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Abstract: Parkinson’s disease (PD) is the second most prevalent neurodegenerative movement
disorder worldwide, which is primarily characterized by motor impairments. Even though multiple
hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently,
there are no cures or promising preventive therapies for PD. This could be attributed to the intricate
pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges
comprehensively, a thorough disease model is imperative for a nuanced understanding of PD’s
underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of
knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular
emphasis on the roles played by gene-based factors in the disease’s development and progression.
This study includes an extensive discussion of the proteins and mutations of primary genes that are
linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this
review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic
pathologies, and the risk factors associated with PD. The present study will encourage the related
research fields to understand better and analyze the current status of the biochemical mechanisms
of PD, which might contribute to the design and development of efficacious and safe treatment
strategies for PD in future endeavors.

Keywords: Parkinson’s disease; α-synuclein; molecular mechanism; genetics of Parkinson’s disease;
risk factors

1. Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder after
Alzheimer’s disease (AD) [1]. It is marked by certain motor dysfunctions involving tremors,
rigidity, posture instability, and bradykinesia. Among all neurological disorders, PD is
experiencing the most significant growth in terms of deaths, prevalence, and disability-
compromised life [2]. A particular gene mutation is frequently the source of familial PD. In
contrast, variations in genes that affect PD susceptibility are linked to sporadic PD [3,4].

Even though the symptoms and treatments for PD were first referenced in the “Indian
Ayurveda” (5000 BC) and Chinese medical classic “Nei-Jing” (500 BC), James Parkinson, in
1817, was the first to describe them as “the shaking palsy”. According to epidemiological
research, PD is a global disease that affects 1–2% of people over 65 and 4–5% of people over
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85–89 years old [5,6]. It often strikes people between the ages of 55 and 65. Like AD, 90–95%
of cases of PD are sporadic, while 5–10% are familial cases [7]. Familial instances of PD are
rare and do not exhibit the typical symptoms of the disease, making it more challenging to
comprehend the pathophysiology of PD [3,8]. There is a 1.5-fold higher chance of men than
women developing PD [9], and developed countries have reported increased incidences of
the disease [10], likely as a result of an increase in the elderly population over there [11].

PD is a condition where the nigrostriatal system that supplies dopaminergic (DAergic)
innervation to the striatum has selectively degenerated. A loss of dopamine cells in the
midbrain is not the only degenerative process driving PD. The serotonergic, glutamatergic,
noradrenergic, and cholinergic systems found in the cortical, brainstem, and basal ganglia
regions are among the non-dopaminergic neurotransmitter pathologies in PD [12]. PD also
comprises a group of non-motor symptom complexes that may appear years before the
motor symptoms [13]. The most prevalent non-motor indications include anxiety, depres-
sive episodes, gastrointestinal issues, sleep difficulties, and olfactory abnormalities [14].
Parkinson’s patients may experience a decline in their quality of life due to non-motor
symptoms [15]. Early identification of non-motor symptoms can aid in diagnosing PD and
somewhat enhance the patients’ chances of survival [16]. It can take 15 to 20 years or longer
for PD symptoms to develop further, though this can vary from person to person [17].
PD patients struggle with verbal proficiency, physical sequencing, transitioning between
tasks, and sequenced learning [18]. As illustrated in Figure 1, the primary symptoms
experienced by PD patients can be mainly categorized into five types: “early symptoms,
primary motor symptoms, secondary motor symptoms, primary non-motor symptoms,
and secondary non-motor symptoms” [19]. The neuropathological hallmarks of PD involve
DAergic neuronal depletion in substantia nigra pars compacta (SNPC), Lewy bodies (LB)
in persisting neurons, and dystrophic Lewy neurites (LN) occurrence [20–22]. DAergic
neural depletion in the SNPC, leading to a decrease in DA in the striatum, is the primary
source of the motor symptoms of PD. The LB formation, intra-cytoplasmic aggregates
within the survived neurons, coincides with this reduction in striatal DA levels. Core PD
motor impairments are brought on by the dysfunction of basal ganglia circuits caused by
depleted striatal DA [23,24].
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Although the precise mechanism behind the loss of DAergic neurons in the SNPC is
still not completely understood [26], the onset and development of PD may be influenced
by misfolding in proteins and their accumulation [27], oxidative stress [28], mitochon-
drial dysfunction [29], energy deficiency [30,31], excitotoxicity [32,33], cell-autonomous
processes [34,35], prion-like propagation of α-synuclein (α-syn) [36,37], protein clearance
pathways malfunctioning [38,39], and corticostriatal pathogenesis [40]. Abnormal folding
in proteins, followed by aggregation in intracellular portions, has emerged as a principal
hypothesis for PD. The LB [41,42] is the main misfolded protein inclusion found in the in-
tracellular spaces of the SNPC in PD. These bodies comprise a variety of misfolded proteins
such as ubiquitin (Ub) and α-syn, phosphorylated tau (p-tau), and amyloid-β (Aβ) [43].
The intracellular aggregated α-syn permeates in the cell membrane, leading to neuronal
death [44,45]. Despite a noticeable neuronal loss in the SNPC, the central nervous system
(CNS) also exhibits widespread neurodegeneration [46,47]. Although the exact molecu-
lar mechanisms causing this degenerative disease and its clinical manifestations are still
unknown, environmental, genetic, or their combined effects are believed to be responsible.

According to current studies, there may be a connection between commensal gut bac-
teria and the brain that affects neurodevelopment, brain function, and overall health [48,49].
The microbiome–gut–brain axis is a term used to describe this two-way connection [50].
In addition to the vagal nerve route, immune system mediators, gut-related hormones,
and signaling molecules produced from the microbiota could constitute mechanisms that
trigger α-syn aggregation via the gut–brain axis [51–53]. Enterically generated α-syn’s
aggregation and propagation are probably signs of an early pathogenic stage that could
subsequently trigger PD motor and non-motor symptoms [54,55]. The genesis of PD may
be linked to changes in bacteria that produce short-chain fatty acids and an increase in
putative gut pathobionts in the gut microbiome [50]. The gastrointestinal tract’s muscular
and secretory functions are controlled by the enteric nervous system (ENS), a nerve net-
work made up of glial cells and neurons [56]. Early ENS changes in Parkinson’s disease
have been demonstrated, even before CNS involvement [57–59]. Studies conducted on PD
patients after death have revealed that some ENS neuronal subtypes aggregate α-syn [60].
Dysregulation of the intestinal microbiota can exacerbate intestinal inflammation, damage
to the intestinal epithelial barrier, and the upward diffusion of phosphorylated α-syn from
the ENS to the brain. This can also result in a dysregulated gut–brain axis, gastrointestinal
dysfunction, and CNS neurodegeneration. PD and intestinal microbiota disorders have a
significantly more complicated link than just a one-way causal relationship [61–63].

Until it was recognized as the model non-genetic condition, the neuropathology of
PD was poorly understood [64]. Though most PD cases are now believed to be idiopathic,
10–20% of patients suffer from Mendelian inheritance-based monogenic PD. Over 90 sus-
ceptibility genes have been discovered thus far [2]. The multiple pathways that result in
the loss of DAergic neuronal cells and the numerous possible targets for disease-modifying
therapy are reflected in the pathophysiology of these genetic contributions. Aging is the
most important risk factor for PD. As a result, PD cases are sporadic in adults under the
age of 40 and become more common in people in their 70s and 80s [8]. A person’s risk of
contracting PD is enhanced if they have one or more close relatives with the condition,
although the overall risk is still about 2–5% unless there is a known gene mutation in the
family [65].

1.1. Risk Factors Associated with PD
1.1.1. Aging

The primary risk factor for neurological disorders is aging. Only 5% of all cases of
PD are identified before the age of 60, which is referred to as early-onset PD [66]. Aging
decreases patients’ ability to self-heal and raises their risk for neurological conditions. In
PD, aging is linked to functional limitations and motor neuron dysfunction [67]. Ageing
is linked to increasing oxidative stress and decreased mitochondrial functioning at the
cellular level in PD [68]. Studies have established that harmed brain regions of PD had
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decreased glutathione peroxidase, superoxide dismutase, glutathione reductase, and cata-
lase activity [69]. Researchers also believe that mitochondrial malfunction may produce
misfolded protein clumps, which ultimately cause PD, as mitochondrial efficiency falls
with aging [70,71].

1.1.2. Gender

Based on different studies, men are more likely than women to develop PD [72].
Uncertainty surrounds the causes of the variations between men and women with PD,
while one theory points to the female body’s estrogen-protective properties as the cause.
Distinct other proposed theories explaining the difference in PD in men and women
include that men are more likely than women to experience mild head injuries, be exposed
to industrial pollutants, and might have genes on their sex chromosomes that make them
more susceptible to developing PD [73].

1.1.3. Ethnicity

PD is more prevalent in white people than in black people or Asian people, contrary
to several studies. Black people and Asian people, rather than white people, possess a
50% lower prevalence of PD. However, the highest prevalence of PD is found among
Hispanic people, followed by non-Hispanic white people, Asian people, and black people.
One study found that Hispanic people have a higher incidence of PD than black people
(10.2/100,000), Asian people (11.3/100,000), and non-Hispanic white people (13.6/100,000),
which is 16.6/100,000 people [74,75].

1.1.4. Genetics

A total of 15–25% of patients with PD have a relative who also has the condition. A
slightly (2–5%) greater chance of having Parkinson’s exists in individuals with close family
members who suffer from the condition. There are several gene mutations connected
to PD. While some of these mutations only raise a person’s risk for the disease, others
seem to be more causal [76,77]. Early-onset PD is affected by at least five genetic loci
and appears to be more frequently associated with specific mutations. The mutations of
the SNCA protein-coding gene were identified first and have been linked to early-onset
PD [78]. LRRK2 mutations have been connected to late-onset PD and may also be a factor
in non-familial PD [79]. The identified mutations included PINK1 or PARK6, DJ-1 (PARK7),
and Parkin or PARK2, all of which have a recessive mode of inheritance [80–82]. 90% of
instances of PD are sporadic, which means they cannot all be caused by genetics, thus
showing that PD has a complex multifactorial etiology [83].

1.1.5. Environmental Factors

The root cause of PD is multifaceted, and it is evident from several studies that cer-
tain environmental factors, including exposure to chemicals, like rotenone, paraquat, and
trichloroethylene, and lifestyle decisions, like physical activity, alcohol/caffeine consump-
tion, and smoking habit, may contribute to the likelihood of developing the disease [84,85].
Due to their capacity to detrimentally impact brain function, environmental factors such
as pesticides, heavy metals, herbicides [86], and head injuries have been implicated in the
pathogenetic development of Parkinson’s disease (PD). These environmental elements are
recognized for their potential contribution to both the onset and progression of PD, under-
scoring the intricate relationship between environmental exposures and the development
of this neurodegenerative disorder [87,88]. Epidemiological findings indicate that higher
concentrations of some metals like mercury in the brain might be related to the onset and
progression of PD, even though a direct link between these metals and the disease has
not yet been conclusively established. It has been determined that prolonged exposure to
harmful heavy metals like lead, mercury, cadmium, manganese [89], and arsenic results in
neurotoxicity, which then leads to neurodegeneration [90–93].
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2. Genetic Basis of PD

Despite the fact that cases of PD are typically sporadic, various mutations are linked
to the disease pathogenesis. They represent roughly 2–3% of late-onset forms of PD and
more than 50% of patients with early onset. A clearer understanding of the molecular
etiology of hereditary PD has been made possible by discovering gene mutations connected
to the onset of familial cases of PD. A long list of genes is known to contribute to PD,
and many more may yet be discovered. Mainly, six genes have been explored and linked
to heritable PD. Whilst Parkin, DJ-1, PINK1, and ATP13A2 mutations are passed down
in an autonomously recessive manner, SNCA and Leucine-rich repeat kinase 2 (LRRK2)
mutations are passed down in an autosomal dominant form [3]. General gene-based
molecular mechanisms in the pathogenesis of PD have been illustrated in Figure 2.
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Figure 2. Genetic basis of PD and its underlying molecular pathways toward neurodegeneration.
(A) The neuronal defense against α-syn aggregating could consequently be compromised by muta-
tions altering these proteins. The cytoplasmic concentration of the α-syn monomer is increased by
missense mutations and chromosomal multiplications of SNCA, promoting oligomerization of α-syn
that is cytotoxic. This results in neuronal membrane damage and mitochondrial dysfunction [27,94].
(B) DJ-1 and Parkin (encoded by PARK2) interact and participate in regular UPS operations [95].
Mutations affecting these proteins may reduce the neuron’s ability to respond to α-synuclein ag-
gregation. α-synuclein aggregates that build up inside neurites and axons in late-onset PD when
there is residual UPS function eventually become trapped inside a central Lewy body in surviving
neurons. DJ1 also possesses antioxidative characteristics, which may offer an additional connection to
α-synuclein fibrillization and impaired function [96]. (C) UCHL1 preserves a pool of monoubiquitin
for E3 ligase and UPS function while inhibiting the degradation of free ubiquitin in the endosomal–
lysosomal pathway [97,98]. UPS functioning and protein buildup clearance need ATP generation by
mitochondria. Loss of PINK1, DJ-1, and Parkin activities significantly impairs normal mitochondrial
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activity, which leads to early-onset parkinsonism [99]. (D, E) Tau (encoded by microtubule-associated
protein tau—MAPT) typically maintains the microtubule network in equilibrium, facilitating intracel-
lular signaling and neuronal trafficking. Abnormal phosphorylation impairs its functionality and
causes neurofibrillary tangles to develop [100,101]. Phosphorylation, intracellular signaling, and
cellular trafficking all seem to be interconnected events requiring LRRK2 [95]. (F) Mutation-induced
altered α-syn activity causes reduced vesicular binding, which negates the inhibition of phospho-
lipase D2, an enzyme implicated in vesicle trafficking and lipid-mediated signaling cascades [102].
Further, restricted release of neurotransmitters and their buildup in the cytosol may produce reactive
oxygen species, which in turn causes neuronal death. (G) GBA1 mutation leads to ER stress activation
and degradation, which causes DAergic neuronal death [103].

2.1. α-Synuclein

Gene multiplication and point mutation in the SNCA gene results in the autosomal
dominant PD [104]. However, sporadic PD is believed to occur due to polymorphisms in the
SNCA gene locus [105]. The SNCA/PARK1 gene encoding α-syn (A53T) was first recognized
to cause a familial type of PD because of a missense mutation [106]. Various missense point
mutations, namely, A53E, H50Q, A30P, G51D, and E46K, were also discovered shortly after
that in the N-terminal region of α-syn. PD linked with SNCA frequently develops early
and progresses quickly [107,108].

α-syn is a 140-aa protein that has three different domains: a strongly negatively
charged C-terminal site, a hydrophobic non-amyloid domain that is capable of adopting
a β-sheet conformity [109], and an N-terminus that takes on an α-helical secondary con-
figuration over membrane binding. The protein structure and the positive and negative
charges of α-syn are directly associated with pathological modifications of α-syn. The pri-
mary area for phosphorylation alterations is the negatively charged carboxyl terminus. By
virtue of its hydrophobicity, the core hydrophobic region can easily form a β-pleated sheet.
The positively charged amino terminus is vulnerable to acetylation and ubiquitination
changes [110,111]. α-syn structural domains are depicted in Figure 3.
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guished from the 140-amino-acid α-syn protein. The N-terminus amphipathic domain is composed of
KTKEGV repeats that contain the amino acid residues affected by the primary α-syn gene mutations
(A30P, E46K, H50Q, G51D, A53T, and A53E) in PD [112,113]. Mutations linked to Parkinson’s disease
(red) and phosphorylation sites (blue) have also been depicted.

The CNS possesses high levels of α-syn expression, which is restricted to the area
around synaptic vesicles that might be involved in synaptic transmission [114]. A study on
the rat model of PD has shown that the α-syn variants that form oligomers tend to be more
cytotoxic than those that form fibrils, resulting in an increasingly serious degeneration of
DAergic neurons in the SNPC [115]. LB mainly consists of α-syn, which is phosphorylated
at Ser129 of α-syn [116,117]. Amid pathological circumstances, α-syn may adopt a β-
pleated secondary framework as the building block for LB and LN [118]. α-syn monomers
assemble to generate protofibrils that resemble strings and may expand into bigger fibrils,
further worsening the progression of PD pathogenesis [119]. According to certain research
findings, oligomeric α-syn species that are toxic to neurons are compartmentalized by LB,
suggesting that the aggregates of the protein may not pertain to neuronal toxicity [120,121].
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The unfolded protein response (UPR) is provoked by SNCA gene triplication in a PD
patient [122]. Matsui et al. [123] reported that T64 phosphorylation alters the characteristics
of α-syn and promotes the generation of distinctive oligomers in the human PD brain. Such
phosphomimetic mutation leads to lysosomal disorder, mitochondrial failure, neurodegen-
eration, and apoptosis, suggesting the pathogenic potential of α- syn phosphorylation at
T64 in PD.

Protein post-translational modifications (PTMs) control protein activity and proteome
modifications [124,125]. By changing the α-syn configuration, aggregating kinetics, subcel-
lular localization, fibril ultrastructure, and molecular interactions, these PTMs considerably
impact the emergence and dissemination of disease [126]. The combinational implica-
tions of PTMs, alongside related non-covalent cofactors on protein functioning, fibril
organization, and pathological features, demand additional research, considering α-syn is
susceptible to multiple alterations in both PD and non-PD individuals [127]. α-syn binds to
the orexin 1 receptor (OX1R), which facilitates the post-translational protein degradation of
OX1R through lysosomal and proteasomal pathways [128]. Extracellular signal-regulated
kinase and protein kinase B signaling pathways are further downregulated, resulting in
orexin neuron destruction that induces sleep behavior disorder, a potential early sign of
PD [128]. The spectrin–ankyrin complex, crucial for the precise positioning and functional-
ity of integral membrane proteins like Na1/K1 ATPase, is altered by the binding of α-syn
to β-spectrin. Thus, neuronal dysfunction and mortality are caused by a higher level of
α-syn in PD and associated α-synucleinopathies [129].

Genome-wide association studies revealed a link between PD and genetic variation
in the gene for the tau protein, which is interlinked to AD [130] and regulates cytoskeletal
integrity [131]. Interaction between α-syn and tau allows them to mutually promote each
other’s aggregation [132]. In an α-syn overexpression model, hyperphosphorylated tau
has also been identified [133]. In Drosophila, coexpression of α-syn increased the death of
dopamine (DA) neurons induced by tau [134]. α-syn also seems to be involved in mitochon-
drial malfunction [135]. The chemical reaction of oligomeric α-syn with the membranes
of mitochondria may result in their fragmentation and Dynamin-like protein 1 (DLP1)-
independent mitochondrial fission [136]. Additionally, α-syn inhibits the functioning of
mitochondrial complex I [137].

α-syn mutations potentially harm DAergic neurons, since they change several intracel-
lular signal pathways. The mutations in α-syn A53T have the capacity to block autophagy
in transgenic mice’s brains at an early stage and cause synucleinopathy [138]. Furthermore,
in mouse models of PD, A53T causes apoptotic pathways in adrenal phaeochromocytoma
(PC12) cells that are driven by endoplasmic reticulum (ER) stress and mitochondrial mal-
function [139]. α-syn mutant overexpression in DA cells like PC12 and SH-SY5Y severely
impairs proteasomal protein cleavage [140]. According to Matsumoto et al.’s [141] studies
on CD-1 mice, erythrocyte-acquired extracellular vesicles with α-syn can pass the blood–
brain barrier (BBB); this could be an entirely novel mechanism for the brain and peripheral
nervous system to communicate during the onset and progression of PD. DAergic neurons
die as a result of α-syn selective binding to tropomyosin receptor kinase B (TrkB) and the
inhibition of the TrkB signaling pathway in the mouse model studies of PD [142,143].

Moreover, in mouse models of PD, A30P mutation could accelerate the degeneration
of DAergic neurons by triggering microglia and increasing the phagocytic oxidase and
macrophage-1 expression [139]. Decreasing the expression of α-syn may offer a viable
treatment strategy, considering that both mRNA and protein levels increase twofold in mice
models of PD [144,145]. Zharikov et al.’s [146] investigation of the rat model of PD stated
that disruption of α-syn employing shRNA reduces the progression of motor impairments
as well as DAergic neuron degradation. Further, the preclinical studies need to be validated
by clinical investigations.



Biomolecules 2024, 14, 73 8 of 40

2.2. LRRK2

A total of 1–5% of sporadic PD and 5–13% of familial PD is associated with mutations in
LRRK2 [147,148]. The LRRK2/PARK8 gene mutation, which results in autosomal dominant
PD, carries the highest risk of familial PD [17,149]. I2020T, R1441G, G2385R, R1441C, R1628P,
R1441H, G2019S, and Y1699C are seven of the documented missense LRRK2 variants that
have been confirmed to be pathogenic. These mutations are found in various functional
domains of LRRK2 [150,151]. It is fascinating to note that variations in LRRK2 seem to be
population-specific [152–160]. LRRK2 is large in size with 2527 amino acids and is made up
of multiple functional domains [161]. LRRK2 has two enzyme-like functions as its catalytic
center, which comprises the Ras of complex (ROC) and the C-terminal of the ROC bidomain
with the kinase region [162,163]. The structural domain representation of LRRK2 is given
in Figure 4. LRRK2 is abundantly expressed in organs like the kidney, lungs, heart, and
brain [164]. Additionally, it has been observed that LRRK2 can be identified in monocytes,
lymphocytes, blood, cerebrospinal fluid (CSF), and urine [165]. Lipid dynamics are essential
for vesicle trafficking, lipid metabolism, and lipid storage, all of which depend on LRRK2
substrates from the Ras-associated binding (Rab) GTPase family. Furthermore, LRRK2 is
also linked to the phosphorylation and activity of enzymes that catabolize lysosomal lipids
and the plasma membrane [166]. Elderly LRRK2 G2019S mutant carriers have substantially
higher rates of PD morbidity [167].
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DA signaling in addition to limiting neuronal survival. Through phosphorylation of apop-
totic signal-regulating kinase 1 at the Thr832 site and boosting the kinase potential, LRRK2 
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Figure 4. Domain organization, upstream regulation, and PD-linked pathogenic mutations of LRRK2.
LRRK2 is made of 2527 amino acids. It consists of 7 domains: ARM, armadillo; ANK, ankyrin; LRR,
Leucine-rich repeat; ROC, Ras of complex; COR, C-terminal of ROC; kinase; and WD40 domain [168].
The phosphorylation sites in the N-terminus are pSer910 and pSer935 (blue), which mediate 14-3-3
binding to LRRK2. The autophosphorylation sites are pSer1292 and pThr1503 (blue). PD mutations
(red) lead to the pathological mechanism that increases kinase activity. Upstream regulation by LRRK2,
such as the pathogenic VPS35 mutation, potential LRRK2 recruitment by unidentified Rabs to other
organelle membranes or vesicles, and Rab29 recruitment to the Golgi has also been depicted [169].

In DAergic neurons and cultures of primary neuronal cells of a PD brain, LRRK2
G2019S mutation increases α-syn mobility and boosts α-syn accumulation [170]. The
mutation has also been found to contribute to tau protein neural pathology in LRRK2-linked
PD by promoting tau transmission in neuronal cells in mice [171]. LRRK2 interferes with DA
signaling in addition to limiting neuronal survival. Through phosphorylation of apoptotic
signal-regulating kinase 1 at the Thr832 site and boosting the kinase potential, LRRK2
performs significant roles in neuronal death [172]. LRRK2 has a variety of functions in the
secretory pathway and might assist in DA signaling in a mice model of PD [173]. LRRK2
may cause neurons to die by suppressing myocyte-specific promoter factor 2D action, which
is necessary for neural cell survival [174]. Dopamine receptor D1 uptake is compromised
by the LRRK2 G2019S mutation, which alters signal transduction [175]. Additionally, the
G2019S mutation increases kinase activity, impairing the synaptic vesicle transportation in
ventral midbrain DAergic neurons [176]. A close correlation exists between mitochondrial
dysfunction and the LRRK2 G2019S mutation. According to Howlett et al. [177], this
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mutation causes mitochondrial DNA (mt-DNA) destruction, which is reversible through
a pharmacological decrease in the activity of LRRK2 kinase. Triggering mitochondrial
DLP1 levels and neural toxicity, mitochondrial disintegration and dysfunction are caused
by LRRK2 G2019S’s ability to bind to and strengthen its interaction with mitochondrial
DLP1 [178,179].

2.3. PINK1

A 581-aa serine/threonine kinase is encoded by PINK1 [180]. The regions at the
N-terminal oversee PINK1 processing and transport to mitochondria. The kinase do-
main consists of two lobes, N and C. A significant number of PD-linked mutations and
well-characterized phosphorylation sites are in this PINK1 domain. PINK1 structural orga-
nization is depicted in Figure 5. The autosomal recessive PARK6 form of PD is brought on
by PINK1 deficit [181]. Inner mitochondrial membrane-bound proteases cleave PINK1 at
A103 and F104 to a 52-kD split, which escapes into the cytoplasm and is deteriorated by
ubiquitination [182]. As a result, PINK1 basal levels are not detectable. Transport via the
outer membrane of mitochondria is hampered by mitochondrial stressors like depolariza-
tion of the membrane, electron transport chain (ETC) unit malfunction, and mutagenesis
stress, which stops proteolysis. This causes PINK1 buildup on the outer membrane of
mitochondria, which triggers dimerization and activates the kinase domain [183]. As a
result, PINK1 serves as a sensor for mitochondrial damage by turning on pathways for mi-
tochondrial quality monitoring. Disruption of PINK1 and Parkin also causes an imbalance
in the activity of the inositol 1,4,5-triphosphate receptor, which sharply increases calcium
release from the ER [184].
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Figure 5. Schematic representation of structural domains of the mitochondrial-associated kinase
PINK1, and the RBR-E3 Ubiquitin Ligase Parkin. (A) PINK1 is divided into distinct sections. Indi-
vidual domains are depicted and labeled as follows: MTS, mitochondrial targeting sequence; TM,
transmembrane domain; NT, N-terminal, regulatory domain; INS, insertion; CTE, C-terminal
extension [185]. Depending on the residues and protein areas affected, PINK1-PD mutations (red)
can be classified as having an impact on substrate binding, kinase activity, or PINK1 structure.
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(B) Parkin is comprised of 465 amino acids. Individual domains are depicted and labeled as follows:
UBL, ubiquitin-like domain; ACT, activating element; RING, really interesting new gene domain;
IBR, in-between-RING domain; REP, repressor element [186]. Mutations in PINK1 and Parkin cause
PARIS accumulation that leads to neurodegeneration. Mutations linked to parkinson’s disease (red)
and phosphorylation sites (blue) in PINK1 and parkin have also been depicted.

By phosphorylating LETM1 at Thr192 to promote Ca2+ release while facilitating its
transportation, PINK1 depletion is connected to mitochondrial failure and mitochondrial
Ca2+ dysregulation [187]. According to Martinez et al. [188], the deregulation of the
misfolded protein response of mitochondria relying on the PINK1 homolog causes non-
apoptotic degeneration of DAergic neurons. A dominant-negative pathway may raise the
risk of PD in heterozygous PINK1 G411S mutation carriers, as this mutation drastically
reduces PINK1 kinase function [189]. In PD mice, PINK1 mutations promote the buildup
of defective mitochondria with aging, stimulating the misfolded protein response of mi-
tochondria and prolonging life [190]. The PINK1 mutations I368N and Q456X decrease
either protein stability, levels, or kinase activity, raising the likelihood of PD [191]. Parkin is
less likely to be recruited to depolarized mitochondria by other mutations, such as G309D,
A168P, L347P, and H271Q [192].

2.4. Parkin

Originally thought to function as ubiquitin E3 ligase that could be stimulated by
autophosphorylated PINK1 [193], Parkin is a protein that is encoded by PARK2 and is
necessary for the degradation of target molecules through the ubiquitin–proteasome sys-
tem [194]. The structural domains of Parkin are shown in Figure 5. A total of 10–25%
of early-onset PD occurs due to Parkin gene mutations [195]. In order to facilitate the
mitophagy destruction of defective mitochondria, PINK1 aggregates on the malfunctioned
mitochondrial membrane stimulate Parkin E3 ubiquitin ligase operation and recruit cyto-
plasmic Parkin molecules to the dysfunctional mitochondria [196]. By encouraging Parkin
recruitment to mitochondria, reactive oxygen species (ROS) also trigger PINK1/Parkin
pathway-controlled mitophagy [197]. A defect in Parkin recruitment for depolarizing
mitochondria results from mutations such as C441R, R42P, C289G, R46P, C253Y, C212Y, and
K211N, which substantially restrict mitophagy [198]. Mitophagy and mitochondrial biogen-
esis are coordinated by the Parkin interacting substrate (PARIS) axis. A network of sound
mitochondria is maintained by basal state cellular homeostasis. A transcriptional program
involved in mitochondrial biogenesis is connected to mitophagy. Parkin and PARIS are
involved in one pathway in this intricately regulated process. The steady-state levels of
PARIS are regulated by Parkin-mediated ubiquitination, which is aided by PINK1 as a
priming kinase. Parkin expression and activity are increased by mitophagy triggers, which
causes PARIS to be broken down by proteases. Reduced levels of PARIS alleviate Peroxi-
some proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1α) transcriptional
inhibition, hence facilitating mitochondrial biogenesis [199].

2.5. DJ-1

Early onset of recessive PD has been linked to mutations in DJ-1, which is encoded
by the PARK7 gene [200]. A PD-linked gene retained in both prokaryotes and eukaryotes,
DJ-1 (PARK7), is an evolutionary ancient gene [96,99,201]. The functional domains of
DJ-1 are shown in Figure 6. The function-related mutational loss that affects DJ-1 protein
integrity and homo-dimerization causes PARK7 PD, which is inheritable in an autosomal
recessive manner [202]. Several DJ-1 mutant variants have been linked to PD, including
L166P, M26I, L10P, and P158. It has been reported that a DJ-1-associated PD brain has
neuropathological issues as per the genetic data, indicating a distinctive mutation of L172Q
in the PARK7 gene [203]. In cells overexpressing PINK1, DJ-1 might interact with and
stabilize PINK1 [204]. DJ-1 also engages with α-syn, which modifies its accumulation by
establishing a weak hydrophobic interaction [205] and reversing α-syn-mediated toxicity
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to cells [206]. Along with PARP1, DJ-1 preserves genomic stability, and disruption of this
connection might have an influence on DNA damage accumulation, impaired DNA repair,
and, ultimately, neurodegeneration. Therefore, faulty DNA repair is associated with the
PD pathophysiology brought on by DJ-1 mutations [207].
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The two core structural areas (green) and the dimerization region (purple) make up the DJ-1 protein.
DJ-1 is a single-domain protein with 189 amino acids [208].

The antioxidant capabilities, antiapoptotic implications, and impact on mitochondrial
respiration, shape, shifts, and biosynthesis are a brief overview of the neuroprotective
actions exerted by DJ-1 [209]. DJ-1 mutations principally affect a protein that facilitates
intracellular oxidation–reduction [210]. Due to its elimination of neurological protective
effects against H2O2 and elevation of thioredoxin-1 by suppressing the nuclear factor
erythroid 2-related factor 2 signal pathway, mutant DJ-1 (L166P and M26I) raises the
vulnerability of SH-SY5Y cells to oxidative stress [211]. Additionally, the D149A mutation
ends this shielding [212]. L172Q, L10P, and P158∆ are the three mutations that contribute
to a decrease in the stabilization of proteins [213]. In vivo experiments have demonstrated
that recombinant DJ-1 can also stop the DA degeneration caused by 6-hydroxydopamine
(6-OHDA) or α-syn [214].

2.6. Vacuolar Protein Sorting 35 (VPS35)

The endolysosomal network is made up of many tubulovesicular organelles that are
important for protein manufacturing, nutrition intake, cellular trafficking, and apopto-
sis [215,216]. The heterotrimeric complex, comprising VPS26, VPS29, and VPS35, is a
crucial component of the endolysosomal system’s sorting process [217–219]. VPS35 struc-
tural domains are represented in Figure 7. The mechanism of transmembrane protein
shifting between Golgi and endosomes is regulated by VPS35 [220,221]. The VPS35 gene
was originally linked to late-onset PD in an Austrian family. It contributes 1% to familial
PD. The VPS35 D620N mutation is harmful in PD patients from American, European, and
Asian families [222]. In PD-afflicted fibroblasts, the VPS35 D620N mutation decreases
enzyme functionality in complex I and II, resulting in mitochondrial failure by reusing
DLP1 complexes [136,223]. Finally, DAergic neuron loss occurs as a result of mitochon-
drial malfunction brought on by VPS35 deficiency [224]. PD-related VPS35 mutation,
R524W, hinders retromer endosomal interaction and causes α-syn to aggregate [225]. In
a Drosophila model, the VPS35 P316S mutation also caused some PD symptoms, such
as decreased climbing power and a reduction in Daergic neurons, which made the fly
particularly susceptible to the drug rotenone [226].
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modulator to activate GCase 1 reinstated lysosome functionality and eliminated the 
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in the onset of idiopathic PD [236]. According to estimates, L444P and N370S are the two 
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[237,238]. The instability of α-syn tetramers is reversed, and human DAergic neurons are 
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golipids accumulation and overly expressed GBA1 to increase GCase 1 function [239]. The 
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Figure 7. Schematic illustration of VPS35 structural domains and interactions along with the PD
mutations (red) [208]. The dimer of sinexin (SNXs) and VPS26, VPS29, and VPS35 combine to form
the retromer cargo recognition complex. For the interaction with VPS26 and VPS29, the amino acid
residues 1–172 in the N-terminal region and 307–796 in the C-terminal region are significant. The N-
and C-terminal regions of the amino acid residues are those that interact with the SNXs. Thirteen
of the thirty-four helices projected for a structural level VPS35, a right-handed α-helix solenoid, are
predicted to be in the C-terminal. In PD, several missense mutations have been discovered. The
location of the VPS35 variation of unknown significance (VUS) is between exons 9 and 14. Exon 15 is
the site of the pathogenic mutation (D620N).

2.7. Glucocerebrosidase 1 (GBA1)

The 497-aa protein β-glucocerebrosidase (GCase1) is encoded by GBA1, which is
located on the lysosomal membrane. GBA1 structural domain organization is illustrated
in Figure 8. The most prevalent gene-associated PD risk factor is the catabolism of the
glycolipid glucocerebroside into glucose and ceramide in the lysosome [227,228], which
causes Gaucher disease. In 7–12% of patients, heterozygous GBA1 mutations have been
identified as the most prevalent genetic risk factors for PD [229]. As patients with PD
or GBA1 mutations may display extensive LB or LN, GCase1 malfunction and α-syn
pathogenesis appear to be related inextricably [121]. In addition, GCase1 enzyme activity
is decreased in GBA1-PD and sporadic PD cases [230,231] and has an inverse relationship
with the degree of α-syn pathology [232].
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Figure 8. An illustration of GBA1 structural organization along with PD mutations (red). GBA1
protein is composed of 497 amino acids, which have three primary domains: 39-residue signal
peptide, the conserved catalytic domain Glyco_hydro_30 (329 amino acids), and Glyco_hydro_30C
domain (30C; 62 amino acids) [233].

In the brain and CSF of PD patients, an enormous decline in GCase 1 functioning
and protein concentrations has also been identified [234,235]. Employing a small-molecule
modulator to activate GCase 1 reinstated lysosome functionality and eliminated the buildup
of pathogenic α-syn in PD individuals, suggesting the plausible role of GCase 1 in the
onset of idiopathic PD [236]. According to estimates, L444P and N370S are the two most
prevalent GBA1 mutations, accounting for around 10% to 25% of PD instances [237,238]. The
instability of α-syn tetramers is reversed, and human DAergic neurons are protected against
α-syn prefabricated fibril-initiated toxicity by inhibiting glycosphingolipids accumulation
and overly expressed GBA1 to increase GCase 1 function [239]. The mutation of N370S
caused GCase 1 to be retained in ER, stopping its flow to the lysosome, which activated
the UPR and caused the Golgi apparatus to fragment by ER stress activation [240,241].
In addition, heterozygous L444P GBA1-mutated murine neurons showed dropped α-syn
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tetramers along with associated multimers [239], and L444P GBA1 mutation provoked
α-syn-mediated DAergic neuronal loss in the SNPC of mice models of PD [242].

3. Cellular and Molecular Mechanism Underlying the Pathogenesis of
Neurodegeneration in PD
3.1. Protein Misfolding and Aggregation

The aggregation of protein is a biological process characterized by the buildup of mis-
folded proteins inside or outside of cells [243]. These protein aggregates are the pathogenic
hallmark of PD, indulging the LB-like α-syn protein buildup [244].

In the investigation of PD using mice models conducted by Jones et al. [245], the
pathogenic misfolding, ensuing accumulation, and buildup of α-syn are essential compo-
nents of the disease pathogenesis. Notably, serotonin plays a crucial role in significantly
facilitating the regulation of adult hippocampal neurogenesis [246]. In the rat model of
PD, α-syn detrimentally impacts hippocampal neurogenesis. This effect is accompanied by
diminished 5-HT neurotransmission, occurring prior to the onset of aggregation pathophys-
iology and motor impairments [247]. Oxidative stress triggers the non-receptor tyrosine
kinase c-Abl, whose crucial function is proposed in α-syn-initiated neurodegeneration [248].
α-syn phosphorylation at tyrosine 39 occurs due to c-Abl activation, potentially contribut-
ing to the disease development in hA53Tα-syn transgenic mice. Additionally, it has been
established that c-Abl inhibition might deliver protection against neuronal degeneration
induced by α-syn [249]. A number of other kinases, including G-protein-coupled recep-
tor kinases [250], polo-like kinases [251], casein kinase II [252], and LRRK2 [253], also
phosphorylate α-synuclein Ser129. α-syn protein misfolding in the pathogenesis of PD is
represented in Figure 9.

PINK1 becomes stable on the membrane of mitochondria from the outer side and
activates Parkin ubiquitin ligase functionality through ubiquitin phosphorylation at Ser65
during mitophagy, which is triggered by the misfolded protein aggregation or the mito-
chondrial membrane potential loss [254]. It causes ubiquitin chains to assemble on the
outer mitochondrial membrane, resulting in autophagy receptor activation in the process.
Pathogens are eliminated through autophagy by engulfing the intracellular pathogens in au-
tophagosomes and transferring them to lysosomes for destruction. Even though autophagy
receptors p62 and optineurin are known for binding ubiquitin chains on dysfunctional
mitochondria, their precise function in mediating mitophagy is still unknown [255].

DJ-1 suppresses α-syn aggregation and guards neurons against intracellular oxidative
circumstances [256,257]. The main cause of α-syn aggregation in pathological circumstances
is Ser 129 phosphorylation [258–261]. Although the PD pathogenesis that is LRRK2-linked is
not completely known, the pathogenesis of PD has been found to contain LRRK2 mutations
that result in the generation of aggregated protein and the degeneration of the neurons. The
clearance mechanisms of UPS and autophagy carry out the protein buildup management.
An in vivo study with zebrafish indicated that the overexpression of LRRK2, along with its
interaction with the UPS, results in the accumulation of proteins [262]. It has been observed
that amplified expression of LRRK2 hinders the production of aggresomes promoted
by MG132, which is necessary for autophagic breakdown. In differentiated SH-SY5Y
cells, its dysfunction also causes an aberrant buildup of protein aggregates and worsens
the cytotoxicity caused by proteinopathy [263]. In the study by Liu et al. [264], it is
proposed that synphilin-1 may possess a neuroprotective impact by reducing the PD-like
phenotypes caused by mutant LRRK2. The excessive accumulation of proteins, triggered by
a malfunctioning UPS and a compromised cellular physiological system, may collectively
contribute to the pathophysiology of PD in Drosophila. Since the ER regulates the folding
and sorting of protein, such protein buildup could potentially be caused by dysfunction of
this organelle.
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Figure 9. An illustration of the α-syn protein misfolding in the pathogenesis of PD. There are various
processes by which α-syn oligomers might cause toxicity. Several protein degradation mechanisms,
like autophagy and lysosomal degradation, are adversely affected by oligomers, which also actively
contribute to the disruption of mitochondrial function. Additionally, oligomeric α-syn induces ER
stress by manipulating the autophagy lysosomal pathways and UPS. α-syn oligomers may hinder
ER-Golgi trafficking, axonal transmission, and synaptic impairment by preventing the development
of SNARE complexes. Furthermore, by changing the membrane homeostasis, α-syn oligomers can
directly trigger cytotoxicity. Ultimately, α-syn oligomers disrupt numerous intracellular signaling
pathways and destroy organelles, which may result in neuronal death in PD.

3.2. ER Stress

The observed death of DAergic neurons in the SNPC of PD patients is also associated
with ER stress [265]. According to different experimental data, the misfolded/ unfolded pro-
tein emergence causes ER stress, which aids in the death of neurons or apoptosis [266–268].
The ER-related UPR is stimulated because of misfolded protein aggregation. The initial goal
of the UPR is to normalize the cell state by interfering with protein translation, eliminating
misfolded proteins, and activating signaling pathways that create molecular chaperones ac-
countable for the folding of proteins. However, under prolonged disruption, the UPR shifts
its focus to cellular apoptosis, as observed in the rat model of PD, which further needs to be
validated by clinical studies [269]. UPR is a complicated response that employs a variety of
mechanisms to lessen the load of abnormal proteins [270]. Three transmembrane proteins,
including the activating transcription factor 6 (ATF6), PRKR-like ER kinase (PERK), and
inositol-requiring enzyme 1 (IRE1), are activated in the central nervous system to begin
the UPR process [271]. When a cell is stressed, these transmembrane proteins separate
from glucose-regulated protein 78 (GRP78) and trigger several intracellular signals that
reduce the load on the ER. These intracellular signals include transcriptional and transla-
tional inhibition which decrease the ER concentration of proteins and boost the number
of molecular chaperones to improve the ER capacity for folding [272]. The peripheral in-
flammation in PD is exacerbated by lymph node swelling, which is directly associated with
macrophage activation and is brought on by meningeal lymphatics discharging oligomeric
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α-syn [273,274]. ER stress caused by oligomeric α-syn is amongst the most plausible causes
of PD. Pathologic molecular mechanisms of ER stress in PD are depicted in Figure 10.
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Figure 10. An illustration of ER stress and UPR signaling pathways in the pathogenesis of PD.
Stressful circumstances brought on by oxidative stress, infections, nutritional deficiency, and ER
alterations in calcium levels can cause protein folding errors to build up in the ER. Three sensor
proteins—PERK, IRE1, and ATF6—control UPR by preventing the accumulation of improperly folded
proteins and enhancing ER folding ability. GRP78 binds to misfolded proteins like α-syn when
the ER is stressed, causing dissociation from GRP78 activates IRE1, ATF6, and PERK. They also
activate caspase-3 and force the nucleus to produce CHOP. Consequently, apoptosis occurs in PD.
1-Methyl-4-phenylpyridinium (MPP+) increases the expression of CHOP, which causes ER stress.

It is believed that mild ER stress plays a neuroprotective role. Nevertheless, neurons
typically die or undergo apoptosis in response to severe ER stress. The most conserved UPS
and a crucial UPS regulator is IRE1/ X-box binding protein 1 (XBP1) [122]. The DAergic
neuronal death brought on by 6-OHDA injections is prevented by the conditional deletion
of XBP1 in a mice model of PD [275]. ER stress signaling is increased in PD models contain-
ing Parkin and PINK1 mutations, while the suppression of PERK is neuroprotective [276].
Since the expression of the chaperone hsp70 may mitigate neural mortality in rat and
mouse models of PD, ER stress-related enhanced chaperone expression seems to be advan-
tageous for cells [277,278]. Human α-syn overexpression induces ER stress, upregulating
proapoptotic C/EBP homologous protein (CHOP) in DAergic neural cells in the SNPC by
triggering the PERK and ATF6 signaling pathways. This is inhibited by GRP78 [279,280].
The GBA1 gene N370S mutation results in a considerable decrease in enzyme functioning
and GCase 1 protein, as well as retention inside the ER, which obstructs its movement to the
lysosome; following this, ER stress is activated, with triggered UPR and disorganized Golgi
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apparatus [241]. A recent study using intraneural Tunicamycin injection as a new model
of PD demonstrated that ER stress might serve as an essential part in the development of
PD by replicating some of the phenotypic traits seen in rat models of PD [281]. Therefore,
more research is required to ascertain how ER stress and the UPR influence the survival
and death of neurons.

3.3. Calcium Homeostasis

Different voltage-gated calcium channels are believed to play a role in calcium home-
ostasis control. These channels and pumps are placed on the plasma membrane in order
to transfer the calcium both within and outside the cell [282]. They also ensure the close
functional connection for cellular physiology, and any shift in this regulation results in im-
paired calcium homeostasis, which might then trigger the death signaling pathways [283].
Being the primary calcium reservoir, the ER controls folding proteins and keeps calcium
homeostasis stable. In PD, there is a disruption in the interaction between mitochondrial
calcium signaling and the ER, which results in neuronal death [284,285]. α-syn mutations
have been identified to cause calcium overstimulation and cell death [286,287]. Ca2+ could
attach itself to the C-terminus of α-syn, control its secretion, and encourage the assembly of
α-syn aggregates. α-syn has a role in synaptic vesicle endocytosis and is primarily found
at presynaptic terminals, which are sites of significant Ca2+ fluctuations. The N- and C-
terminus of α-syn engage in interactions with isolated synaptic vesicles, but Ca2+ regulates
the binding with the C-terminus, enhancing α-syn’s ability to bind with lipids [288]. It has
been proposed that α-syn and Ca2+ influence vesicle pool homeostasis via two different
mechanisms in a mouse model of PD: first, by encouraging intervesicle interactions; second,
by binding synaptic vesicles to the plasma membrane that potentially modify their ability
to access voltage-gated Ca2+ channels [289]. In PD, nigral DAergic neurons die because of
mitochondrial Ca2+ signaling, primarily through regulation of ATP synthesis and mitochon-
drial oxidative stress. It has been discovered that in the SNPC neurons, a rise in cytosolic
Ca2+ is dependent on α-syn, which is accompanied by an increase in mitochondrial Ca2+

and mitochondrial oxidation [290]. It has been observed that a cytosolic Ca2+ rise brought
on by L-type Ca2+ channel-mediated Ca2+ influx stimulates mitochondrial ATP produc-
tion in cultured hippocampus neurons [291]. In PD patients with the N370S mutation in
β-glucocerebrosidase, lysosomal Ca2+ store concentration have also been reported to be
reduced, accompanied by changes in lysosomal form [292].

3.4. Dopamine Metabolism and Toxicity

PD has been demonstrated to cause a substantial decline in the DA-producing cells in
the SNPC that maintains Parkinson’s tremor, rigidity, impaired balance, slowed movement,
and coordination [293,294]. DAergic neurons may suffer oxidative damage brought on by
DA oxidation, as shown in Figure 11. Mitochondrial oxidative stress results in the buildup
of oxidized DA, leading to lowered glucocerebrosidase activity, dysfunctional lysosome,
and the α-syn buildup in PD neurons [295]. Overexpression of DA transporters, leading
to increased DA re-uptake and elevated cytosolic DA levels, induces the degeneration
of dopaminergic (DAergic) neurons in mouse models of PD [296,297]. The cytoplasmic
formation of aminochrome during the DA auto-oxidation of neuromelanin may cause
DAergic neuronal toxicity [298,299]. Additionally, DA stimulates neurodegeneration in the
SNPC of mice models of PD and drives the synthesis of soluble A53T α-syn oligomers [300].
Moreover, this needs to be validated through clinical studies. In the mitochondrial extra-
cellular membrane, monoamine oxidase catalyzes the transformation of cytosolic DA to a
PD-linked endogenous neurotoxin [301]. This process results in a lengthy accumulation
of glyceraldehyde-3-phosphate dehydrogenase and causes irreversible inhibition of the
enzyme activity, which harms neurons due to ROS production [302]. In neurons with a
PINK1 defect in the mouse model of PD, DA caused mitochondrial permeability transition
pore opening by producing ROS [303]. DA buildup from extracellular DA reuptake into the
cytoplasm causes DA neurotoxicity. DA neurotoxicity can be prevented by interfering with
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the chemical relationship between the dopamine D2 receptor and DA transporter [304].
These investigational studies and facts suggest that chemical intermediates formed from DA
are one of the primary causes of PD, which further needs to be validated by clinical studies.
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Figure 11. An illustration of DA toxicity in PD pathogenesis. Mitochondrial oxidative stress causes
oxidizing DA to build up, which then causes lysosomal failure, decreased glucocerebrosidase enzyme
activity, and α-syn deposits in PD neurons. Increased DA production along with impacts on the
functioning of mitochondria may be simultaneously caused by higher cytosolic Ca2+ concentration
through caveolin-1 (Cav1) channels.

3.5. Mitochondrial Dysfunction

Nearly all neurodegenerative conditions, including PD, have been linked to mito-
chondrial abnormalities [305,306]. It is connected to the drop in adenosine triphosphate
levels. Since it produces ATP, a source of chemical energy for cells, the mitochondria are
considered a cell powerhouse. ROS are produced in cells with defective physiology because
impaired mitochondrial function lowers the quantity of ATP. Due to their high metabolic
activity and reliance on aerobic metabolism, the physiology of neurons is severely affected
by any mitochondrial dysfunctioning [307–309]. The pathogenesis of PD occurring due to
dysfunctional mitochondria and its related molecular pathways is depicted and explained
in Figure 12. Norberg et al. [310] have shown that mitochondria are also essential for con-
trolling apoptosis. Mutations associated with PD may lead to mitochondrial dysfunction.
Prefibrillar α-syn oligomers that were soluble displayed a number of the mitochondrial
dysfunctional characteristics seen in PD cell models, including increased cytochrome c
release, altered potential of the membrane, dysfunction of mitochondrial complex I, and
disrupted Ca2+ homeostasis [311]. A lipid peroxidation byproduct called 4-hydroxynonenal
encourages intracellular buildup, extracellular vesicle ejection with toxic α-syn, and subse-
quent incorporation into nearby neurons, which leads to PD development in rat and mouse
models [312]. Recently, some in vitro and animal studies have reported that α-syn-induced
mitochondrial ROS generation is enhanced by high-temperature requirement serine pro-
tease A2 (HtrA2) knockdown, which activates microglial cells, suggesting the possible role
of HtrA2 in PD pathogenesis [313,314]. However, clinical validation needs to be established
to confirm the role of HtrA2 in PD.
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PD etiology. The downregulation of DJ-1 may cause the susceptibility of DAergic neurons 
brought on by the injection of subtoxic MPTP, which also increases the toxic effects of 
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Figure 12. An illustration of the potential cellular mechanism of dysfunctional mitochondria in the
pathogenesis of PD. Impaired biogenesis of mitochondria, elevated generation of ROS, impaired
mitophagy, compromised trafficking, malfunction of the ECT, deviations in mitochondrial dynamics,
calcium imbalance, or combinational processes all contribute to mitochondrial dysfunction linked
to the pathogenesis of PD. The possible complicated interaction of the numerous processes leads to
a vicious cycle of escalating cellular dysfunction, which in turn causes the neurodegeneration that
underpins and accelerates the pathogenesis of PD.

In vitro and in vivo mitochondrial fragmentation and neural death are caused by
PD-associated VPS35 gene mutation, which encodes a crucial retromer complex component
owing to enhanced binding to DLP1 [136]. The mt-DNA transcription factor expression
is declined in the SNPC of patients with idiopathic PD. Real-time PCR study shows that
PD patients have fewer transcription/replication-related molecules and fewer replicas of
mt-DNA [315]. In SH-SY5Y, silencing the GBA1 gene or inhibiting the GCase 1 enzyme
functioning leads to mitochondrial malfunction as well, resulting in decreased respiratory
chain activity in the mitochondria, in addition to mitochondrial depolarization and frag-
mentation linked to elevated ROS levels [316]. PD neurotoxic MPTP is converted into its
active metabolite MPP+ which is then transported into DAergic neurons [317]. MPP+ is
regarded as a mitochondrial complex I inhibitor that limits ATP synthesis and induces
the formation of oxides and nitrites, ultimately destroying DAergic neurons in the mice
model of PD [318,319]. Mice become more susceptible to MPTP when DAergic neurons
have mitochondrial complex I partial deficiency [320]. Potential interactions exist between
genetic risk factors and mitochondrial dysfunction brought on by environmental neurotox-
ins in PD etiology. The downregulation of DJ-1 may cause the susceptibility of DAergic
neurons brought on by the injection of subtoxic MPTP, which also increases the toxic effects
of mutant α-syn [321]. A long non-coding RNA stimulates the expression of LRRK2, which
aids in promoting MPTP-induced parkinsonism [322].
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3.6. Oxidative Stress

The electron transport chain (ETC) within mitochondria is a primary source of ROS,
making it a pivotal target for the adverse effects of ROS. Mitochondria possess a defense
mechanism to neutralize ROS and repair ROS-induced damage, acting as a protective
barrier against oxidative harm to cells. ROS formation and the subsequent release of
proapoptotic proteins from the intermembrane space of mitochondria can activate dis-
tinct apoptotic pathways, as illustrated in Figure 13 [323]. It is strongly proposed that the
formation of ROS causes oxidative stress, which is a factor in the neurodegenerative pro-
cesses [324,325]. The primary site for ROS generation is mitochondrial complex I [326,327].
ROS generation explicitly damages complex I, leading to its inhibition and further ampli-
fying ROS production [325]. Under normal circumstances, defense mechanisms work to
mitigate the negative impacts of ROS. However, when the balance between ROS genera-
tion and antioxidant defense is disrupted, excessive ROS production results in oxidative
damage [156].
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tations or modified protein expression. Free radical production and protein aggregation, particularly
that of α-syn, are exacerbated by mitochondrial failure. Additionally, the chemical breakdown of
DA can contribute to reactive DA quinones, which raise the amounts of ROS. Excessive oxidative
stress leads to compromised UPS performance, which in turn is responsible for damaged/ misfolded
protein degradation, further compromising cell viability. All of these distinct molecular mechanisms
associated with oxidative stress are interlinked in the DAergic neuronal selective degeneration.

Excessive ROS can inflict damage on all macromolecules, including lipids, proteins,
and nucleic acids, as well as enzymes, leading to a significant decline in physiological
activity. A metabolomic study by Lan et al. [328] revealed a link between Parkinson’s
disease (PD) and dyslipidemia, suggesting that the stimulation of sphingolipid metabolic
pathways may also contribute to PD etiology. Jacquemyn et al. [329] emphasized the
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substantial role of lipids in PD genesis, highlighting connections between the functions
of two genes associated with the disease through neural lipid metabolism. In the CNS,
DAergic neurons are particularly susceptible to oxidative stress, ultimately culminating
in cell death and the pathophysiology of PD [157]. Changes in calcium homeostasis and
inflammatory responses are two additional pathways that may be influenced by oxidative
stress [330]. Notably, one of the elements triggering redox conditions in specific brain
regions may be DA itself. Experimental lesioning of DAergic neurons using one of the
DA derivatives, 6-hydroxydopamine [331], indicates that while synaptic vesicles efficiently
sequester DA, cytosolic DA can inflict damage on neurons [332]. Consequently, a wealth
of evidence underscores the significant impact of oxidative stress on the pathophysiology
of PD.

3.7. Nitrosative Stress

Nitric oxide (NO) is one of the reactive nitrogen species (RNS) that have been im-
plicated in degeneration pathways [333]; by encouraging α-syn misfolding and boosting
the buildup of α-syn aggregates, RNS increases the rate at which the disease progresses.
The sheer volume of s-nitrosylated proteins accumulating in LB clusters indicates that
once activated, RNS is speeding up the aggregation of several proteins essential for the
ongoing existence and functioning of neurons in addition to α-syn [309]. Research on
postmortem studies in PD patients has revealed signs of significant nitrosative stress in
addition to oxidative damage [334]. Tyrosine residues on α-syn that have been nitrated
result in increased aggregation and decreased proteasomal breakdown [335]. S-nitrosylated
Parkin is more prevalent in the brain of PD patients, and this version of Parkin has lower
enzymatic performance and fewer neuroprotective properties [336]. Elevated amounts of
s-nitrosylated protein disulfide isomerase (PDI), which plays a role in protein misfolding
and neurodegeneration, have been found in susceptible neurons in PD brains. PDI loses
some of its neuroprotective properties when it is s-nitrosylated. Additionally, NO and
superoxide can combine to generate peroxynitrite, which possesses higher cellular toxicity
potential and worsens the consequences of oxidation [337].

3.8. Apoptosis

Apoptosis is one of the primary causes of neural cell death in PD [325,338,339]. Cell
shrinking, chromatin condensate, membrane blebbing, and chromosomal and nuclear
DNA fragmentation are all signs of apoptosis [340]. Additionally, postmortem and in vitro
studies that showed higher expression of active caspase-3 in the SNPC have validated
apoptotic significance in the etiology of PD [341–343]. Activating caspases is a key step in
the progressive sequence of events known as apoptosis [344,345]. Two distinct mechanisms
might start caspase activation: the intrinsic pathway, often known as the mitochondrial
pathway, and the extrinsic pathway [346,347]. The intrinsic apoptotic pathway is assumed
to be the leading cause of neural death [348,349]. The buildup of iron hinders the function
of insulin-like growth factor 2 (IGF2) and the transcription factor, zinc finger protein 27
(ZFP27). This, in turn, diminishes autophagy induced by Microtubule-associated protein 1
light chain 3 (LC3), ultimately reducing dopaminergic (DAergic) neurons in mice models
of PD. These molecular processes contribute to the progression of PD [350].

It is still unknown how the several pathogenic mechanisms associated with PD, includ-
ing malfunctioned mitochondria and α-syn accumulation, engage with each other, resulting
in apoptotic cell death. In SHSY cells overexpressing A53T, either the wild-type or mutant
form of α-syn, and in mitochondria of isolated rat brains, it has been observed that α-syn
localizes on the mitochondrial membrane. In in vitro systems, it has been proposed that this
interaction causes oxidative stress and cytosolic release of cytochrome c [351]. Cytochrome
c causes mitochondrial-aided apoptosis after entering the cytoplasm and interacting with
prosurvival, antiapoptotic proteins in vivo [351,352]. The injection of Cu/Zn SOD prevents
apoptosis from occurring, while NGF deficiency causes DNA breakage and enhances ROS
generation in sympathetic neurons [353]. According to Wang et al. [354], supplementing
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pretreatment neural stem cells with glial cell line-derived neurotrophic factor (GDNF) at 1
and 6 h showed defense against oxygen–glucose starvation, pointing to the neuroprotective
effect of GDNF in neurodegeneration in a rat model of PD.

3.9. Neuroinflammation

Neuroinflammation is characterized as an inflammatory response of brain tissue
caused by immune cells and the mediators that they release, such as chemokines, cytokines,
ROS, and additional secondary transmitters [355–358]. Neuroinflammation is also caused
by environmental factors and genes which significantly impact immune system activation
and modification. Microglial activation is linked to the occurrence of α-syn pathological
conditions, which can be triggered by inflammation.

Neurotoxicity ensues from the release of detrimental proinflammatory cytokines, no-
tably interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), by activated microglia.
This inflammatory response, coupled with the generation of free oxygen radicals, con-
tributes to the harmful effects on neural tissues. The combined actions of these activated
microglia-derived factors can lead to cellular damage and dysfunction, exacerbating the
neurodegenerative processes associated with various neurological disorders [359,360]. Mis-
folded α-syn and other inducers, like proinflammatory bacterial byproducts, can activate
microglia [361,362]. The antigen presentation to T cells by microglia, which is dependent
on major histocompatibility complex type II (MHCII), is another way that T cell-mediated
malfunctioning actively contributes to neuronal cell death [363,364]. B cells are crucial for
adaptive immunity and may have a part in PD etiology. T helper cells induce B cells to
develop into plasma cells, which produce immunoglobulins visible in PD patients’ brain
tissue with neurodegeneration [365,366]. Molecular mechanisms of neuroinflammation in
PD pathogenesis are displayed in Figure 14.
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the brain contribute to neuroinflammation. α-syn aggregation can interfere with the homeostatic
functioning of neurons, astrocytes, microglia, or endothelial cells and can cause a rise in receptor
response and the release of chemokines and proinflammatory cytokines. Microglial cells shift from the
resting state to the activated M1 microglia, and they release proinflammatory cytokines that aid in the
degeneration of DAergic neurons. Furthermore, in cross interactions with astrocytes and microglia,
neuronal failure can produce α-syn, ATP, and matrix metalloproteinase-3 (MMP-3), amongst other
substances, intensifying the toxic loop of neuroinflammation. Resting microglia are activated to M2
microglia by IL4 and IL13, which then downregulate M1 functionality by releasing IL10 cytokines,
which have an anti-inflammatory effect on the CNS. The brain parenchyma is inhabited by CD4+
& CD8+ T cells, and these mediators or the dearth of their effective recovery mechanisms, further
exacerbate the proinflammatory state.

3.10. Immune System Deregulation

Research evidence suggests that the immune system also contributes to the onset of
PD. Proinflammatory cytokines like IFN-γ, IL-6, IL-1, and TNF-α are increased in both
the CSF and the brain of PD patients postmortem [367–369]. Numerous investigations,
including those using MPTP, 6-OHDA, and rotenone in the rat model of PD, have shown
microglial activation caused by neurotoxins in PD models [370–372]. The immune system
and α-syn are closely related [373]. Activation of microglia also occurs in the striatum of the
rat model of PD because of α-syn overexpression, along with an increase in IL-1β, TNF-α,
and IFN-γ (Figure 8) [374]. The absence of IFN-β activity is linked with higher amounts
of LB that contain α-syn, a decrease in DAergic neurons, and disruption of DA signaling
in the SNPC. On the other hand, in a familial PD mice model, IFN-β overexpression
prevents DAergic neurons’ death [375]. Human SNPC neurons exhibit MHCI, and DAergic
neurons produced from human stem cells can induce it. To activate T cells and trigger
autoimmune reactions, foreign ovalbumin is absorbed by DAergic neurons that produce
an antigen derived from it. This causes DAergic neurons to die [376]. Mhc2ta genetic
allelic variations control the expression of the MHCII, which regulates the activation of
microglia and DAergic neurons caused by α-syn [377]. MHC-II expression, the entry
of proinflammatory peripheral CCR2+ monocytes into the SNPC, and the consequent
degeneration of DAergic neurons are all facilitated by α-syn [378]. PINK1 insufficiency
functions as an early regulator of neuronal innate immunity, since PINK1/Parkin might
lower inflammatory circumstances that initiate immune response-eliciting pathways by
cutting mitochondrial antigen presentation in the mouse model of PD [379,380]. The
pathogenesis of people with sporadic PD forms and LRRK2 G2019S mutations includes the
immune system and endocytosis [381]. The differentiation of immunological homeostasis
and bone marrow myelopoiesis may be affected by LRRK2 G2019S [382]. Finally, we can say
that parkinsonism is caused by an immune system that is out of balance or dysregulated
and that PD is an autoimmune condition.

3.11. Non-Motor Pathologies in PD

Non-motor symptoms such as depression, constipation, sleep difficulties, and hypos-
mia can sometimes precede many of the motor symptoms of PD over the years. These
non-motor characteristics are seen in a wide range of PD patients, including those with
hereditary PD etiology [383]. More than 90% of PD patients experience hypo- or anosmia,
which is typically bilateral and may appear before dopamine deficiency-related motor
symptoms manifest [384]. According to Braak et al. [385], the evolution of Lewy bodies’
dispersion and spread from the lower medulla in PD may be reflected in the emergence of
hyposmia and sleep behavior disorder. On the other hand, cholinergic denervation, the
advent of cognitive impairments, and dementia may potentially be connected to olfactory
dysfunction in the later stages of Parkinson’s disease [386,387].

One of the main categories of PD’s non-motor indications is ocular abnormalities.
Although it might be difficult to interpret, blurry vision is frequently linked to PD. Ocular
symptoms, including double vision, fuzzy vision, wet eyes, and visual hallucinations, are
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the most frequently reported ones [388–390]. The fact that ophthalmological conditions
raise the risk of falls and injuries associated with falls together with postural and gait
instability highlights the potential impact [391]. From the prodromal premotor phase to
the late stages of the disease, neuropsychiatric traits, including depression and anxiety, are
present in PD; these features are correlated with the motor state, with anxiety being more
prevalent during off periods. Anxiety and depression frequently coexist, and understand-
ing the anxious depressive phenotype is crucial for efficient treatment [392,393]. In people
with PD, constipation may result from the autonomic nervous system not functioning
properly, which causes the intestines to function slowly and cause constipation [394]. Un-
derstanding the intrinsic and extrinsic mechanisms of constipation linked to PD addresses
the pathophysiology of constipation in PD [395].

3.12. Non-Dopaminergic Pathologies in PD

The brain’s noradrenergic system distributes the neurotransmitter noradrenalin across
the brain via a network of efferent projections. It is essential for cognitive functions and may
be involved in both the motor and non-motor symptoms of PD. In PD pathophysiology,
a profound loss of noradrenergic circuits has been observed [396,397]. The noradrenergic
system also has an anti-inflammatory and neuroprotective impact on dopaminergic de-
generation. Noradrenergic damage can therefore influence the course of the disease [398].
Kinnerup et al. [399] stated that PD rest tremor is linked to noradrenaline. Noradrenaline
depletion appears in the thalamus and locus coeruleus of patients without tremor. Two of
the most typical features of PD are a loss of noradrenergic neurons in the locus coeruleus
(LC) and α-syn pathology. Even though noradrenergic dysfunction is linked to PD non-
motor symptoms, a preclinical study indicates that the loss of LC norepinephrine, and,
consequently, its immune-modulatory and neuroprotective activities, may exacerbate or
even accelerate the progression of PD [400].

Other brain regions, such as the midbrain raphe nuclei, also exhibit significant Lewy
pathology, which may be a factor contributing to non-motor symptoms. Furthermore,
during the premotor stage of PD, there is a disruption of the serotonergic system, which
controls mood and emotional pathways [401,402]. Wilson et al. [403] stated that dopamin-
ergic pathology and motor symptoms developed after serotonergic disease were present
in premotor A53T SNCA carriers and were linked to PD. This emphasizes how seroton-
ergic pathology may have an early role in the development of Parkinson’s disease. Their
research showed promise for using serotonin transporter molecular imaging to visualize
the premotor pathology of Parkinson’s disease in vivo. By its interactions with receptor
proteins, the excitatory neurotransmitter glutamate is responsible for a significant amount
of the disruption of normal basal ganglia functioning. Glutamate receptors are linked to the
altered neurotransmission in PD and have been shown to have a role in the control of neu-
ronal excitability, transmitter release, and long-term synaptic plasticity [404]. An excess of
extracellular glutamate results in abnormal synaptic signaling, which causes excitotoxicity
and neuronal death. Furthermore, there is a high correlation between neuroinflammation
and glia response with extra synaptic glutamate transport. Glutamate-induced excitotoxi-
city is primarily associated with glial cells’ compromised capacity to absorb and react to
glutamate; this is believed to be a typical hallmark of PD [33,405]. As such, they are seen
as novel targets for enhancing the treatment approaches employed in the management of
PD [406,407].

4. Conclusions

Parkinson’s disease (PD) poses a significant global health challenge, affecting millions
of individuals worldwide. Despite extensive research and promising treatment avenues,
PD remains incurable, and several aspects of the disease, including its exact etiology and
pathogenic mechanisms impacting neurons, remain poorly understood. The multifaceted
nature of PD pathogenesis involves a complex interplay of risk factors such as aging,
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gender, ethnicity, environmental influences, and genetics. The interaction of these factors
contributes to the intricate landscape of PD development.

Genetic and molecular mechanisms play pivotal roles in PD, with mutations in key
genes—SNCA, LRRK2, PINK1, Parkin, DJ-1, VPS35, and GBA1—being implicated in the
disease. The pathogenic pathways associated with these genetic mutations encompass mis-
folded protein accumulation, oxidative stress, mitochondrial dysfunction, energy deficits,
excitotoxicity, cell-autonomous processes, prion-like characteristics of α-synuclein, and
malfunctioning protein clearance pathways.

Cell death emerges as the ultimate outcome of these interconnected pathogenic events,
including mitochondrial failure, oxidative and nitrosative stress, and neuroinflammation.
Abnormal accumulation of α-synuclein is identified as a central player in PD pathophysiol-
ogy, triggering cascades of inflammatory processes and heightened neuronal stress. The
diverse genetic mutations disrupt normal cellular and molecular mechanisms, giving rise
to distinct pathogenic pathways culminating in PD.

Recognizing the substantial overlap between genetics and the molecular mechanisms
of PD is crucial. Establishing the link between the genetic basis and associated molecular
pathways enhances our comprehension of PD pathology. This knowledge contributes not
only to the formulation of preventive treatments and the quest for a cure but also holds
the potential for optimizing clinical trial designs and developing improved therapeutic
strategies. A personalized approach based on genetic and molecular insights may pave the
way for more effective and tailored interventions, minimizing adverse effects and offering
hope for the better management of PD.
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