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Abstract: Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) produced by enzymes play a role
as signalling molecules regulating neurotransmission, vascular tone, cytoprotection, inflammation,
oxygen sensing, and energy formation. H2Sn, which have additional sulfur atoms to H2S, and other
S-sulfurated molecules such as cysteine persulfide and S-sulfurated cysteine residues of proteins,
are produced by enzymes including 3-mercaptopyruvate sulfurtransferase (3MST). H2Sn are also
generated by the chemical interaction of H2S with NO, or to a lesser extent with H2O2. S-sulfuration
(S-sulfhydration) has been proposed as a mode of action of H2S and H2Sn to regulate the activity
of target molecules. Recently, we found that H2S/H2S2 regulate the release of neurotransmitters,
such as GABA, glutamate, and D-serine, a co-agonist of N-methyl-D-aspartate (NMDA) receptors.
H2S facilitates the induction of hippocampal long-term potentiation, a synaptic model of memory
formation, by enhancing the activity of NMDA receptors, while H2S2 achieves this by activating
transient receptor potential ankyrin 1 (TRPA1) channels in astrocytes, potentially leading to the
activation of nearby neurons. The recent findings show the other aspects of TRPA1 channels—that
is, the regulation of the levels of sulfur-containing molecules and their metabolizing enzymes.
Disturbance of the signalling by H2S/H2Sn has been demonstrated to be involved in various diseases,
including cognitive and psychiatric diseases. The physiological and pathophysiological roles of these
molecules will be discussed.

Keywords: hydrogen sulfide; polysulfides; neurotransmitter release; S-sulfuration; hippocampal LTP;
3MST; TRPA1 channel

1. Introduction

Since the discovery of H2S as environmental toxic gas by Ramazinni in 1713, many
studies have been devoted to its toxicity. Survivors from the exposure to high concentrations
of H2S suffered from mental dysfunction, suggesting that the brain must be a target of
H2S. Warenycia et al. discovered a certain amount of H2S existed in the brain [1]. This
observation suggested that endogenous H2S may have a physiological role in mammals.

The toxic effect of high concentrations of H2S on the levels of neurotransmitters has
been studied. Exposure of rats to high levels of H2S during perinatal development signifi-
cantly decreases neurotransmitter levels [2]. Sublethal doses of NaHS chronically applied
to rodents suppressed neurotransmitter levels [3]. However, the effect of endogenous levels
of H2S on neurotransmitters release has not yet been well understood.

Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), which catalyse a
pathway to produce cysteine, also play a role in producing H2S [4–6]. Although CSE levels
are very low in the brain, it plays an important role under pathological conditions such
as Alzheimer’s disease and Huntington’s disease [7–9]. 3MST produces not only H2S but
also polysulfides, including H2Sn [10–12]. Cysteine aminotransferase (CAT) metabolizes L-
cysteine and α-ketoglutarate to produce 3-mercaptopyruvate (3MP), which is the substrate
of 3MST. 3MP is also produced from D-cysteine by D-amino acid oxydase [13]. The high
levels of D-cysteine recently identified in embryonic brain suggest that this pathway plays
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an important role especially in the developing brain [13,14]. CBS is localized to astrocytes,
and 3MST to both neurons and glia in the brain [10,15,16].

Several other enzymes can also produce polysulfides, including sulfur quinone oxi-
doreductase (SQR), myoglobin, neuroglobin, catalase, superoxide dismutase (SOD), myelop-
eroxidase, and cysteinyl tRNA synthetase (CARS) [17–23]. The chemical interaction of
H2S with NO also produces polysulfides that have been predicted from the finding of
synergistic effect of H2S and NO on vascular relaxation [6,24–32].

The first step of the metabolism of H2S is the reduction of the cysteine disulfide
bond of sulfide quinone oxidoreductase (SQR) in mitochondria [33] (Figure 1a). It is
predicted that the reduction of the cysteine disulfide bond may cause conformational
changes in target proteins. Dithiothreitol (DTT) enhances the activity of NMDA receptors
by reducing the cysteine disulfide bond at the ligand binding domain of the receptors [34].
H2S facilitates the induction of hippocampal long-term potentiation (LTP), a synaptic
model of memory formation, by enhancing the activity of N-methyl-D-aspartate (NMDA)
receptors [5] (Figure 1b).

Biomolecules 2024, 14, x FOR PEER REVIEW 2 of 20 
 

levels of D-cysteine recently identified in embryonic brain suggest that this pathway plays 
an important role especially in the developing brain [13,14]. CBS is localized to astrocytes, 
and 3MST to both neurons and glia in the brain [10,15,16]. 

Several other enzymes can also produce polysulfides, including sulfur quinone oxi-
doreductase (SQR), myoglobin, neuroglobin, catalase, superoxide dismutase (SOD), 
myeloperoxidase, and cysteinyl tRNA synthetase (CARS) [17–23]. The chemical interac-
tion of H2S with NO also produces polysulfides that have been predicted from the finding 
of synergistic effect of H2S and NO on vascular relaxation [6,24–32]. 

The first step of the metabolism of H2S is the reduction of the cysteine disulfide bond 
of sulfide quinone oxidoreductase (SQR) in mitochondria [33] (Figure 1a). It is predicted 
that the reduction of the cysteine disulfide bond may cause conformational changes in 
target proteins. Dithiothreitol (DTT) enhances the activity of NMDA receptors by reduc-
ing the cysteine disulfide bond at the ligand binding domain of the receptors [34]. H2S 
facilitates the induction of hippocampal long-term potentiation (LTP), a synaptic model 
of memory formation, by enhancing the activity of N-methyl-D-aspartate (NMDA) recep-
tors [5] (Figure 1b). 

 
Figure 1. H2S reduces the cysteine disulfide bond. (a). Sulfur-quinone-oxydoreductase (SQR) me-
tabolizes H2S in mitochondria. The first step of the metabolism of H2S is the reduction of the cysteine 
disulfide bond of SQR in mitochondria. (b). H2S enhances the activity of NMDA receptors. H2S re-
duces the cysteine disulfide bond localized to the hinge of the ligand binding domain of the receptor 
to enhance the receptors activity. This figure is produced by modifying Kimura (2016) [35]. 

It has been extensively studied that S-sulfuration (S-sulfhydration), an addition of 
sulfur to thiol, modified the activity of enzymes, including cystathionine synthase-serine 
dehydratase, aldehyde oxidase, and adenylate kinase [36–38]. S-sulfuration has been pro-
posed as a mode of action of H2S [39]. The activity of glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) was increased via S-sulfuration by H2S [39]. 

TRP channels are known to be sensitive to various stimuli including heat and pun-
gent substances including H2Sn to induce Ca2+ influx in cells [11]. We, together with others, 
have recently reported that TRPA1 and TRPV1 are involved in the metabolism of sulfur-
containing substances including methionine and cysteine [40,41]. They even regulate the 
transcription or translation of 3MST, rhodanese (TST), and persulfide dioxygenase or 
ethylmalonic encephalopathy protein 1 (ETHE1) [41,42]. It is intriguing to clarify the 
mechanism for the regulation of the sulfur metabolism by the channels. 

  

Figure 1. H2S reduces the cysteine disulfide bond. (a). Sulfur-quinone-oxydoreductase (SQR)
metabolizes H2S in mitochondria. The first step of the metabolism of H2S is the reduction of the
cysteine disulfide bond of SQR in mitochondria. (b). H2S enhances the activity of NMDA receptors.
H2S reduces the cysteine disulfide bond localized to the hinge of the ligand binding domain of the
receptor to enhance the receptors activity. This figure is produced by modifying Kimura (2016) [35].

It has been extensively studied that S-sulfuration (S-sulfhydration), an addition of
sulfur to thiol, modified the activity of enzymes, including cystathionine synthase-serine
dehydratase, aldehyde oxidase, and adenylate kinase [36–38]. S-sulfuration has been
proposed as a mode of action of H2S [39]. The activity of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was increased via S-sulfuration by H2S [39].

TRP channels are known to be sensitive to various stimuli including heat and pungent
substances including H2Sn to induce Ca2+ influx in cells [11]. We, together with others,
have recently reported that TRPA1 and TRPV1 are involved in the metabolism of sulfur-
containing substances including methionine and cysteine [40,41]. They even regulate
the transcription or translation of 3MST, rhodanese (TST), and persulfide dioxygenase
or ethylmalonic encephalopathy protein 1 (ETHE1) [41,42]. It is intriguing to clarify the
mechanism for the regulation of the sulfur metabolism by the channels.
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2. Endogenous H2S, Its Production, and Its Metabolism

Warenycia et al. detected H2S by the methylene blue method, in which the reaction
mixture contains high concentrations of acids that make brain homogenates release great
amounts of H2S from the iron-sulfur cluster attached to enzymes belonging to the respira-
tory chain, including aconitase [1,43]. For this reason, the endogenous levels of free H2S
with this method were over-estimated. Two other groups also measured H2S levels in the
brains of humans and bovine with a similar method, which showed 50–160 µM [44,45].

Since then, several methods were applied to measuring endogenous H2S, and the
lowest level estimated in the brain was 14 nM [46]. In their method, the tissue was
homogenized with phosphate buffer, and released H2S from homogenates was measured
by gas chromatography. Because free H2S is re-absorbed by the tissue homogenates as
sulfane sulfur [43], the value obtained with this method was underestimated.

H2S and polysulfides have been measured as their monobromobimane (mBB) adducts
by HPLC and LC-MS/MS. The labelling reaction with mBB has been performed un-
der alkaline conditions (pH 8.4–9.5), where the exchange between H2S and polysulfides
shifts more to H2S than to polysulfides, resulting in the overestimation of H2S levels
and the underestimation of polysulfide levels [47]. We derivatized H2S and polysulfides
with mBB at physiological pH 7.0. Recent evaluation of H2S using LC-MS/MS showed
0.030 ± 0.004 µmol/gram protein, which is approximately 3 µM in the brain [48]. Even
with this method, both intracellular and extracellular molecules react with each other at
homogenization, which causes extracellular cystine to be reduced to cysteine, which reacts
with intracellular enzymes to generate H2S.

CBS produces H2S from L-cysteine and L-homocysteine. The activity of CBS is reg-
ulated by S-adenosyl methionine (SAM), NO, and CO [5,49–51]. SAM binds to the site
located at the carboxy-terminus of CBS to enhance the activity, while NO and CO bind
to the heme group located at the amino-terminus to suppress the activity (Figure 2). This
regulation has an important role under hypoxic conditions in the brain. Under hypoxia,
CO production is decreased, leading to the enhancement of CBS activity in astrocytes
surrounding capillaries, which are dilated by produced H2S to restore blood flow [52].
Overproduction of H2S in hypoxia, in turn, suppresses mitochondrial cytochrome oxidase,
leading to damage in the brain; the damage can be decreased depending on the levels of
SQR [53]. However, the levels of SQR have been reported to be very low in the brain [54].
To compensate for the low levels of SQR, neuroglobin has been predicted to play a role in
H2S oxidation in the brain [19].
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Figure 2. Functional domains of CBS. NO and CO bind to the heme group located at the amino-
terminus to suppress the activity, and SAM binds to the site located at the carboxy-terminus of
CBS to enhance the activity. NO: nitric oxide, CO: carbon monoxide, PLP: pyridoxal 5′-phosphate,
SAM: S-adenosyl-L-methionine.

CBS was reported to be also localized to neurons using the polyclonal antibody
preincubated with CBS knockout mouse brain extract to mask any nonspecific immunore-
activity [55]. However, not only our antibody but also the same antibody as mentioned by
Robert et al., after affinity purification, detected CBS in astrocytes but not in neurons [15].

CSE produces H2S under physiological low concentrations of Ca2+, while its activity
is suppressed by high concentrations of Ca2+ [56]. Once intracellular concentrations of Ca2+

are increased in stimulated cells, H2S production by CSE can be decreased. The levels of
CSE are also transcriptionally regulated. The promoter region of the CSE gene has an SP-1
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binding site, and the expression of CSE is enhanced three times by tumour necrosis factor
α, which enhances the binding of SP1 [7,57].

3MST produces H2S from 3MP, a product of CAT from L-cysteine and α-keto glu-
tarate [10,58–60]. The active-site cysteine residue of 3MST receives sulfur from 3MP, then
S-sulfurated active-site cysteine residue of 3MST releases H2S via reduction by thioredoxin
(Figure 3) [61,62]. 3MST is localized to the cytoplasm as well as to mitochondria, in which
the level of cysteine is sufficiently high (approximately 1 mM) to produce H2S [63,64].
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Figure 3. Production of H2S and H2Sn by 3MST. 3MST produces H2S and H2Sn from 3MP, which is
produced from L-cysteine and a-ketoglutarate by CAT. This pathway is localized both in the cytoplasm
and mitochondria. 3MP is also produced from D-cysteine by DAO in the peroxisome. Peroxisome and
mitochondria exchange their metabolites via vesicular trafficking [65]. 3MST: 3-mercaptopyruvate
sulfurtransferase, CAT: cysteine amino transferase, DAO: D-amino acid oxidase.

Propargylglycine and β-cyano-L-alanine have been used to inhibit the activity of CSE,
and aminooxyacetic acid inhibits CBS [4,66–68]. Recently, a specific inhibitor of 3MST has
been developed by Hanaoka et al. (2017) by high-throughput screening of a large chemical
library (174,118 compounds). Their compound 3 with aromatic ring-carbonyl-S-pyrimidone
structure specifically interacts with the persulfur anion of the S-sulfurated cysteine residue
of 3MST to suppress the production of H2S and polysulfides [69].

3. Bound Sulfane Sulfur and S-Sulfurated Proteins

In tissues, there are forms of sulfur, sulfane sulfur, which release H2S under reducing
conditions [3,43,70]. They include H2Sn, Cys-SSH, GSSH, and P-SSH. Warenycia et al.
identified the non-acid labile H2S liberated by DTT from brains of H2S-poisoned animals [3],
and it was later called bound sulfur [70]. The levels as well as the characteristics of bound
(sulfane) sulfur are different between tissues. Homogenates of the liver released H2S, which
was increased and reached its maximum at one hour (approximately 6 µmol H2S/g protein)
and then decreased abruptly after 2 h of DTT application. In contrast, those of the brain
gradually increased H2S release up to 5 h after DTT addition (approximately 2 µmol H2S/g
protein) [43]. Homogenates of the heart released H2S just less than approximately 0.2 µmol
H2S/g protein for the first two hours, then stopped releasing.

The absorption rates of H2S are also different between tissues. Liver homogenates
promptly absorbed H2S, while those of hearts took 10 min to completely absorb it and
those of brains took 30 min [43]. The interesting thing to note is that heart homogenates
released a little H2S by DTT, while it absorbed H2S well, suggesting that cysteine residues
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may be highly oxidized in this tissue, or that the abundant iron reacts with H2S. These
observations indicate that each tissue has the specific forms of sulfane sulfurs, which have
the characteristics of a different rate of H2S release and absorption, probably due to having
the different redox states.

4. Production of H2Sn and Other S-Sulfurated Molecules

Endogenous H2Sn have been identified in the brain [11,48]. 3MST produces H2Sn and
other S-sulfurated molecules, such as cysteine persulfide (Cys-SSH), glutathione persulfide
(GSSH), and S-sulfurated cysteine residues of proteins (P-SSH) [12,71]. Two possible
mechanisms have been proposed. Sulfur is transferred from S-sulfurated active cysteine
residues of 3MST to the acceptor molecules such as H2S, cysteine, glutathione, and cysteine
residues, to produce corresponding S-sulfurated molecules (Figure 4a) [12,71]. Alternatively,
3MST produces H2S2, which reacts with cysteine, glutathione, and cysteine residues to
generate their S-sulfurated molecules (Figure 4b) [12,71]. In the latter mechanism, H2S2 has
an advantage in easily accessing targets with less steric hindrance comparing with 3MST
itself, but less specific to the target molecules. Recently, 3MST was shown to directly transfer
sulfur to cysteine residues using 3MST fused with redox-sensitive green fluorescent protein,
which has two thiol groups on its surface and acts as a highly efficient sulfur acceptor from
3MST [72].
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by 3MST diffuses to react with molecules containing thiol to produce corresponding S-sulfurated
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figure is produced by modifying Kimura (2020) [73].

Two mechanisms have been proposed for S-nitrosylation of proteins by NO (Figure 5).
NO is defused to the target proteins to S-nitrosylate them (Figure 5a) [74]. Another mecha-
nism is that NO-synthase makes a complex with S-nitrosylase to S-nitrosylate their target
proteins (Figure 5b) [75]. Considering these mechanisms for S-nitrosylation, S-sulfuration
may also be mediated, both by the diffusion of small sulfur molecules such as H2S and
H2Sn as well as by enzymes including 3MST.

3MST is also known as tRNA thiouridine modification protein [76,77]. 3MST transfers
sulfur from 3MP to uridine of tRNA that provides accurate deciphering of the genetic code
and stabilizes the structure of tRNA [77–79]. Cysteinyl tRNA synthetase (CARS) has been
found to transfer sulfur from one cysteine to another to produce Cys-SSH [23].
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The intracellular concentrations of H2S are well regulated by a balance of its production
and clearance [80,81]. SQR receives sulfur from H2S to its active-site cysteine to produce
persulfide (Figure 1a), whose sulfur, in turn, has been proposed to be transferred to H2S,
cysteine, and GSH to produce H2S2, Cys-SSH, and GSSH, respectively [17]. Haemoglobin
and myoglobin localized to blood and muscle, respectively, oxidize H2S to H2Sn [18,81].
Neuroglobin, another haemoprotein located in neurons, also oxidizes H2S to H2Sn [19].

Catalase, which is highly S-sulfurated and may be regulated by H2S, H2Sn, and other
S-sulfurated molecules [39], oxidizes H2S to produce H2Sn [20]. Copper/zinc super oxide
dismutase (SOD) generates H2Sn by oxidizing dissolved H2S gas rather than HS− in the
presence of O2 and H2O2 [21,82,83]. Mitochondrial manganese SOD can also oxidize H2S
to H2Sn. Peroxidases such as lactoperoxidase and myeloperoxidase oxidize H2S to H2Sn in
the presence of H2O2 [22,84].

CSE has been proposed to be able to produce Cys-SSH from cystine [85], and CBS was
recently added to a group of enzymes to have a similar activity to CSE [86]. Both CSE and
CBS are localized to cytoplasm, where cystine levels are approximately 0.20 and 0.05 µM in
the liver and lung, respectively, and under detectable levels in the brain and heart, while the
Km value of CSE to cystine is 30 to 70 µM [86,87]. If the intracellular cystine concentrations
are above 5 µM, CSE may have a possibility to synthesize Cys-SSH in cells [88]. It was
recently reported by the same group that the production of H2S, H2Sn, Cys-SSH, and GSSH
was not changed in mice with triple knock-out of CBS, CSE, and 3MST [89].

5. H2Sn Production by the Chemical Interaction between H2S and NO

H2S relaxes vascular smooth muscle in synergy with NO [6], and a similar synergistic effect
was observed in intestine [90]. H2S2 and H2S3 are produced from H2S and NO [31,32]. H2Sn
exist in the brain as products of oxidized H2S as well as those generated by 3MST [11,12,48].
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As a mechanism for the generation of H2S2 from H2S and NO, NO is oxidized to N2O3,
which reacts with H2S to generate HSNO. HSNO, in turn, reacts with H2S to produce
H2S2 [29,91].

2NO + O2 = 2NO2

NO2 + NO = N2O3

N2O3 + H2S = HSNO + H + NO2
−

HSNO + H2S = HSSH + HNO

Alternatively, one electron oxidation of HS− generates thiyl radical (HS•), which
readily react with NO radical to produce HSNO.

HS− = HS• + e−

HS• + NO• = HSNO

The production of H2Sn has also been demonstrated in peritoneal mast cells, where
the application of H2S donor GYY4137 [92] and NO donor DEA NONOate reacted with
endogenous NO and H2S, respectively, in the cells, and the products were detected by a
polysulfide-sensitive fluorescent probe SSP4 [31,93]. The potential products, H2Sn, were
detected by the activation of Ca2+ channels in mast cells.

Ebenhardt et al. proposed that nitroxyl (HNO) together with H2Sn are produced by
the interaction of H2S with NO, and that HNO is a major product which activates TRPA1
channels [29]. The product from the interaction between H2S and NO as well as H2Sn are
degraded by cyanide, while HNO is resistant, suggesting that H2Sn may be a preferable
chemical entity to HNO to activate TRPA1 channels [32]. Cortese-Krott et al. reported
the generation of SSNO−, H2Sn, and dinitrososulfite from the interaction of H2S with
NO [30]. The products from H2S and NO as well as H2Sn are degraded by reduction, while
SSNO− is resistant to reduction [30,32]. Based on these observations, we suggested that
H2Sn are the potential products [32]. Recently, Bogdandi et al. reported that H2Sn is less
stable compared to SSNO− and suggested that H2Sn transiently activate TRPA1 channels
at the early phase of the production of these substances, while more stable SSNO− induces
sustained activation of the channels [94].

6. S-Sulfuration of Cysteine Residues by H2Sn

Sulfur atoms with the same oxidation state are not able to react with each other.
Because the oxidation state of both sulfur atoms in H2S and that in cysteine is −2, they
do not react with one another. In contrast, in H2Sn, the oxidation state of sulfur atoms is
0 or −1. TRPA1 channels were found to be activated by H2S, and it was later identified
that H2Sn activate the channels more efficiently than H2S [11,95–97]. TRPA1 channels have
31 cysteine residues, and 21 are localized to the amino terminus [98]. Cys422 and Cys634
are sensitive to H2Sn to be S-sulfurated [99]. One of the two cysteine residues may be
S-sulfurated and reacts with another to make a disulfide bond to induce the conformational
changes to activate the channels (Figure 6) [12]. Alternatively, two cysteine residues are
S-sulfurated at the same time. The former may more efficiently change the conformation of
the channels. The activity of tumour suppressor PTEN is modified by H2Sn through two
cysteine residues, Cys71 and Cys124, forming a disulfide bond [100]. A monomer protein
kinase G1α (PKG1α) is inactive, while the formation of a cysteine disulfide bond between
each Cys42 through S-sulfuration by H2Sn makes the active homodimer (Figure 6) [101].

ATP-dependent K+ channels are activated through S-sulfuration of Cys43 in its Kir
subunits by H2S [102]. Cys43 is located at the critical site for the binding to ATP, and the
subtle conformational change by S-sulfuration may cause the dramatic changes in binding
of the channels to ATP. Cys43 is exposed to the cytoplasmic side of cells, and if it is Cys-SH
form, H2Sn rather than H2S S-sulfurate it. In contrast, if Cys43 is in Cys-SNO or Cys-SOH
form, H2S is preferable to H2Sn to S-sulfurate it. The other example is GAPDH [39,103].
The activity of GAPDH was initially reported to be increased via S-sulfuration by H2S [39].
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However, it was later reported that H2S had no effect on GAPDH activity, while H2Sn
inhibited GAPDH [103]. The possible mechanism is discussed in the next section.
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7. S-Sulfuration of S-Nitrosylated or S-Sulfenylated Proteins by H2S

The human cysteine proteome includes 214,000 cysteine residues and 5–12% of total
cysteine residues are oxidized, including the cysteine disulfide bond (P-S-S-P), P-SNO,
P-SOH, and P-SSH [104]. It has been predicted from the fact that tissues contain bound
(sulfane) sulfur [3,43,70,105]. Mustafa et al. identified 39 S-sulfurated proteins, including
GAPDH, β-tubulin, and actin, in liver lysates [39].

The oxidation state of sulfur in these oxidized cysteine residues is −1 or 0, and they
are able to react with H2S. P-S-S-P, P-SNO, and P-SOH cysteine residues are reduced by H2S
to P-SSH, which is further reduced to P-SH. When H2S and NO are generated at a restricted
area in cells, either one of two reactions may occur: H2S2 is produced from H2S and NO,
and then S-sulfurate P-SH to P-SSH. Alternatively, NO reacts with cysteine residues to
generate P-SNO, which is reduced by H2S to P-SSH.

Some cysteine residues may have specificity to the reaction with NO, while others
react with little preference. For example, among around 100 cysteine residues in the
skeletal muscle ryanodine receptor, many of them are oxidized, but only one of them is
S-nitrosylated [106]. In parkin, of which the mutations cause Parkinson’s disease, Cys95,
Cys59, and Cys 182 are S-sulfurated in the brains of normal individuals, while they are
S-nitrosylated in those of patients [107]. Two cysteine residues of the amino terminus
of TRPA1, Cys 422, and Cys634 in mouse are responsible for activation by H2S2 and
H2S3 [11,32,99], while the human equivalence Cys421 and Cys633 have been reported to be
sensitive to O2 [108]. Cys 421 in human is also modified by NO and H2O2 [109].

H2O2 reacts very slowly with free cysteine (2–20 M−1·s−1). In contrast, its reactivity
significantly increases to cysteine residues (10–106 M−1·s−1) [110]. Although H2O2 poorly
reacts with H2S (0.73 M−1·s−1), P-SOH react two orders of magnitude faster with H2S than
with glutathione at pH 7.4 [111,112]. The activation of receptor tyrosine kinase enhances
the production of H2O2 and the subsequent S-sulfenylation of target proteins [113,114].
Zivanovic et al. demonstrated that the application of epidermal growth factor (EGF) to cells
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induced dramatic increase in the levels of P-SOH, and then they decreased [115]. At the
decreasing phase of P-SOH, the levels of P-SSH started increasing. This correlates well with
the increase in the expression of CBS, CSE, and 3MST, suggesting that P-SOH efficiently
reacts with H2S to produce P-SSH.

8. H2S and H2Sn in Neuronal Transmission

The other gaseous signalling molecules, NO and CO, are recognized as retrograde
neurotransmitters, which are released from postsynapse to presynapse to facilitate the
release of a neurotransmitter glutamate, to induce hippocampal LTP [116–121]. When
postsynaptic NMDA receptors are activated by glutamate, Ca2+ enters cells through NMDA
receptors and makes Ca2+/calmodulin complex, which activate NO synthetase (NOS) to
release NO. NO diffuses to the presynapse, where it activates soluble guanylyl cyclase
to produce cGMP, which activates G-kinase to modulate the release of neurotransmitter
glutamate, leading to facilitating LTP induction [122,123].

As described previously, the enhancement of NMDA receptor activity through its re-
duction was not the only mechanism for the facilitation of LTP induction by H2S. Although
the reducing activity of H2S is weaker than that of DTT, H2S more efficiently facilitated
the induction of LTP than DTT [5], suggesting an additional mechanism for facilitating
LTP induction.

We found that H2S activates astrocytes to induce Ca2+ influx via the TRP family
of channels [96], and Streng et al. identified that TRPA1 channels in the bladder are
activated by H2S [97]. H2Sn have much higher potency than H2S to induce Ca2+ influx
by activating TRPA1 channels in astrocytes [11,95–97,124,125]. Endogenous H2S2, H2S3,
cysteine per- and poly-sulfide, and glutathione per- and poly-sulfide were identified in
the brain [11,12,48,71,126], and the garlic-derived organic polysulfides dimethyl trisulfide
(DMTS) and diallyl trisulfide (DATS) also activate TRPA1 channels [11]. Shigetomi et al.
reported that the activation of TRPA1 channels induced the release of D-serine, a coagonist
of NMDA receptors, from astrocytes to facilitate the induction of LTP [127]. Based on these
observations, the additional mechanism for LTP induction was predicted to be the activation
of TRPA1 channels in astrocytes by H2Sn to induce a release of D-serine [11,127,128].
Recently, however, D-serine was reported to be mainly released from neurons, to which
TRPA1 channels are not localized, and that the contribution of astrocytes to release D-serine
is minor [129]. It was necessary to re-evaluate the involvement of TRPA1 channels in the
release of D-serine from astrocytes. Recent findings are discussed in the next section.

9. The Release of Neurotransmitters by H2S and H2Sn

Granule cells produce NO and the synaptic terminals contacted with them were
thought to be the target of NO. NO induces the release of glutamate, and it has been sug-
gested that cGMP-dependent protein kinase may be involved in the alteration of synaptic
vesicle dynamics [130,131].

Mitrukhina et al. reported that NaHS increased the frequency of miniature end-plate
potentials and the amplitude of the evoked postsynaptic responses to a single stimulation
in the motor nerve ending of the mouse diaphragm, suggesting the enhanced synaptic
vesicle exocytosis and reduced endocytosis [132]. The same group showed that a similar
observation was obtained in the neuromuscular junction showing the involvement of
intracellular Ca2+, cAMP, and presynaptic ryanodine receptors in the vesicular release of
neurotransmitters [133].

We recently found that H2S and H2S2 induce the release of neurotransmitters, GABA,
glutamate, glycine, and that of neuromodulators, D-serine, L-serine, and glutamine using
in vivo microdialysis (Figure 7) [41]. GABA and glutamate were greatly released by H2S
and to a lesser extent by H2S2, while D-serine, L-serine, and glutamine were released less
efficiently than GABA and glutamate, probably because their release mechanisms may be
different. Considering the observations that H2S more greatly induced the release of GABA
and glutamate than H2S2 and that the endogenous levels of H2S are greater than those of
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H2S2, H2S rather than H2S2 may mainly regulate the release of neurotransmitters [41]. In
the in vivo microdialysis, the applied concentrations of Na2S and Na2S2 are dramatically
decreased when they are released from the dialysis filter probe to the brain. The in vitro
recovery from microdialysis probes has been reported between 0.1% and 7.6%, depending
on molecules [134], and our study showed that Na2S was recovered approximately 0.2–1%
and Na2S2 0.8–4.8% [41]. Based on these observations, a concentration of Na2S and Na2S2
a minimum of 50 times higher (1 mM) than that used for the brain cell suspension (20 µM)
was applied.
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The release of D-serine by H2S2 from the hippocampus of TRPA1 knockout rats
showed no significant difference with that in the wild-type rats [41]. However, LTP was
not induced in TRPA1 knockout rats, which agrees with the observation by Shigetomi
et al. [127]. The synaptic transmission is regulated by the interaction between neurons
and astrocytes, and astrocytes-dependent facilitation regulates the vesicular release of
neurotransmitters including glutamate in the hippocampal synapses (Figure 8) [135]. These
observations suggest that the activation of TRPA1 channels in astrocytes is required for the
induction of LTP, but that the channels are not involved in the release of D-serine [41].

In the brain cell suspension, serotonin suppressed the release of H2S, while it increased
that of H2S3 [41]. Acetylcholine increased the intracellular levels of H2S and the release
of cysteine persulfide, and norepinephrine and GABA increased the release of cysteine
persulfide [41]. These observations suggest that H2S and H2S2 facilitate the release of neuro-
transmitters, while neurotransmitters in turn regulate the release of H2S and H2S2. Probably
due to the low recovery of H2S and H2S2 through the probe of in vivo microdialysis, the
release of both molecules induced by the neurotransmitters was not detected [41].

Since the discovery of H2Sn activating TRPA1 channels, PTEN, and protein kinase
G1α, the effects of H2S previously found were thought to be mediated by H2Sn [11,100,101].
However, H2S releases neurotransmitters more efficiently than H2S2 as described above.
Moreover, H2S and H2S2 exert with a similar potency the neuroprotective effects against
oxidative stress by increasing the intracellular concentrations of glutathione, the major
endogenous antioxidant, through the activation of cystine/glutamate antiporter and cys-
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teine transporter [136]. Alanine-serine-cysteine transporter (Asc-1), a neutral amino acid
transporter located in the neurons, and Slc38a1 localized to GABAergic neurons in the hip-
pocampus are candidate molecules releasing D-serine, L-serine, and glutamine [137–139].
These transporters may also be involved in the regulation of the release of GABA, glutamate,
and glycine induced by H2S and H2S2.

Biomolecules 2024, 14, x FOR PEER REVIEW 10 of 20 
 

and to a lesser extent by H2S2, while D-serine, L-serine, and glutamine were released less 
efficiently than GABA and glutamate, probably because their release mechanisms may be 
different. Considering the observations that H2S more greatly induced the release of 
GABA and glutamate than H2S2 and that the endogenous levels of H2S are greater than 
those of H2S2, H2S rather than H2S2 may mainly regulate the release of neurotransmitters 
[41]. In the in vivo microdialysis, the applied concentrations of Na2S and Na2S2 are dra-
matically decreased when they are released from the dialysis filter probe to the brain. The 
in vitro recovery from microdialysis probes has been reported between 0.1% and 7.6%, 
depending on molecules [134], and our study showed that Na2S was recovered approxi-
mately 0.2–1% and Na2S2 0.8–4.8% [41]. Based on these observations, a concentration of 
Na2S and Na2S2 a minimum of 50 times higher (1 mM) than that used for the brain cell 
suspension (20 µM) was applied. 

 
Figure 7. H2S and H2S2 induce the release of neurotransmitters. H2S more efficiently induces the 
release of GABA and glutamate than H2S2. Both H2S and H2S2 induce D-serine release with a similar 
potency. H2S/H2S2 may alter the synaptic vesicle dynamics and/or transporters to facilitate the re-
lease of neurotransmitters. This figure is produced by modifying Furuie et al. (2023) [41]. 

The release of D-serine by H2S2 from the hippocampus of TRPA1 knockout rats 
showed no significant difference with that in the wild-type rats [41]. However, LTP was 
not induced in TRPA1 knockout rats, which agrees with the observation by Shigetomi et 
al. [127]. The synaptic transmission is regulated by the interaction between neurons and 
astrocytes, and astrocytes-dependent facilitation regulates the vesicular release of neuro-
transmitters including glutamate in the hippocampal synapses (Figure 8) [135]. These ob-
servations suggest that the activation of TRPA1 channels in astrocytes is required for the 
induction of LTP, but that the channels are not involved in the release of D-serine [41]. 

 
Figure 8. H2S and H2S2 facilitate the induction of hippocampal long-term potentiation (LTP), a
synaptic model of memory formation. H2S and H2S2 induce the release of glutamate and D-serine to
enhance the activity of NMDA receptors. H2S reduces the cysteine disulfide bond localized to the
amino terminus of NMDA receptors, while H2S2 activate TRPA1 channels in astrocytes to increase
the activity of nearby neurons to facilitate the induction of LTP. This figure is produced by modifying
Furuie et al. (2023) [41].

The cytoprotective effect of H2S has been observed in other organs. H2S protects
cardiac muscle by preserving the function of mitochondria [140], and mitochondrial H2S
produced by 3MST regulates the catabolism of branched-chain amino acid to protect cardiac
muscle from heart failure [141]. H2S-based therapy has the potential to attenuate the
progression of Duchenne muscular dystrophy and other muscle-related diseases [142–145].

10. TRPA1 Channels Are Involved in Sulfur Metabolism

TRP channels are not only the target of H2Sn, but their regulation on sulfur metabolism
and the levels of neurotransmitters have recently been reported (Figure 9). TRPA1-
suppressed (homozygotes)-Drosophila showed decreased levels of methionine and cys-
teine, 15 and 50%, respectively, of the wild type [40]. The application of resiniferatoxin,
an ultrapotent capsaicin analogue antagonist of TRP vanilloid type 1 (TRPV1) and TRPA1
channels [42,146], to porcine urinary bladder increased the transcription of rhodanese, and
decreased that of sulfur dioxygenase (ETHE1) and molybdenum cofactor synthesis 2, which
are involved in the metabolism of sulfur [42].

We found that the levels of 3MST and those of cysteine were lower in TRPA1 knock-
out rats compared to those in the wild type, while those of rhodanese (TST) were not
changed [41]. The endogenous levels of H2S, H2S2, and cysteine persulfide in the brain of
TRPA1-KO rats are also lower than those in the wild type, probably due to the low levels of
both 3MST and cysteine, which is a substrate of CAT to produce 3MP [41].



Biomolecules 2024, 14, 129 12 of 20
Biomolecules 2024, 14, x FOR PEER REVIEW 12 of 20 
 

 
Figure 9. The involvement of TRPA1 channels in the metabolism of sulfur containing amino acids 
and other neurotransmitters. Deficiency of TRPA1 channels decreases the levels of methionine, cys-
teine, glycine, and 3MST, while increases those of GABA [40,41]. Suppression of TRPA1 channels by 
resiniferatoxin, an antagonist of TRPV1 and TRPA1 channels, upregulates spermidine/spermine 
N(1)-acetyltransferase 2 (SAT2), which regulate the levels of glutamate, while suppresses the regu-
lator of G protein signalling 7 (RGS7), which regulates synaptic plasticity and GABA signalling [42]. 

TRPA1 channels also may regulate the levels of neurotransmitters. Deficiency of 
TRPA1 channels decreases the levels of glycine, while increases those of GABA [40,41]. 
The application of resiniferatoxin upregulates spermidine/spermine N(1)-acetyltransfer-
ase 2 (SAT2), which regulate the uptake of glutamate at the synaptic terminal, while sup-
presses the regulator of G protein signalling 7 (RGS7), which regulates synaptic plasticity 
and GABA signalling [42]. These observations suggest that TRPA1 channels not only re-
spond to H2Sn, but also regulate the production of H2S/H2S2 and the neurotransmission by 
glutamate and GABA. 

The activation of TRPA1 channels induces Ca2+ influx to increase the intracellular 
concentrations of Ca2+ that suppresses the activity of CAT [143]. In the absence of increase 
in the intracellular Ca2+ though TRPA1 channels, CAT may uncontrollably metabolize cys-
teine to produce excess 3MP [40,143], which may induce feedback inhibition on the pro-
duction and transport of cysteine. It may cause a decrease in the transport of cysteine from 
astrocytes to neurons. The transcription or translation of sulfur-metabolizing enzymes in-
cluding 3MST may also be regulated by TRPA1 channels [41,42]. Further studies are 
awaited to understand this mechanism. 

11. Pathophysiological Roles of H2S and H2Sn 
High concentrations of H2S are toxic, while low concentrations have benefits. Down’s 

syndrome (DS), characterized by impaired brain growth and maturation that causes men-
tal retardation, has a trisomy of chromosome 21 where CBS is encoded. CBS in the brains 
of patients is approximately three times more abundant compared to that of normal indi-
viduals [147]. The urine of patients contains high levels of thiosulfate, a metabolite of H2S 
[148]. The overexpression of CBS showed DS like neurocognitive deficit in mice [149]. Fi-
broblasts prepared from DS patients showed suppression in the mitochondrial electron 
transport, oxygen consumption, and ATP generation [150]. 

Ethylmalonyl encephalopathy is an autosomal recessive early onset and defective in 
cytochrome c oxidase in the brain and muscle. In this disease, sulfur dioxygenase is defi-
cient, resulting in increasing H2S levels that suppress cytochrome c oxidase [151]. 

Both excess and deficiency of H2S and H2Sn have been proposed to be involved in the 
pathogenesis of schizophrenia. Plasma H2S levels, which have a correlation with working 
memory and executive function, are significantly lower in patients than those of normal 
individuals [152]. Thiol homeostasis is shifted to more oxidized disulfide bond formation 
from free thiol in patients [153]. In contrast, it has been reported that a mouse model of 

Figure 9. The involvement of TRPA1 channels in the metabolism of sulfur containing amino acids
and other neurotransmitters. Deficiency of TRPA1 channels decreases the levels of methionine,
cysteine, glycine, and 3MST, while increases those of GABA [40,41]. Suppression of TRPA1 channels
by resiniferatoxin, an antagonist of TRPV1 and TRPA1 channels, upregulates spermidine/spermine
N(1)-acetyltransferase 2 (SAT2), which regulate the levels of glutamate, while suppresses the regulator
of G protein signalling 7 (RGS7), which regulates synaptic plasticity and GABA signalling [42].

TRPA1 channels also may regulate the levels of neurotransmitters. Deficiency of
TRPA1 channels decreases the levels of glycine, while increases those of GABA [40,41].
The application of resiniferatoxin upregulates spermidine/spermine N(1)-acetyltransferase
2 (SAT2), which regulate the uptake of glutamate at the synaptic terminal, while suppresses
the regulator of G protein signalling 7 (RGS7), which regulates synaptic plasticity and
GABA signalling [42]. These observations suggest that TRPA1 channels not only respond
to H2Sn, but also regulate the production of H2S/H2S2 and the neurotransmission by
glutamate and GABA.

The activation of TRPA1 channels induces Ca2+ influx to increase the intracellular
concentrations of Ca2+ that suppresses the activity of CAT [143]. In the absence of increase
in the intracellular Ca2+ though TRPA1 channels, CAT may uncontrollably metabolize
cysteine to produce excess 3MP [40,143], which may induce feedback inhibition on the
production and transport of cysteine. It may cause a decrease in the transport of cysteine
from astrocytes to neurons. The transcription or translation of sulfur-metabolizing enzymes
including 3MST may also be regulated by TRPA1 channels [41,42]. Further studies are
awaited to understand this mechanism.

11. Pathophysiological Roles of H2S and H2Sn

High concentrations of H2S are toxic, while low concentrations have benefits. Down’s
syndrome (DS), characterized by impaired brain growth and maturation that causes mental
retardation, has a trisomy of chromosome 21 where CBS is encoded. CBS in the brains of
patients is approximately three times more abundant compared to that of normal individu-
als [147]. The urine of patients contains high levels of thiosulfate, a metabolite of H2S [148].
The overexpression of CBS showed DS like neurocognitive deficit in mice [149]. Fibroblasts
prepared from DS patients showed suppression in the mitochondrial electron transport,
oxygen consumption, and ATP generation [150].

Ethylmalonyl encephalopathy is an autosomal recessive early onset and defective
in cytochrome c oxidase in the brain and muscle. In this disease, sulfur dioxygenase is
deficient, resulting in increasing H2S levels that suppress cytochrome c oxidase [151].
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Both excess and deficiency of H2S and H2Sn have been proposed to be involved in the
pathogenesis of schizophrenia. Plasma H2S levels, which have a correlation with working
memory and executive function, are significantly lower in patients than those of normal
individuals [152]. Thiol homeostasis is shifted to more oxidized disulfide bond formation
from free thiol in patients [153]. In contrast, it has been reported that a mouse model of
schizophrenia showed greater levels of bound sulfur than a control. The levels of CBS, CSE,
and 3MST in post-mortem brain of schizophrenia patients are significantly greater than
those of normal individuals [154].

Hypersensitivity to NMDA receptor antagonists including MK-801 resembles positive
symptoms in schizophrenia [155]. Although MK-801 induced hyperlocomotion even in the
wild-type rats, a significant increase was observed in the locomotor activity after MK-801
administration in 3MST-KO rats compared to the wild-type rats [41]. Working memory
examined with Y-maze showed that the total arm entry of 3MST-KO was significantly less
than that of the wild type, but the percent spontaneous alternation was not significantly
different between 3MST-KO and the wild-type rats. The other behavioural tests, the open
field, PPI, and contextual fear conditioning tests did not show any significant difference
between the genotypes in the rat model. The difference in PPI between mice and rats
models may be involved, probably due to the increase in the levels of rhodanese in mice,
while no changes in rats [41,156].

Gliomas with the highest grades of malignancy contained the greater levels of poly-
sulfides than glioma-free brain regions [157]. A similar observation has been reported
that H2Sn levels were greater in glioblastoma-bearing regions than glioblastoma-free con-
trol regions [158]. In contrast, CBS-silenced glioma increased the levels of VEGF and
HIF-2α, deeply invaded with dense vascularization, and aggressively proliferated [159].
Further studies are awaited to clarify the involvement of H2S and its producing enzymes
in cancer pathology.

12. Perspective

Since the identification of H2Sn regulating the activity of TRPA1 channels, PTEN, and
protein kinase G1α [11,100,101], the effects of H2S previously reported had been thought to
be mediated by H2Sn. However, there appeared cases in which H2S showed greater effects
than H2Sn. H2S 10 times more potently induced the release of GABA than H2S2 in in vivo
microdialysis from the hippocampus [41]. Another example is that H2S and H2Sn exerted
the cytoprotective effect in a similar fashion on neurons against oxidative stress induced by
high concentrations of glutamate [136]. Considering the fact that the endogenous levels of
H2S are greater than those of H2Sn, H2S is responsible for these effects [41]. In these cases,
the oxidized cysteine residues of the target proteins are S-sulfurated by H2S to generate
P-SSH, and even reduced further, probably together with GSH to P-SH. Either H2S or H2Sn
transmit signals depending on the form of the target cysteine residues.

The existence of the cysteine residues with sulfur atoms with different oxidation
states in proteins has been predicted from the release and absorption of H2S from bound
sulfane sulfur in tissues. The liver contains more bound sulfane sulfur than the brain.
Although the heart has a little capacity to release H2S by DTT, it absorbed exogenously
applied H2S as greatly as the liver, and more effectively than the brain, as described
previously [43]. The species and amount of bound sulfane sulfur are different between
tissues. It is possible that P-SOH and P-SNO, which do not release H2S under reducing
condition but efficiently absorb H2S, are more abundant in the heart than the other tissues.
The balance of cysteine residues with thiols or oxidized forms may cause differences in the
transduction of signalling by H2S or H2Sn.

In addition to SAM, NO, CO, and Ca2+, which regulate the activity of H2S- and H2Sn-
producing enzymes [5,50,56,61,143,160], neurotransmitters such as serotonin, acetylcholine,
norepinephrine, and GABA regulate the release of H2S, H2Sn, and cysteine persulfide [48].
The regulation mechanism of H2S/H2Sn production by neurotransmitters, probably by the
control of their producing enzymes, are yet to be clarified. The development of fluorescence
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probes, which are sensitive enough to detect the physiological concentrations of H2S, H2Sn,
and other S-sulfurated molecules in real time, will clarify the involvement of H2S and H2Sn
in regulating neurotransmission in the brain.

Polysulfides including H2S2 are reactive and unstable, but they still endogenously
exist [39,41,43,48,86]. The total redox activity of H2S2, Cys-SSH, GSSH, and P-SSH is well
balanced with that of H2S, Cys-SH, GSH, and P-SH in the steady state in cells. It may
locally be unbalanced when S-sulfurated molecules are produced, but once signalling has
been performed, it returns to the steady state by reacting with the surrounding molecules
such as GSH to normalize the redox state. The regulation of the total redox balance may be
another problem to be clarified.

The involvement of TRPA1 channels in the metabolism of sulfur-containing molecules
and the translation or transcription of sulfur-metabolizing enzymes will open a new field
in the function of TRP channels together with that of H2S and polysulfides.
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