Esketamine Inhibits Cocaine-Seeking Behaviour Subsequent to Various Abstinence Conditions in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Housing and Catheter Implantation
2.2. Drugs
2.3. Behavioural Procedures
2.3.1. Initial Lever Press Training
2.3.2. Cocaine Self-Administration Procedure
2.3.3. Cocaine Abstinence Procedures
Extinction Training Exposure
Social Isolation
Enriched Environment Exposure
2.3.4. Reinstatement of Cocaine-Seeking Behaviour
2.4. Locomotor Activity
2.5. Statistical Analyses
3. Results
3.1. Cocaine Self-Administration
3.2. Cocaine Abstinence Procedures
3.2.1. Experiment 1—Impact of Esketamine on Cocaine-Seeking Behaviour following Extinction Training Exposure
3.2.2. Experiment 2—Impact of Esketamine on Cocaine-Seeking Behaviour following Social Isolation
3.2.3. Experiment 3–Impact of Esketamine on Cocaine-Seeking Behaviour following Enrichment Environment Exposure
3.3. Effects of Esketamine on Locomotor Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wouldes, T.A.; Lester, B.M. Stimulants: How big is the problem and what are the effects of prenatal exposure? Semin. Fetal Neonatal Med. 2019, 24, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef] [PubMed]
- Kalivas, P.W. The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 2009, 10, 561–572. [Google Scholar] [CrossRef]
- Zimmermann, K.S.; Richardson, R.; Baker, K.D. Esketamine as a treatment for paediatric depression: Questions of safety and efficacy. Lancet Psychiatry 2020, 7, 827–829. [Google Scholar] [CrossRef]
- Kryst, J.; Kawalec, P.; Pilc, A. Efficacy and safety of intranasal esketamine for the treatment of major depressive disorder. Expert. Opin. Pharmacother. 2020, 21, 9–20. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhang, N.-X.; Liu, D.-X.; Ding, J.; Zhang, Y.-N.; Zhu, Z.-Q. Research advances in the clinical application of esketamine. Ibrain 2022, 8, 55–67. [Google Scholar] [CrossRef]
- Ago, Y.; Tanabe, W.; Higuchi, M.; Tsukada, S.; Tanaka, T.; Yamaguchi, T.; Igarashi, H.; Yokoyama, R.; Seiriki, K.; Kasai, A.; et al. (R)-Ketamine Induces a Greater Increase in Prefrontal 5-HT Release Than (S)-Ketamine and Ketamine Metabolites via an AMPA Receptor-Independent Mechanism. Int. J. Neuropsychopharmacol. 2019, 22, 665–674. [Google Scholar] [CrossRef]
- Fukumoto, K.; Toki, H.; Iijima, M.; Hashihayata, T.; Yamaguchi, J.I.; Hashimoto, K.; Chaki, S. Antidepressant Potential of (R)-Ketamine in Rodent Models: Comparison with (S)-Ketamine. J. Pharmacol. Exp. Ther. 2017, 361, 9–16. [Google Scholar] [CrossRef]
- Zanos, P.; Moaddel, R.; Morris, P.J.; Georgiou, P.; Fischell, J.; Elmer, G.I.; Alkondon, M.; Yuan, P.; Pribut, H.J.; Singh, N.S.; et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 2016, 533, 481–486. [Google Scholar] [CrossRef]
- Maeng, S.; Zarate, C.A., Jr.; Du, J.; Schloesser, R.J.; McCammon, J.; Chen, G.; Manji, H.K. Cellular mechanisms underlying the antidepressant effects of ketamine: Role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 2008, 63, 349–352. [Google Scholar] [CrossRef]
- Preskorn, S.H.; Baker, B.; Kolluri, S.; Menniti, F.S.; Krams, M.; Landen, J.W. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J. Clin. Psychopharmacol. 2008, 28, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Xu, K.; Xu, X.; Zhu, J.; Jin, Y.; Liu, Q.; Xu, R.; Gu, X.; Liu, Y.; Huang, Y.; et al. S-Ketamine Pretreatment Alleviates Anxiety-Like Behaviors and Mechanical Allodynia and Blocks the Pro-inflammatory Response in Striatum and Periaqueductal Gray From a Post-traumatic Stress Disorder Model. Front. Behav. Neurosci. 2022, 16, 848232. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K.; Kakiuchi, T.; Ohba, H.; Nishiyama, S.; Tsukada, H. Reduction of dopamine D2/3 receptor binding in the striatum after a single administration of esketamine, but not R-ketamine: A PET study in conscious monkeys. Eur. Arch. Psychiatry Clin. Neurosci. 2017, 267, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Ochs-Ross, R.; Wajs, E.; Daly, E.J.; Zhang, Y.; Lane, R.; Lim, P.; Drevets, W.C.; Steffens, D.C.; Sanacora, G.; Jamieson, C.; et al. Comparison of Long-Term Efficacy and Safety of Esketamine Nasal Spray Plus Oral Antidepressant in Younger Versus Older Patients With Treatment-Resistant Depression: Post-Hoc Analysis of SUSTAIN-2, a Long-Term Open-Label Phase 3 Safety and Efficacy Study. Am. J. Geriatr. Psychiatry 2022, 30, 541–556. [Google Scholar] [CrossRef]
- Doty, R.L.; Popova, V.; Wylie, C.; Fedgchin, M.; Daly, E.; Janik, A.; Ochs-Ross, R.; Lane, R.; Lim, P.; Cooper, K.; et al. Effect of Esketamine Nasal Spray on Olfactory Function and Nasal Tolerability in Patients with Treatment-Resistant Depression: Results from Four Multicenter, Randomized, Double-Blind, Placebo-Controlled, Phase III Studies. CNS Drugs 2021, 35, 781–794. [Google Scholar] [CrossRef]
- Frankowska, M.; Miszkiel, J.; Pomierny-Chamioło, L.; Pomierny, B.; Giannotti, G.; Suder, A.; Filip, M. Alternation in dopamine D2-like and metabotropic glutamate type 5 receptor density caused by differing housing conditions during abstinence from cocaine self-administration in rats. J. Psychopharmacol. 2019, 33, 372–382. [Google Scholar] [CrossRef]
- Marinelli, M.; Piazza, P.V. Interaction between glucocorticoid hormones, stress and psychostimulant drugs. Eur. J. Neurosci. 2002, 16, 387–394. [Google Scholar] [CrossRef]
- Goeders, N.E. The impact of stress on addiction. Eur. Neuropsychopharmacol. 2003, 13, 435–441. [Google Scholar] [CrossRef]
- Smaga, I.; Wydra, K.; Suder, A.; Sanak, M.; Caffino, L.; Fumagalli, F.; Filip, M. Enhancement of the GluN2B subunit of glutamatergic NMDA receptors in rat brain areas after cocaine abstinence. J. Psychopharmacol. 2021, 35, 1226–1239. [Google Scholar] [CrossRef]
- Bardo, M.T.; Neisewander, J.L.; Kelly, T.H. Individual differences and social influences on the neurobehavioral pharmacology of abused drugs. Pharmacol. Rev. 2013, 65, 255–290. [Google Scholar] [CrossRef]
- El Rawas, R.; Thiriet, N.; Lardeux, V.; Jaber, M.; Solinas, M. Environmental enrichment decreases the rewarding but not the activating effects of heroin. Psychopharmacology 2009, 203, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Wydra, K.; Golembiowska, K.; Suder, A.; Kaminska, K.; Fuxe, K.; Filip, M. On the role of adenosine (A)2A receptors in cocaine-induced reward: A pharmacological and neurochemical analysis in rats. Psychopharmacology 2015, 232, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.S.; Joca, S.R.L.; Harvey, B.H.; Elfving, B.; Wegener, G. Esketamine and rapastinel, but not imipramine, have antidepressant-like effect in a treatment-resistant animal model of depression. Acta Neuropsychiatr. 2019, 31, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Wydra, K.; Suder, A.; Frankowska, M.; Borroto Escuela, D.O.; Fuxe, K.; Filip, M. Effects of intra-accumbal or intra-prefrontal cortex microinjections of adenosine 2A receptor ligands on responses to cocaine reward and seeking in rats. Psychopharmacology 2018, 235, 3509–3523. [Google Scholar] [CrossRef] [PubMed]
- Solinas, M.; Thiriet, N.; El Rawas, R.; Lardeux, V.; Jaber, M. Environmental enrichment during early stages of life reduces the behavioral, neurochemical, and molecular effects of cocaine. Neuropsychopharmacology 2009, 34, 1102–1111. [Google Scholar] [CrossRef]
- Frankowska, M.; Miszkiel, J.; Pomierny-Chamioło, L.; Pomierny, B.; Borelli, A.C.; Suder, A.; Filip, M. Extinction training following cocaine or MDMA self-administration produces discrete changes in D2-like and mGlu5 receptor density in the rat brain. Pharmacol. Rep. 2019, 71, 870–878. [Google Scholar] [CrossRef]
- Smaga, I.; Wydra, K.; Suder, A.; Frankowska, M.; Sanak, M.; Caffino, L.; Fumagalli, F.; Filip, M. The NMDA Receptor Subunit (GluN1 and GluN2A) Modulation Following Different Conditions of Cocaine Abstinence in Rat Brain Structures. Neurotox. Res. 2021, 39, 556–565. [Google Scholar] [CrossRef]
- Smaga, I.; Wydra, K.; Frankowska, M.; Fumagalli, F.; Sanak, M.; Filip, M. Cocaine Self-Administration and Abstinence Modulate NMDA Receptor Subunits and Active Zone Proteins in the Rat Nucleus Accumbens. Molecules 2020, 25, 3480. [Google Scholar] [CrossRef]
- Smaga, I.; Gawlińska, K.; Frankowska, M.; Wydra, K.; Sadakierska-Chudy, A.; Suder, A.; Piechota, M.; Filip, M. Extinction Training after Cocaine Self-Administration Influences the Epigenetic and Genetic Machinery Responsible for Glutamatergic Transporter Gene Expression in Male Rat Brain. Neuroscience 2020, 451, 99–110. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, F.; You, Y.; Wang, H.; Yuan, S.; Wu, B.; Zhu, R.; Liu, D.; Yan, F.; Wang, Z. S-Ketamine Exerts Antidepressant Effects by Regulating Rac1 GTPase Mediated Synaptic Plasticity in the Hippocampus of Stressed Rats. Cell Mol. Neurobiol. 2023, 43, 299–314. [Google Scholar] [CrossRef]
- Koncz, S.; Papp, N.; Pothorszki, D.; Bagdy, G. (S)-ketamine, but not (R)-ketamine shows acute effects on depression-like behavior and sleep-wake architecture in rats. Int. J. Neuropsychopharmacol. 2023; Advance access. [Google Scholar] [CrossRef]
- Maraschin, J.C.; Frias, A.T.; Hernandes, P.M.; Batistela, M.F.; Martinez, L.M.; Joca, S.R.L.; Graeff, F.G.; Audi, E.A.; Spera de Andrade, T.G.C.; Zangrossi, H. Antipanic-like effect of esketamine and buprenorphine in rats exposed to acute hypoxia. Behav. Brain Res. 2022, 418, 113651. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.L.; Vannan, A.; Bastle, R.M.; Wilson, M.A.; Dell’Orco, M.; Perrone-Bizzozero, N.I.; Neisewander, J.L. Environmental enrichment during forced abstinence from cocaine self-administration opposes gene network expression changes associated with the incubation effect. Sci. Rep. 2020, 10, 11291. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, J.J. Cognitive dysfunction in individuals with cocaine use disorder: Potential moderating factors and pharmacological treatments. Exp. Clin. Psychopharmacol. 2019, 27, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Hámor, P.U.; Gobin, C.M.; Schwendt, M. The role of glutamate mGlu5 and adenosine A2a receptor interactions in regulating working memory performance and persistent cocaine seeking in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 103, 109979. [Google Scholar] [CrossRef]
- Gobin, C.; Schwendt, M. The cognitive cost of reducing relapse to cocaine-seeking with mGlu5 allosteric modulators. Psychopharmacology 2020, 237, 115–125. [Google Scholar] [CrossRef]
- Lipaus, I.F.S.; Gomes, E.F.; Martins, C.W.; CM, E.S.; Pires, R.G.W.; Malgarin, F.; Schuck, P.F.; Palacios, E.M.N.; de Melo Rodrigues, L.C. Impairment of spatial working memory and oxidative stress induced by repeated crack cocaine inhalation in rats. Behav. Brain Res. 2019, 359, 910–917. [Google Scholar] [CrossRef]
- Fijał, K.; Nowak, E.; Leśkiewicz, M.; Budziszewska, B.; Filip, M. Working memory deficits and alterations of ERK and CREB phosphorylation following withdrawal from cocaine self-administration. Pharmacol. Rep. 2015, 67, 881–889. [Google Scholar] [CrossRef]
- Zhornitsky, S.; Tourjman, V.; Pelletier, J.; Assaf, R.; Li, C.-S.R.; Potvin, S. Acute effects of ketamine and esketamine on cognition in healthy subjects: A meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2022, 118, 110575. [Google Scholar] [CrossRef]
- Pfenninger, E.G.; Durieux, M.E.; Himmelseher, S. Cognitive impairment after small-dose ketamine isomers in comparison to equianalgesic racemic ketamine in human volunteers. Anesthesiology 2002, 96, 357–366. [Google Scholar] [CrossRef]
- Souza-Marques, B.; Santos-Lima, C.; Araújo-de-Freitas, L.; Vieira, F.; Jesus-Nunes, A.P.; Quarantini, L.C.; Sampaio, A.S. Neurocognitive Effects of Ketamine and Esketamine for Treatment-Resistant Major Depressive Disorder: A Systematic Review. Harv. Rev. Psychiatry 2021, 29, 340–350. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Yan, W.; Wang, X.; Yu, J.; Yin, C.; Zhou, Q.; Hou, Z.; Wang, Q. Young plasma reverses anesthesia and surgery-induced cognitive impairment in aged rats by modulating hippocampal synaptic plasticity. Front. Aging Neurosci. 2022, 14, 996223. [Google Scholar] [CrossRef] [PubMed]
- Morrison, R.L.; Fedgchin, M.; Singh, J.; Van Gerven, J.; Zuiker, R.; Lim, K.S.; van der Ark, P.; Wajs, E.; Xi, L.; Zannikos, P.; et al. Effect of intranasal esketamine on cognitive functioning in healthy participants: A randomized, double-blind, placebo-controlled study. Psychopharmacology 2018, 235, 1107–1119. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, C.; Ji, F.; Tian, H.; Wang, L.; Jia, F.; Jiang, D.; Chen, C.; Zhou, C.; Lin, X.; Zhu, J. Transient effects of multi-infusion ketamine augmentation on treatment-resistant depressive symptoms in patients with treatment-resistant bipolar depression—An open-label three-week pilot study. Brain Behav. 2020, 10, e01674. [Google Scholar] [CrossRef] [PubMed]
- De Vry, J.; Jentzsch, K.R. Role of the NMDA receptor NR2B subunit in the discriminative stimulus effects of ketamine. Behav. Pharmacol. 2003, 14, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Tiger, M.; Veldman, E.R.; Ekman, C.-J.; Halldin, C.; Svenningsson, P.; Lundberg, J. A randomized placebo-controlled PET study of ketamine’s effect on serotonin1B receptor binding in patients with SSRI-resistant depression. Transl. Psychiatry 2020, 10, 159. [Google Scholar] [CrossRef]
- Broadbear, J.H.; Winger, G.; Woods, J.H. Self-administration of fentanyl, cocaine and ketamine: Effects on the pituitary-adrenal axis in rhesus monkeys. Psychopharmacology 2004, 176, 398–406. [Google Scholar] [CrossRef]
- Lorrain, D.S.; Baccei, C.S.; Bristow, L.J.; Anderson, J.J.; Varney, M.A. Effects of ketamine and N-methyl-D-aspartate on glutamate and dopamine release in the rat prefrontal cortex: Modulation by a group II selective metabotropic glutamate receptor agonist LY379268. Neuroscience 2003, 117, 697–706. [Google Scholar] [CrossRef]
- Vasiliu, O. Esketamine for treatment-resistant depression: A review of clinical evidence (Review). Exp. Ther. Med. 2023, 25, 111. [Google Scholar] [CrossRef]
- Scofield, M.D.; Heinsbroek, J.A.; Gipson, C.D.; Kupchik, Y.M.; Spencer, S.; Smith, A.C.; Roberts-Wolfe, D.; Kalivas, P.W. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol. Rev. 2016, 68, 816–871. [Google Scholar] [CrossRef]
- de Laat, B.; Weerasekera, A.; Leurquin-Sterk, G.; Bormans, G.; Himmelreich, U.; Casteels, C.; Van Laere, K. Glutamatergic Biomarkers for Cocaine Addiction: A Longitudinal Study Using MR Spectroscopy and mGluR5 PET in Self-Administering Rats. J. Nucl. Med. 2018, 59, 952–959. [Google Scholar] [CrossRef]
- Williams, J.M.; Steketee, J.D. Cocaine increases medial prefrontal cortical glutamate overflow in cocaine-sensitized rats: A time course study. Eur. J. Neurosci. 2004, 20, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Shin, C.B.; Serchia, M.M.; Shahin, J.R.; Ruppert-Majer, M.A.; Kippin, T.E.; Szumlinski, K.K. Incubation of cocaine-craving relates to glutamate over-flow within ventromedial prefrontal cortex. Neuropharmacology 2016, 102, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Dakwar, E.; Levin, F.; Foltin, R.W.; Nunes, E.V.; Hart, C.L. The effects of subanesthetic ketamine infusions on motivation to quit and cue-induced craving in cocaine-dependent research volunteers. Biol. Psychiatry 2014, 76, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Lassi, D.L.S.; Malbergier, A.; Negrão, A.B.; Florio, L.; De Aquino, J.P.; Castaldelli-Maia, J.M. Pharmacological Treatments for Cocaine Craving: What Is the Way Forward? A Systematic Review. Brain Sci. 2022, 12, 1546. [Google Scholar] [CrossRef]
- Nestler, E.J. The neurobiology of cocaine addiction. Sci. Pract. Perspect. 2005, 3, 4–10. [Google Scholar] [CrossRef]
- Mao, L.; Guo, M.; Jin, D.; Xue, B.; Wang, J.Q. Group III metabotropic glutamate receptors and drug addiction. Front. Med. 2013, 7, 445–451. [Google Scholar] [CrossRef]
- Caffino, L.; Mottarlini, F.; Targa, G.; Verheij, M.M.M.; Fumagalli, F.; Homberg, J.R. Responsivity of serotonin transporter knockout rats to short and long access to cocaine: Modulation of the glutamate signalling in the nucleus accumbens shell. Br. J. Pharmacol. 2022, 179, 3727–3739. [Google Scholar] [CrossRef]
- Zinsmaier, A.K.; Dong, Y.; Huang, Y.H. Cocaine-induced projection-specific and cell type-specific adaptations in the nucleus accumbens. Mol. Psychiatry 2022, 27, 669–686. [Google Scholar] [CrossRef]
- Wickens, M.M.; Deutschmann, A.U.; McGrath, A.G.; Parikh, V.; Briand, L.A. Glutamate receptor interacting protein acts within the prefrontal cortex to blunt cocaine seeking. Neuropharmacology 2019, 157, 107672. [Google Scholar] [CrossRef]
- Wydra, K.; Golembiowska, K.; Zaniewska, M.; Kamińska, K.; Ferraro, L.; Fuxe, K.; Filip, M. Accumbal and pallidal dopamine, glutamate and GABA overflow during cocaine self-administration and its extinction in rats. Addict. Biol. 2013, 18, 307–324. [Google Scholar] [CrossRef]
- Smaga, I.; Sanak, M.; Filip, M. Cocaine-induced Changes in the Expression of NMDA Receptor Subunits. Curr. Neuropharmacol. 2019, 17, 1039–1055. [Google Scholar] [CrossRef] [PubMed]
- Smaga, I.; Wydra, K.; Witek, K.; Surówka, P.; Suder, A.; Pieniążek, R.; Caffino, L.; Fumagalli, F.; Sanak, M.; Filip, M. Intravenous administration of Tat-NR2B9c peptide, a PSD95 inhibitor, attenuates reinstatement of cocaine-seeking behavior in rats. Behav. Brain Res. 2022, 416, 113537. [Google Scholar] [CrossRef] [PubMed]
- Reiner, B.C.; Zhang, Y.; Stein, L.M.; Perea, E.D.; Arauco-Shapiro, G.; Ben Nathan, J.; Ragnini, K.; Hayes, M.R.; Ferraro, T.N.; Berrettini, W.H.; et al. Single nucleus transcriptomic analysis of rat nucleus accumbens reveals cell type-specific patterns of gene expression associated with volitional morphine intake. Transl. Psychiatry 2022, 12, 374. [Google Scholar] [CrossRef] [PubMed]
- Namba, M.D.; Kupchik, Y.M.; Spencer, S.M.; Garcia-Keller, C.; Goenaga, J.G.; Powell, G.L.; Vicino, I.A.; Hogue, I.B.; Gipson, C.D. Accumbens neuroimmune signaling and dysregulation of astrocytic glutamate transport underlie conditioned nicotine-seeking behavior. Addict. Biol. 2020, 25, e12797. [Google Scholar] [CrossRef] [PubMed]
- Ebert, B.; Mikkelsen, S.; Thorkildsen, C.; Borgbjerg, F.M. Norketamine, the main metabolite of ketamine, is a non-competitive NMDA receptor antagonist in the rat cortex and spinal cord. Eur. J. Pharmacol. 1997, 333, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Dakwar, E.; Nunes, E.V.; Hart, C.L.; Foltin, R.W.; Mathew, S.J.; Carpenter, K.M.; Choi, C.J.J.; Basaraba, C.N.; Pavlicova, M.; Levin, F.R. A Single Ketamine Infusion Combined With Mindfulness-Based Behavioral Modification to Treat Cocaine Dependence: A Randomized Clinical Trial. Am. J. Psychiatry 2019, 176, 923–930. [Google Scholar] [CrossRef]
- Martinotti, G.; Chiappini, S.; Pettorruso, M.; Mosca, A.; Miuli, A.; Di Carlo, F.; D’Andrea, G.; Collevecchio, R.; Di Muzio, I.; Sensi, S.L.; et al. Therapeutic Potentials of Ketamine and Esketamine in Obsessive-Compulsive Disorder (OCD), Substance Use Disorders (SUD) and Eating Disorders (ED): A Review of the Current Literature. Brain Sci. 2021, 11, 856. [Google Scholar] [CrossRef]
Cocaine Abstinence Conditions | Cocaine Self-Administration | ||||
---|---|---|---|---|---|
Number of “Active” Lever Presses | Number of “Inactive” Lever Presses | Number of Drug Infusions | Total Cocaine Intake (mg/rat) | ||
Experiment 1 Extinction training | Group 1 | 237 ± 28 | 7 ± 3 | 35 ± 3 | 197 ± 19 |
Group 2 | 174 ± 27 | 9 ± 8 | 31 ± 6 | 175 ± 31 | |
Experiment 2 Social isolation | Group 1 | 146 ± 21 | 14 ± 5 | 26 ± 4 | 161 ± 21 |
Group 2 | 150 ± 33 | 10 ± 4 | 24 ± 5 | 141 ± 20 | |
Experiment 3 Enrichment environment | Group 1 | 153 ± 21 | 5 ± 2 | 26 ± 3 | 147 ± 18 |
Group 2 | 188 ± 26 | 3 ± 1 | 29 ± 4 | 158 ± 27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wydra, K.; Witek, K.; Suder, A.; Filip, M. Esketamine Inhibits Cocaine-Seeking Behaviour Subsequent to Various Abstinence Conditions in Rats. Biomolecules 2023, 13, 1411. https://doi.org/10.3390/biom13091411
Wydra K, Witek K, Suder A, Filip M. Esketamine Inhibits Cocaine-Seeking Behaviour Subsequent to Various Abstinence Conditions in Rats. Biomolecules. 2023; 13(9):1411. https://doi.org/10.3390/biom13091411
Chicago/Turabian StyleWydra, Karolina, Kacper Witek, Agata Suder, and Małgorzata Filip. 2023. "Esketamine Inhibits Cocaine-Seeking Behaviour Subsequent to Various Abstinence Conditions in Rats" Biomolecules 13, no. 9: 1411. https://doi.org/10.3390/biom13091411
APA StyleWydra, K., Witek, K., Suder, A., & Filip, M. (2023). Esketamine Inhibits Cocaine-Seeking Behaviour Subsequent to Various Abstinence Conditions in Rats. Biomolecules, 13(9), 1411. https://doi.org/10.3390/biom13091411