RP-HPLC Separation and 1H NMR Identification of a Yellow Fluorescent Compound—Riboflavin (Vitamin B2)—Produced by the Yeast Hyphopichia wangnamkhiaoensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Batch Cultivation of H. wangnamkhiaoensis
2.3. Concentration, Extraction, and Separation of the Fluorescent Compound Produced by H. wangnamkhiaoensis
2.4. UV–Vis Spectroscopy Analysis of the Selected Fractions from RP-HPLC-DAD Analyses
2.5. The 1D 1H NMR Analysis
2.6. The 1H NMR Spectra Data Processing
2.7. Spectrofluorometric Characterization of the Fractions Selected from RP-HPLC Analyses
3. Results and Discussion
3.1. RP-HPLC-DAD Analysis of the Supernatant of the H. wangnamkhiaoensis Liquid Culture
3.2. UV–Vis Characterization of the Fractions Selected from RP-HPLC-DAD Analyses
3.3. The 1H NMR Characterization of the Fractions Selected from RP-HPLC-DAD Analysis
3.4. RP-HPLC-DAD, UV–Vis, and 1H NMR Analyses of Riboflavin Standard
3.5. Spike-In 1H NMR Experiments
3.6. Spectrofluorometric Characterization of the Riboflavin Standard, FCHw-M2, and FCHw-M3
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasten, F.H. Introduction to fluorescent probes: Properties, history and applications. In Fluorescent and Luminescent Probes for Biological Activity, 2nd ed.; Mason, W., Ed.; Academic Press: Cambridge, MA, USA, 1999; pp. 17–39. [Google Scholar] [CrossRef]
- Kim, J.; Oh, J.H.; Kim, D. Recent advances in single-benzene-based fluorophores: Physicochemical properties and applications. Org. Biomol. Chem. 2021, 19, 933–946. [Google Scholar] [CrossRef]
- Marcu, L.; French, P.M.W.; Elson, D.S. Fluorescence Lifetime Spectroscopy and Imaging, 1st ed.; Marcu, L., French, P.M.W., Elson, D.S., Eds.; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Sugden, J.K. Photochemistry of dyes and fluorochromes used in biology and medicine: Some physicochemical background and current applications. Biotech. Histochem. 2004, 79, 71–90. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Lakowicz, J.R., Ed.; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef]
- Croce, A.C.; Bottiroli, G. Autofluorescence spectroscopy and imaging: A tool for biomedical research and diagnosis. Eur. J. Histochem. 2014, 58, 2461. [Google Scholar] [CrossRef]
- Averianova, L.A.; Balabanova, L.A.; Son, O.M.; Podvolotskaya, A.B.; Tekutyeva, L.A. Production of vitamin B2 (riboflavin) by microorganisms: An overview. Front. Bioeng. Biotechnol. 2020, 8, 570828. [Google Scholar] [CrossRef]
- Liu, S.; Hu, W.; Wang, Z.; Chen, T. Production of riboflavin and related cofactors by biotechnological processes. Microb. Cell Fact. 2020, 19, 31. [Google Scholar] [CrossRef]
- Singh, R.V.; Sambyal, K. An overview of β-carotene production: Current status and future prospects. Food Biosci. 2022, 47, 101717. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Z.; Jiang, H.; Mao, X. Biotechnology advances in β-carotene production by microorganisms. Trends Food Sci. Technol. 2021, 111, 322–332. [Google Scholar] [CrossRef]
- Andreieva, Y.; Lyzak, O.; Liu, W.; Kang, Y.; Dmytruk, K.; Sibirny, A. SEF1 and VMA1 genes regulate riboflavin biosynthesis in the flavinogenic yeast Candida famata. Cytol. Genet. 2020, 54, 379–385. [Google Scholar] [CrossRef]
- Chávez-Camarillo, G.M.; Lopez-Nuñez, P.V.; Jiménez-Nava, R.A.; Aranda-García, E.; Cristiani-Urbina, E. Production of extracellular α-amylase by single-stage steady-state continuous cultures of Candida wangnamkhiaoensis in an airlift bioreactor. PLoS ONE 2022, 17, e0264734. [Google Scholar] [CrossRef] [PubMed]
- Moliné, M.; Libkind, D.; Van Broock, M. Production of torularhodin, torulene, and β-carotene by Rhodotorula yeasts. Methods Mol. Biol. 2012, 898, 275–283. [Google Scholar] [CrossRef]
- Petrik, S.; Marova, I.; Haronikova, A.; Kostovova, I.; Breierova, E. Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production—A comparative screening study. Ann. Microbiol. 2013, 63, 1537–1551. [Google Scholar] [CrossRef]
- Sun, Z.J.; Lian, J.Z.; Zhu, L.; Jiang, Y.Q.; Li, G.S.; Xue, H.L.; Wu, M.B.; Yang, L.R.; Lin, J.P. Combined biosynthetic pathway engineering and storage pool expansion for high-level production of ergosterol in industrial Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 2021, 9, 681666. [Google Scholar] [CrossRef] [PubMed]
- Andreieva, Y.; Petrovska, Y.; Lyzak, O.; Liu, W.; Kang, Y.; Dmytruk, K.; Sibirny, A. Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). Yeast 2020, 37, 497–504. [Google Scholar] [CrossRef]
- Lyzak, O.O.; Ledesma-Amaro, R.; Dmytruk, K.V.; Sibirny, A.A.; Revuelta, J.L. Molecular studies of the flavinogenic fungus Ashbya gossypii and the flavinogenic yeast Candida famata. In Biotechnology of Yeasts and Filamentous Fungi; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 281–296. [Google Scholar] [CrossRef]
- Petrovska, Y.; Lyzak, O.; Dmytruk, K.; Sibirny, A. Effect of gene SFU1 on riboflavin synthesis in flavinogenic yeast Candida famata. Cytol. Genet. 2020, 54, 408–412. [Google Scholar] [CrossRef]
- Prokopiv, T.M.; Fedorovych, D.V.; Boretsky, Y.R.; Sibirny, A.A. Oversynthesis of riboflavin in the yeast Pichia guilliermondii is accompanied by reduced catalase and superoxide dismutases activities. Curr. Microbiol. 2013, 66, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Tsyrulnyk, A.O.; Fedorovych, D.V.; Dmytruk, K.V.; Sibirny, A.A. Overexpression of riboflavin excretase enhances riboflavin production in the yeast Candida famata. Methods Mol. Biol. 2021, 2280, 31–42. [Google Scholar] [CrossRef]
- Sommer, K.; Hillinger, M.; Eigenmann, A.; Vetter, W. Characterization of various isomeric photoproducts of ergosterol and vitamin D2 generated by UV irradiation. Eur. Food. Res. Technol. 2023, 249, 713–726. [Google Scholar] [CrossRef]
- Somai, B.M.; Belewa, V.; Frost, C. Tulbaghia violacea (Harv) exerts its antifungal activity by reducing ergosterol production in Aspergillus flavus. Curr. Microbiol. 2021, 78, 2989–2997. [Google Scholar] [CrossRef]
- Odanaka, K.; Iwatsuki, M.; Satho, T.; Watanabe, M. Identification and characterization of a brilliant yellow pigment produced by Bordetella pertussis. Microbiol. Immunol. 2017, 61, 490–496. [Google Scholar] [CrossRef]
- Mitrofanov, D.A.; Nazarov, G.V.; Babkin, I.Y.; Galan, S.E.; Goncharov, V.M.; Vostrukhov, S.V. Using HPLC with mass-spectrometric detection for riboflavin determination in complex medicinal forms. Pharm. Chem. J. 2009, 43, 176–179. [Google Scholar] [CrossRef]
- Kotlobay, A.A.; Dubinnyi, M.A.; Polevoi, A.V.; Kovalchuk, S.I.; Kaskova, Z.M. Riboflavin as one of possible components of Keroplatus (Insecta: Diptera: Keroplatidae) fungus gnat bioluminescence. Russ. J. Bioorg. Chem. 2022, 48, 1215–1220. [Google Scholar] [CrossRef]
- Maswanna, T.; Maneeruttanarungroj, C. Identification of major carotenoids from green alga Tetraspora sp. CU2551: Partial purification and characterization of lutein, canthaxanthin, neochrome, and β-carotene. World J. Microbiol. Biotechnol. 2022, 38, 129. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Camarillo, G.M.; Santiago-Flores, U.M.; Mena-Vivanco, A.; Morales-Barrera, L.; Cortés-Acosta, E.; Cristiani-Urbina, E. Transient responses of Wickerhamia sp. yeast continuous cultures to qualitative changes in carbon source supply: Induction and catabolite repression of α-amylase synthesis. Ann. Microbiol. 2018, 68, 625–635. [Google Scholar] [CrossRef]
- Hernández-Montañez, Z.F.; Juárez-Montiel, M.; Velázquez-Ávila, M.; Cristiani-Urbina, E.; Hernández-Rodríguez, C.; Villa-Tanaca, L.; Chávez-Camarillo, G. Production and characterization of extracellular α-amylase produced by Wickerhamia sp. X-Fep. Appl. Biochem. Biotechnol. 2012, 167, 2117–2129. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.; Miah, A.B.; Mahmud, S.A.; Al Mahin, A.A. Enhanced bioethanol production from potato peel waste via consolidated bioprocessing with statistically optimized medium. Appl. Biochem. Biotechnol. 2018, 186, 425–442. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, A.; Flores-Ortiz, C.M.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E.; Morales-Barrera, L. Potential capacity of Candida wangnamkhiaoensis to produce oleic acid. Fermentation 2023, 9, 443. [Google Scholar] [CrossRef]
- Castañeda-Agulló, M. Studies on the biosynthesis of extracellular proteases by bacteria. I. Serratia marcescens, synthetic and gelatin media. J. Gen. Physiol. 1956, 39, 369–375. [Google Scholar] [CrossRef]
- Linares-Martínez, L. Producción y Caracterización Parcial de un Compuesto Fluorescente de Candida wangnamkhiaoensis. Bachelor’s Thesis, Escuela Nacional de Ciencias Biológicas, Mexico City, Mexico, 2019. [Google Scholar]
- Ahmad, I.; Vaid, F.H.M. Photochemistry of flavins in aqueous and organic solvents. In Flavins; Silva, E., Edwards, A.M., Eds.; RSC Publishing: Cambridge, UK, 2006; Volume 6. [Google Scholar] [CrossRef]
- Edwards, A.M. Structure and general properties of flavins. In Flavins and Flavoproteins: Methods in Molecular Biology; Weber, S., Schleicher, E., Eds.; Humana Press: Totowa, MJ, USA, 2014; Volume 1146. [Google Scholar] [CrossRef]
- Gadda, G. Flavins. In Encyclopedia of Biophysics; Roberts, G.C.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 771–775. [Google Scholar] [CrossRef]
- Weimar, W.R.; Neims, A.H. Physical and chemical properties of flavins; binding of flavins to protein and conformational effects; biosynthesis of riboflavin. In Riboflavin; Rivlin, R.S., Ed.; Springer: New York, NY, USA, 1975; pp. 1–47. [Google Scholar] [CrossRef]
- Pedrolli, D.B.; Jankowitsch, F.; Schwarz, J.; Langer, S.; Nakanishi, S.; Mack, M. Natural riboflavin analogs. In Flavins and Flavoproteins: Methods in Molecular Biology; Weber, S., Schleicher, E., Eds.; Humana Press: Totowa, MJ, USA, 2014; Volume 1146. [Google Scholar] [CrossRef]
- Ahmad, I.; Anwar, Z.; Sheraz, M.A.; Ahmed, S.; Khattak, S.U. Stability-indicating spectrofluorimetric method for the assay of riboflavin and photoproducts: Kinetic applications. Luminescence 2018, 33, 1070–1080. [Google Scholar] [CrossRef]
- Ahmad, I.; Mirza, T.; Anwar, Z.; Ejaz, M.A.; Sheraz, M.A.; Ahmed, S. Multicomponent spectrofluorimetric method for the assay of formylmethylflavin and its hydrolytic products: Kinetic applications. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 205, 540–550. [Google Scholar] [CrossRef]
- Ball, G.F.M. Water-Soluble Vitamin Assays in Human Nutrition; Springer: New York, NY, USA, 1994. [Google Scholar] [CrossRef]
- Bretzel, W.; Schurter, W.; Ludwig, B.; Kupfer, E.; Doswald, S.; Pfister, M.; Van Loon, A.P.G.M. Commercial riboflavin production by recombinant Bacillus subtilis: Down-stream processing and comparison of the composition of riboflavin produced by fermentation or chemical synthesis. J. Ind. Microbiol. Biotechnol. 1999, 22, 19–26. [Google Scholar] [CrossRef]
- Gliszczyńska, A.; Koziołowa, A. Chromatographic identification of a new flavin derivative in plain yogurt. J. Agric. Food Chem. 1999, 47, 3197–3201. [Google Scholar] [CrossRef] [PubMed]
- Gliszczyńska-Świgło, A.; Koziołowa, A. Chromatographic determination of riboflavin and its derivatives in food. J. Chromatogr. A 2000, 881, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Mirza, T.; Anwar, Z.; Ejaz, M.A.; Ahmed, S.; Sheraz, M.A.; Ahmad, I. Multicomponent spectrofluorimetric method for the assay of carboxymethylflavin and its hydrolytic products: Kinetic applications. Luminescence 2018, 33, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Russo, P.; Capozzi, V.; Arena, M.P.; Spadaccino, G.; Dueñas, M.T.; López, P.; Fiocco, D.; Spano, G. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl. Microbiol. Biotechnol. 2014, 98, 3691–3700. [Google Scholar] [CrossRef] [PubMed]
- Trang, H.K. Development of HPLC Methods for the Determination of Water-Soluble Vitamins in Pharmaceuticals and Fortified Food Products. Master’s Thesis, Clemson University, Clemson, SC, USA, 2013. Available online: https://tigerprints.clemson.edu/all_theses/1745 (accessed on 22 May 2023).
- Wold, J.P.; Jørgensen, K.; Lundby, F. Nondestructive measurement of light-induced oxidation in dairy products by fluorescence spectroscopy and imaging. J. Dairy Sci. 2002, 85, 1693–1704. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.G.; Zhao, J.Y.; Yang, P.W.; Li, M.G.; Huang, R.; Cui, X.L.; Wen, M.L. 1H and 13C NMR assignments of eight nitrogen containing compounds from Nocardia alba sp. nov. (YIM 30243T). Magn. Reson. Chem. 2009, 47, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Lumichrome. A larval metamorphosis-inducing substance in the ascidian Halocynthia roretzi. Eur. J. Biochem. 1999, 264, 785–789. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Bifulco, E.; Caboni, P.; Sarais, G.; Cottiglia, F.; Floris, I. Lumichrome and phenyllactic acid as chemical markers of thistle (Galactites tomentosa Moench) honey. J. Agric. Food Chem. 2011, 59, 364–369. [Google Scholar] [CrossRef]
- Ashoor, S.H.; Seperich, G.J.; Monte, W.C.; Welty, J. HPLC determination of riboflavin in eggs and dairy products. J. Food 1983, 48, 92–94. [Google Scholar] [CrossRef]
- Fracassetti, D.; Limbo, S.; D’Incecco, P.; Tirelli, A.; Pellegrino, L. Development of a HPLC method for the simultaneous analysis of riboflavin and other flavin compounds in liquid milk and milk products. Eur. Food Res. Technol. 2018, 244, 1545–1554. [Google Scholar] [CrossRef]
- Gliszczyńska-Świgło, A.; Rybicka, I. Simultaneous determination of caffeine and water-soluble vitamins in energy drinks by HPLC with photodiode array and fluorescence detection. Food Anal. Methods 2015, 8, 139–146. [Google Scholar] [CrossRef]
- Jakobsen, J. Optimisation of the determination of thiamin, 2-(1-hydroxyethyl)thiamin, and riboflavin in food samples by use of HPLC. Food Chem. 2008, 106, 1209–1217. [Google Scholar] [CrossRef]
- Johnsson, H.; Branzell, C. High performance liquid chromatographic determination of riboflavin in food—A comparison with a microbiological method. Int. J. Vitam. Nutr. Res. 1987, 57, 53–58. [Google Scholar]
- Russell, L.F.; Vanderslice, J.T. Non-degradative extraction and simultaneous quantitation of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in foods by HPLC. Food Chem. 1992, 43, 151–162. [Google Scholar] [CrossRef]
- Stancher, B.; Zonta, F. High performance liquid chromatographic analysis of riboflavin (vitamin B2) with visible absorbance detection in Italian cheeses. J. Food Sci. 1986, 51, 857–858. [Google Scholar] [CrossRef]
- Torres-Sequeiros, R.A.; Garda-Falcón, M.S.; Sirnai-Gandara, J. Analysis of fluorescent vitamins riboflavin and pyridoxine in beverages with added vitamins. Chromatographia 2001, 53, 236–239. [Google Scholar] [CrossRef]
- Sunarić, S.; Pavlović, D.; Stanković, M.; Živković, J.; Arsić, I. Riboflavin and thiamine content in extracts of wild-grown plants for medicinal and cosmetic use. Chem. Pap. 2020, 74, 1729–1738. [Google Scholar] [CrossRef]
- Garmonov, S.Y.; Salakhov, I.A.; Nurislamova, G.R.; Ismailova, R.N.; Irtuganova, É.A.; Sopin, V.F. Assay of ascorbic acid, thiamine, riboflavin, nicotinamide, and pyridoxine in “hexavit” by HPLC. Pharm. Chem. J. 2011, 45, 440–443. [Google Scholar] [CrossRef]
- Ahmad, I.; Anwar, Z.; Ahmed, S.; Sheraz, M.A.; Bano, R.; Hafeez, A. Solvent effect on the photolysis of riboflavin. AAPS PharmSciTech 2015, 16, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- Bartzatt, R.; Wol, T. Detection and assay of vitamin B-2 (riboflavin) in alkaline borate buffer with UV/Visible spectrophotometry. Int. Sch. Res. Not. 2014, 2014, 453085. [Google Scholar] [CrossRef]
- Ahmad, I.; Mirza, T.; Musharraf, S.G.; Anwar, Z.; Sheraz, M.A.; Ahmed, S.; Ejaz, M.A.; Khurshid, A. Photolysis of carboxymethylflavin in aqueous and organic solvent: A kinetic study. RSC Adv. 2019, 9, 26559–26571. [Google Scholar] [CrossRef] [PubMed]
- Bastian, M.; Sigel, H. The self-association of flavin mononucleotide (FMN2−) as determined by 1H NMR shift measurements. Biophys. Chem. 1997, 67, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Bullock, F.J.; Jardetzky, O. An experimental demonstration of the nuclear magnetic resonance assignments in the 6,7-dimethylisoalloxazine nucleus*. J. Org. Chem. 1965, 30, 2056–2057. [Google Scholar] [CrossRef]
- Kainosho, M.; Kyogoku, Y. High-resolution proton and phosphorus nuclear magnetic resonance spectra of flavin-adenine dinucleotide and its conformation in aqueous solution. Biochemistry 1972, 11, 741–752. [Google Scholar] [CrossRef]
- Kotowycz, G.; Teng, N.; Klein, M.P.; Calvin, M. The 220 MHz nuclear magnetic resonance study of a solvent-induced conformational change in flavin adenine dinucleotide. J. Biol. Chem. 1969, 244, 5656–5662. [Google Scholar] [CrossRef]
- Sarma, R.H.; Dannies, P.; Kaplan, N.O. Investigations of inter- and intramolecular interactions in flavine-adenine dinucleotide by proton magnetic resonance. Biochemistry 1968, 7, 4359–4367. [Google Scholar] [CrossRef]
- Tachibana, S.; Murakami, T.; Ninomiya, T. Identification of the chemical structures of schizoflavins as 7,8-dimethyl-10-(2,3,4-trihydroxy-4-formylbutyl)isoalloxazine and 7,8-dimethyl-10-(2,3,4-trihydroxy-4-carboxybutyl)isoalloxazine. J. Nutr. Sci. Vitaminol. 1975, 21, 347–353. [Google Scholar] [CrossRef]
- Tachibana, S.; Murakami, T. Isolation and identification of schizoflavins. Methods Enzymol. 1980, 66, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Raszka, M.; Kaplan, N.O. Intramolecular hydrogen bonding in flavin adenine dinucleotide. Proc. Natl. Acad. Sci. USA 1974, 71, 4546–4550. [Google Scholar] [CrossRef]
- Grande, H.J.; Van Schagen, C.G.; Jarbandhan, T.; Müller, F. An 1H-NMR. Spectroscopic study of alloxazines and isoalloxazines. Helv. Chim. Acta 1977, 60, 348–366. [Google Scholar] [CrossRef]
- Malele, C.N.; Ray, J.; Jones, W.E. Synthesis, characterization and spectroscopic study of riboflavin–molybdenum complex. Polyhedron 2010, 29, 749–756. [Google Scholar] [CrossRef]
- Pluta, P.L.; Crespi, H.L.; Klein, M.; Blake, M.I.; Studier, M.H.; Katz, J.J. Biosynthesis of deuterated riboflavin: Structure determination by NMR and mass spectrometry. J. Pharm. Sci. 1976, 65, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Lindon, J.C.; Nicholson, J.K.; Everett, J.R. NMR spectroscopy of biofluids. Annu. Rep. NMR Spectrosc. 1999, 38, 1–88. [Google Scholar] [CrossRef]
- Tredwell, G.D.; Bundy, J.G.; De Iorio, M.; Ebbels, T.M.D. Modelling the acid/base 1H NMR chemical shift limits of metabolites in human urine. Metabolomics 2016, 12, 152. [Google Scholar] [CrossRef]
- Fan, P.; Suri, A.K.; Fiala, R.; Live, D.; Patel, D.J. Molecular recognition in the FMN–RNA aptamer complex. J. Mol. Biol. 1996, 258, 480–500. [Google Scholar] [CrossRef]
- Abbas, C.A.; Sibirny, A.A. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011, 75, 321–360. [Google Scholar] [CrossRef]
- Demain, A.L.; Phaff, H.J.; Kurtzman, C.P. The industrial and agricultural significance of yeasts. In The Yeasts, 4th ed.; Kurtzman, C.P., Fell, J.W., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 13–19. [Google Scholar] [CrossRef]
- Fedorovych, D.; Kszeminska, H.; Babjak, L.; Kaszycki, P.; Kołoczek, H. Hexavalent chromium stimulation of riboflavin synthesis in flavinogenic yeast. BioMetals 2001, 14, 23–31. [Google Scholar] [CrossRef]
- Hohmann, H.-P.; Stahmann, K.-P. Biotechnology of riboflavin production. In Comprehensive Natural Products II; Elsevier: Amsterdam, The Netherlands, 2010; pp. 115–139. [Google Scholar] [CrossRef]
- Lim, S.H.; Choi, J.S.; Park, E.Y. Microbial production of riboflavin using riboflavin overproducers, Ashbya gossypii, Bacillus subtilis, and Candida famate: An overview. Biotechnol. Bioprocess Eng. 2001, 6, 75–88. [Google Scholar] [CrossRef]
- Schwechheimer, S.K.; Becker, J.; Peyriga, L.; Portais, J.C.; Wittmann, C. Metabolic flux analysis in Ashbya gossypii using 13C-labeled yeast extract: Industrial riboflavin production under complex nutrient conditions. Microb. Cell Fact. 2018, 17, 162. [Google Scholar] [CrossRef]
- Kurtzman, C.P. New species and a new combination in the Hyphopichia and Yarrowia yeast clades. Antonie Leeuwenhoek 2005, 88, 121–130. [Google Scholar] [CrossRef]
- Müller, F. NMR spectroscopy on flavins and flavoproteins. In Flavins and Flavoproteins: Methods in Molecular Biology; Weber, S., Schleicher, E., Eds.; Humana Press: Totowa, MJ, USA, 2014; Volume 1146. [Google Scholar] [CrossRef]
- Pinto, J.T.; Rivlin, R.S. Riboflavin (vitamin B2). In Handbook of Vitamins, 5th ed.; Zempleni, J., Suttie, J.W., Gregory, J.F., III, Stover, P.J., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 191–266. [Google Scholar]
- Timchenko, Y.V. Advantages and disadvantages of High-Performance Liquid Chromatography (HPLC). J. Environ. Anal. Chem. 2021, 8, 335. [Google Scholar]
- Chen, D.; Wang, Z.; Guo, D.; Orekhov, V.; Qu, X. Review and prospect: Deep learning in Nuclear Magnetic Resonance Spectroscopy. Chem. Eur. J. 2020, 26, 10391–10401. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Nava, R.A.; Zepeda-Vallejo, L.G.; Santoyo-Tepole, F.; Chávez-Camarillo, G.M.; Cristiani-Urbina, E. RP-HPLC Separation and 1H NMR Identification of a Yellow Fluorescent Compound—Riboflavin (Vitamin B2)—Produced by the Yeast Hyphopichia wangnamkhiaoensis. Biomolecules 2023, 13, 1423. https://doi.org/10.3390/biom13091423
Jiménez-Nava RA, Zepeda-Vallejo LG, Santoyo-Tepole F, Chávez-Camarillo GM, Cristiani-Urbina E. RP-HPLC Separation and 1H NMR Identification of a Yellow Fluorescent Compound—Riboflavin (Vitamin B2)—Produced by the Yeast Hyphopichia wangnamkhiaoensis. Biomolecules. 2023; 13(9):1423. https://doi.org/10.3390/biom13091423
Chicago/Turabian StyleJiménez-Nava, Raziel Arturo, Luis Gerardo Zepeda-Vallejo, Fortunata Santoyo-Tepole, Griselda Ma. Chávez-Camarillo, and Eliseo Cristiani-Urbina. 2023. "RP-HPLC Separation and 1H NMR Identification of a Yellow Fluorescent Compound—Riboflavin (Vitamin B2)—Produced by the Yeast Hyphopichia wangnamkhiaoensis" Biomolecules 13, no. 9: 1423. https://doi.org/10.3390/biom13091423
APA StyleJiménez-Nava, R. A., Zepeda-Vallejo, L. G., Santoyo-Tepole, F., Chávez-Camarillo, G. M., & Cristiani-Urbina, E. (2023). RP-HPLC Separation and 1H NMR Identification of a Yellow Fluorescent Compound—Riboflavin (Vitamin B2)—Produced by the Yeast Hyphopichia wangnamkhiaoensis. Biomolecules, 13(9), 1423. https://doi.org/10.3390/biom13091423