li, W.; Sun, H. Strategies for Structural Modification of Small Molecules to Improve Blood-Brain Barrier Penetration: A Recent Perspective. J. Med. Chem. 2021, 64, 13152–13173. [Google Scholar] [CrossRef]
- Lindberg, A.; Chassé, M.; Varlow, C.; Pees, A.; Vasdev, N. Strategies for designing novel positron emission tomography (PET) radiotracers to cross the blood–brain barrier. J. Label. Compd. Radiopharm. 2023, 66, 205–221. [Google Scholar] [CrossRef]
- Pike, V.W. PET radiotracers: Crossing the blood–brain barrier and surviving metabolism. Trends Pharmacol. Sci. 2009, 30, 431–440. [Google Scholar] [CrossRef]
- Verheijen, R.B.; Yaqub, M.; Sawicki, E.; Van Tellingen, O.; Lammertsma, A.A.; Nuijen, B.; Schellens, J.H.M.; Beijnen, J.H.; Huitema, A.D.R.; Hendrikse, N.H.; et al. Molecular Imaging of ABCB1 and ABCG2 Inhibition at the Human Blood-Brain Barrier Using Elacridar and 11C-Erlotinib PET. J. Nucl. Med. 2018, 59, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Auberson, Y.P.; Lièvre, A.; Desrayaud, S.; Briard, E. A practical approach to the optimization of positron emission tomography imaging agents for the central nervous system. J. Label. Compd. Radiopharm. 2022, 65, 343–350. [Google Scholar] [CrossRef] [PubMed]
- W Pike, V. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr. Med. Chem. 2016, 23, 1818–1869. [Google Scholar] [CrossRef] [PubMed]
- Revankar, C.M.; Bologa, C.G.; Pepermans, R.A.; Sharma, G.; Petrie, W.K.; Alcon, S.N.; Field, A.S.; Ramesh, C.; Parker, M.A.; Savchuk, N.P.; et al. A Selective Ligand for Estrogen Receptor Proteins Discriminates Rapid and Genomic Signaling. Cell Chem. Biol. 2019, 26, 1692–1702.e5. [Google Scholar] [CrossRef] [PubMed]
- Abot, A.; Fontaine, C.; Buscato, M.; Solinhac, R.; Flouriot, G.; Fabre, A.; Drougard, A.; Rajan, S.; Laine, M.; Milon, A.; et al. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor α modulation, uncoupling nuclear and membrane activation. EMBO Mol. Med. 2014, 6, 1328–1346. [Google Scholar] [CrossRef]
- Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Arnal, J.F.; Lenfant, F. Segregation of nuclear and membrane-initiated actions of estrogen receptor using genetically modified animals and pharmacological tools. Mol. Cell. Endocrinol. 2022, 539, 111467. [Google Scholar] [CrossRef]
- Warner, M.; Fan, X.; Strom, A.; Wu, W.; Gustafsson, J.Å. 25 years of ERβ: A personal journey. J. Mol. Endocrinol. 2022, 68, R1–R9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Lei, P.; Han, J.; Wang, Z.; Ji, A.; Wu, Y.; Zheng, L.; Zhang, X.; Qu, C.; Min, J.; et al. Development of a Novel 18F-Labeled Probe for PET Imaging of Estrogen Receptor β. J. Med. Chem. 2023, 66, 1210–1220. [Google Scholar] [CrossRef]
- Stauffer, S.R.; Coletta, C.J.; Tedesco, R.; Nishiguchi, G.; Carlson, K.; Sun, J.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Pyrazole ligands: Structure—Affinity/activity relationships and estrogen receptor-α-selective agonists. J. Med. Chem. 2000, 43, 4934–4947. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.B.; Carlson, K.E.; Stossi, F.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Analogs of methyl-piperidinopyrazole (MPP): Antiestrogens with estrogen receptor α selective activity. Bioorg. Med. Chem. Lett. 2009, 19, 108–110. [Google Scholar] [CrossRef]
- Sun, J.; Huang, Y.R.; Harrington, W.R.; Sheng, S.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Antagonists selective for estrogen receptor alpha. Endocrinology 2002, 143, 941–947. [Google Scholar] [CrossRef]
- Levin, E.R. Plasma membrane estrogen receptors. Trends Endocrinol. Metab. 2009, 20, 477–482. [Google Scholar] [CrossRef]
- Madak-Erdogan, Z.; Kim, S.H.; Gong, P.; Zhao, Y.C.; Zhang, H.; Chambliss, K.L.; Carlson, K.E.; Mayne, C.G.; Shaul, P.W.; Korach, K.S.; et al. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci. Signal. 2016, 9, ra53. [Google Scholar] [CrossRef]
- Madak-Erdogan, Z.; Band, S.; Zhao, Y.C.; Smith, B.P.; Kulkoyluoglu-Cotul, E.; Zuo, Q.; Santaliz Casiano, A.; Wrobel, K.; Rossi, G.; Smith, R.L.; et al. Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling. Cancer Res. 2019, 79, 2494–2510. [Google Scholar] [CrossRef]
- Wnuk, A.; Przepiórska, K.; Rzemieniec, J.; Pietrzak, B.; Kajta, M. Selective Targeting of Non-nuclear Estrogen Receptors with PaPE-1 as a New Treatment Strategy for Alzheimer’s Disease. Neurotox. Res. 2020, 38, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, U.M.; Zuurbier, K.R.; Whoolery, C.W.; Plautz, E.J.; Chambliss, K.L.; Kong, X.; Zhang, S.; Kim, S.H.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; et al. Selective Nonnuclear Estrogen Receptor Activation Decreases Stroke Severity and Promotes Functional Recovery in Female Mice. Endocrinology 2018, 159, 3848–3859. [Google Scholar] [CrossRef]
- Harrington, W.R.; Kim, S.H.; Funk, C.C.; Madak-Erdogan, Z.; Schiff, R.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Estrogen Dendrimer Conjugates that Preferentially Activate Extranuclear, Nongenomic Versus Genomic Pathways of Estrogen Action. Mol. Endocrinol. 2006, 20, 491–502. [Google Scholar] [CrossRef]
- Chambliss, K.L.; Wu, Q.; Oltmann, S.; Konaniah, E.S.; Umetani, M.; Korach, K.S.; Thomas, G.D.; Mineo, C.; Yuhanna, I.S.; Kim, S.H.; et al. Non-nuclear estrogen receptor α signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J. Clin. Investig. 2010, 120, 2319–2330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhu, M.; Li, Y.; Xing, Y.; Zhao, J. Radiolabeled Dendrimers for Nuclear Medicine Applications. Molecules 2017, 22, 1350. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Li, D.; Shi, X.; Shen, M. PAMAM Dendrimer-Based Nanodevices for Nuclear Medicine Applications. Macromol. Biosci. 2020, 20, 1900282. [Google Scholar] [CrossRef] [PubMed]
- Garrigue, P.; Tang, J.; Ding, L.; Bouhlel, A.; Tintaru, A.; Laurini, E.; Huang, Y.; Lyu, Z.; Zhang, M.; Fernandez, S.; et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc. Natl. Acad. Sci. USA 2018, 115, 11454–11459. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Fu, F.; Zhu, J.; Huang, R.; Zhu, Y.; Liu, Z.; Wang, J.; Conti, P.S.; Shi, X.; Chen, K. 64Cu-Labeled multifunctional dendrimers for targeted tumor PET imaging. Nanoscale 2018, 10, 6113–6124. [Google Scholar] [CrossRef] [PubMed]
- Carlson, M.L.; Reyes, S.T.; Jackson, I.M.; Azevedo, C.; Alam, I.S.; Nagy, S.C.; Brewer, M.; Cleland, J.; Shen, B.; James, M.L. Novel hydroxyl dendrimer-based PET tracer [18F]OP-801 detects early-stage neuroinflammation in 5XFAD mouse model with higher sensitivity than TSPO-PET. Alzheimer’s Dement. 2022, 18, e060700. [Google Scholar] [CrossRef]
- Lesniak, W.G.; Chu, C.; Jablonska, A.; Behnam Azad, B.; Zwaenepoel, O.; Zawadzki, M.; Lisok, A.; Pomper, M.G.; Walczak, P.; Gettemans, J.; et al. PET imaging of distinct brain uptake of a nanobody and similarly-sized PAMAM dendrimers after intra-arterial administration. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 1940–1951. [Google Scholar] [CrossRef]
- Kumar, V.; Sahoo, R.K.; Basak, T.; Yasmin, T.; Gupta, U.; Goyal, A.K. Diagnostic and therapeutic applications of smart nanocomposite dendrimers. Front. Biosci.-Landmark 2021, 26, 518–536. [Google Scholar] [CrossRef]
- Kannan, S.; Dai, H.; Navath, R.S.; Balakrishnan, B.; Jyoti, A.; Janisse, J.; Romero, R.; Kannan, R.M. Dendrimer-based postnatal therapy for neuroinflammation and cerebral palsy in a rabbit model. Sci. Transl. Med. 2012, 4, 130ra46. [Google Scholar] [CrossRef]
- Kim, S.H.; Madak-Erdogan, Z.; Bae, S.C.; Carlson, K.E.; Mayne, C.G.; Granick, S.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A. Ligand Accessibility and Bioactivity of a Hormone-Dendrimer Conjugate Depend on pH and pH History. J. Am. Chem. Soc. 2015, 137, 10326–10335. [Google Scholar] [CrossRef] [PubMed]
- Nayak, T.K.; Ramesh, C.; Hathaway, H.J.; Norenberg, J.P.; Arterburn, J.B.; Prossnitz, E.R. GPER-targeted, 99mTc-Labeled, nonsteroidal ligands demonstrate selective tumor imaging and in vivo estrogen binding. Mol. Cancer Res. 2014, 12, 1635–1643. [Google Scholar] [CrossRef] [PubMed]
- Burai, R.; Ramesh, C.; Nayak, T.K.; Dennis, M.K.; Bryant, B.K.; Prossnitz, E.R.; Arterburn, J.B. Synthesis and Characterization of Tricarbonyl-Re/Tc(I) Chelate Probes Targeting the G Protein-Coupled Estrogen Receptor GPER/GPR30. PLoS ONE 2012, 7, e46861. [Google Scholar] [CrossRef]
- Revankar, C.M.; Mitchell, H.D.; Field, A.S.; Burai, R.; Corona, C.; Ramesh, C.; Sklar, L.A.; Arterburn, J.B.; Prossnitz, E.R. Synthetic estrogen derivatives demonstrate the functionality of intracellular GPR30. ACS Chem. Biol. 2007, 2, 536–544. [Google Scholar] [CrossRef]
- Nayak, T.K.; Dennis, M.K.; Ramesh, C.; Burai, R.; Atcher, R.W.; Sklar, L.A.; Norenberg, J.P.; Hathaway, H.J.; Arterburn, J.B.; Prossnitz, E.R. Influence of charge on cell permeability and tumor imaging of GPR30-targeted 111In-labeled nonsteroidal imaging agents. ACS Chem. Biol. 2010, 5, 681–690. [Google Scholar] [CrossRef] [PubMed]
- Colom, M.; Vidal, B.; Zimmer, L. Is There a Role for GPCR Agonist Radiotracers in PET Neuroimaging? Front. Mol. Neurosci. 2019, 12, 487131. [Google Scholar] [CrossRef]
- Zimmer, L. Pharmacological agonists for more-targeted CNS radio-pharmaceuticals. Oncotarget 2016, 7, 80111–80112. [Google Scholar] [CrossRef]
- Vidal, B.; Sebti, J.; Verdurand, M.; Fieux, S.; Billard, T.; Streichenberger, N.; Troakes, C.; Newman-Tancredi, A.; Zimmer, L. Agonist and antagonist bind differently to 5-HT1A receptors during Alzheimer’s disease: A post-mortem study with PET radiopharmaceuticals. Neuropharmacology 2016, 109, 88–95. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Syvänen, S.; Lindhe, Ö.; Palner, M.; Kornum, B.R.; Rahman, O.; Långström, B.; Knudsen, G.M.; Hammarlund-Udenaes, M. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab. Dispos. 2009, 37, 635–643. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Guidance for Preclinical Studies with Radiopharmaceuticals; 2023; pp. 1–129. [Google Scholar]
- Fowler, J.S.; Ding, Y.S.; Logan, J.; Macgregor, R.R.; Shea, C.; Garza, V.; Gimi, R.; Volkow, N.D.; Wang, G.J.; Schlyer, D.; et al. Species differences in [11C]clorgyline binding in brain. Nucl. Med. Biol. 2001, 28, 779–785. [Google Scholar] [CrossRef] [PubMed]
- Narayanaswami, V.; Drake, L.R.; Brooks, A.F.; Meyer, J.H.; Houle, S.; Kilbourn, M.R.; Scott, P.J.H.; Vasdev, N. Classics in Neuroimaging: Development of PET Tracers for Imaging Monoamine Oxidases. ACS Chem. Neurosci. 2019, 10, 1867–1871. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, J.; Bajwa, A.K.; Wooten, D.W.; Hillmer, A.T.; Pan, M.L.; Pandey, S.K.; Saigal, N.; Christian, B.T. Comparative assessment of 18F-Mefway as a serotonin 5-HT1A receptor PET imaging agent across species-rodents, nonhuman primates, and humans. J. Comp. Neurol. 2016, 524, 1457. [Google Scholar] [CrossRef]
Molecule | Formula | MW | Heteroatoms | H-Bond Donors | TPSA | WLOGP | Consensus Log P | BBB Permeant | P-gp Substrate |
---|---|---|---|---|---|---|---|---|---|
AB-1 | C16H20O3 | 260.33 | 3 | 2 | 49.69 | 2.47 | 2.27 | Yes | Yes |
E4 | C18H24O4 | 304.38 | 4 | 4 | 80.92 | 1.55 | 1.66 | No | Yes |
LY-3201 | C18H16F2O3 | 318.31 | 5 | 2 | 49.69 | 4.88 | 3.55 | Yes | Yes |
WAY-200070 | C13H8BrNO3 | 306.11 | 5 | 2 | 66.49 | 3.67 | 2.93 | Yes | No |
ERB-041 | C15H10FNO3 | 271.24 | 5 | 2 | 66.49 | 4 | 3.24 | Yes | No |
DPN | C15H13NO2 | 239.27 | 3 | 2 | 64.25 | 2.95 | 2.52 | Yes | No |
PaPE-1 | C17H18O2 | 254.32 | 2 | 2 | 40.46 | 3.33 | 3.37 | Yes | Yes |
PaPE-2 | C16H18O2 | 242.31 | 2 | 2 | 40.46 | 3.4 | 3.33 | Yes | No |
PaPE-3 | C18H20O2 | 268.35 | 2 | 2 | 40.46 | 3.72 | 3.66 | Yes | Yes |
G-1 | C21H18BrNO3 | 412.28 | 5 | 1 | 47.56 | 4.31 | 4.06 | Yes | Yes |
G-15 | C19H16BrNO2 | 370.24 | 4 | 1 | 30.49 | 4.11 | 4.08 | Yes | Yes |
PPT | C24H22N2O3 | 386.44 | 5 | 3 | 78.51 | 5.28 | 4.25 | No | No |
MPP | C29H33Cl2N3O3 | 542.5 | 8 | 2 | 70.75 | 7.01 | 4.62 | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arjmand, S.; Bender, D.; Jakobsen, S.; Wegener, G.; Landau, A.M. Peering into the Brain’s Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules 2023, 13, 1405. https://doi.org/10.3390/biom13091405
Arjmand S, Bender D, Jakobsen S, Wegener G, Landau AM. Peering into the Brain’s Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules. 2023; 13(9):1405. https://doi.org/10.3390/biom13091405
Chicago/Turabian StyleArjmand, Shokouh, Dirk Bender, Steen Jakobsen, Gregers Wegener, and Anne M. Landau. 2023. "Peering into the Brain’s Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders" Biomolecules 13, no. 9: 1405. https://doi.org/10.3390/biom13091405
APA StyleArjmand, S., Bender, D., Jakobsen, S., Wegener, G., & Landau, A. M. (2023). Peering into the Brain’s Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules, 13(9), 1405. https://doi.org/10.3390/biom13091405