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Abstract: Calcium is an important second messenger that is involved in almost all cellular processes.
Disruptions in the regulation of intracellular Ca2+ levels ([Ca2+]i) adversely impact normal physi-
ological function and can contribute to various diseased conditions. STIM and Orai proteins play
important roles in maintaining [Ca2+]i through store-operated Ca2+ entry (SOCE), with STIM being
the primary regulatory protein that governs the function of Orai channels. STIM1 and STIM2 are
single-pass ER-transmembrane proteins with their N- and C-termini located in the ER lumen and
cytoplasm, respectively. The N-terminal EF-SAM domain of STIMs senses [Ca2+]ER changes, while
the C-terminus mediates clustering in ER-PM junctions and gating of Orai1. ER-Ca2+ store depletion
triggers activation of the STIM proteins, which involves their multimerization and clustering in
ER-PM junctions, where they recruit and activate Orai1 channels. In this review, we will discuss the
structure, organization, and function of EF-hand motifs and the SAM domain of STIM proteins in
relation to those of other eukaryotic proteins.
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1. Introduction

Calcium (Ca2+) is a versatile intracellular messenger that plays a crucial role in a
myriad of cellular processes such as fertilization, cell differentiation, muscle contraction,
cell motility, cellular metabolism, synaptic plasticity, RNA transcription, and secretion [1–8].
Abnormal Ca2+ signaling leads to severe pathological conditions such as ischemia, stroke,
and autoimmune diseases, as well as immune deficiency. It has also been implicated in
neurological disorders such as Alzheimer’s, Huntington’s, and Parkinson’s disease [9–11].
The mechanisms of intracellular Ca2+ signaling are diverse in different cell types, involv-
ing a number of molecular signaling components such as receptors, pumps, and effector
molecules that are organized into functionally distinct combinations to mediate Ca2+ sig-
naling as required for cell function [2]. Specific Ca2+ sensor proteins can transduce the
initial Ca2+ signal into the regulation of multiple cellular functions. For example, local Ca2+

near the Orai1 channel is sensed by calmodulin (CaM) and utilized to regulate a variety of
signaling processes, such as NFAT-dependent gene expression. On the other hand, global
Ca2+ signals can be sensed by a different set of Ca2+ sensors and used to regulate other
Ca2+-dependent cell functions. The magnitude and frequency of the Ca2+ signal, as well as
its spatial organization, play key roles in the type of Ca2+ sensor involved.

As such, cells have several mechanisms to regulate cytosolic [Ca2+]i: (i) plasma mem-
brane calcium channels mediate extracellular Ca2+ influx into the cytosol; (ii) sequestration
of cytosolic Ca2+ into the intracellular organelles, such as the ER and mitochondria, via Ca2+

pumps and channels; (iii) extrusion of Ca2+ from the cytoplasm to the extracellular milieu
via plasma membrane Ca2+ pumps and exchangers [12]. In unstimulated or resting cells,
[Ca2+]i is maintained at a concentration between 10 and 100 nM. Following cell stimulation,
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[Ca2+]i can increase several folds depending on the stimulus intensity and type of cells [13].
Cells are equipped with the ability to sense and respond accordingly to physiologically
low and relatively high stimulus intensities [12,14]. The Ca2+-binding proteins (CaBPs)
function as Ca2+ buffers and sensors that respond to changes in the Ca2+ levels and activate
a cascade of downstream effector molecules to transduce the signal into specific responses
and prevent unregulated increases in [Ca2+]i. The Ca2+-binding affinities in these proteins
are determined by specific motifs and domains [15,16].

Store-operated calcium entry (SOCE) is a ubiquitously present Ca2+ entry mechanism
that regulates a variety of physiological functions [17,18]. SOCE was first identified by
Putney, wherein depletion of ER-Ca2+ stores results in the activation of plasma membrane
Ca2+ channels [19]. The cascade of steps that lead to SOCE starts with the stimulation of
G-protein coupled receptors (GPCRs), activation of phospholipase C (PLC), and conversion
of phosphatidylinositol-4,5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol
trisphosphate (IP3). IP3 binds to the IP3 receptor (IP3R) present on the ER membrane
and elicits Ca2+ release from the ER into the cytoplasm, a process known as ER-Ca2+

store depletion [20,21]. While ryanodine receptors can contribute to IP3-induced Ca2+

store depletion via Ca2+-induced Ca2+ release or via IP3-independent mechanisms, this
review focuses on the IP3R-mediated mechanism. SOCE is primarily dependent on the
Ca2+-selective plasma membrane channel family, Orai, comprising Orais1, 2, and 3, and
multi-domain Ca2+-binding proteins, stromal interacting molecules STIM1 and STIM2,
which are single-pass transmembrane (TM) proteins in the ER membrane, with N-terminal
EF-hands in the ER lumen that sense the decrease in [Ca2+]ER. STIM1 and Orai1 form
the elementary units for SOCE, with the Orai1 channel mediating the Ca2+ selective Ca2+

current (ICRAC). In unstimulated or resting cells, STIM1 is diffused throughout the ER
and also tracks along the microtubules by interacting with the EB1 protein. Orai1 is freely
diffused in the plasma membrane. Following ER-Ca2+ store depletion, STIM1 loses the
Ca2+ bound to its canonical EF (cEF)-hand, which triggers a conformational change both
in its N and C termini, causing the protein to dimerize and translocate to the ER-plasma
membrane junctions (ER-PM junctions). Orai1 is recruited into these junctions and gated
via interactions with STIM1 [22–24]. On the other hand, STIM2 is already pre-clustered in
the ER-PM junctions in unstimulated/resting cells, which further increases following ER-
Ca2+ store depletion. STIM2 also recruits and activates Orai1, albeit with lower efficiency
and at different stimulus intensities when compared to STIM1 [17,25,26] (Figure 1).
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here. STIM proteins are single-pass ER-TM proteins with their N-terminal domains (dashed boxes)
within the ER lumen. The NMR structures for the N-terminal EF-SAM of STIM1 (PDB: 2K60 [27])
and STIM2 (PDB: 2L5Y [28]) are shown in dashed boxes. The N-terminus contains a canonical
EF-hand (cEF; magenta), a non-canonical EF-hand (nEF; yellow), and a SAM domain (blue). GPCR,
G-protein coupled receptor; PLC-ß, phospholipase C-ß; PIP2, phosphatidylinositol 4,5-bisphosphate;
DAG, diacylglycerol; IP3, inositol 1,4,5-trisphosphate; IP3R, IP3 receptor; ER, endoplasmic reticulum;
SERCA, Sarco-ER Ca2+; TG, thapsigargin.

There is considerable interest in elucidating the structure-to-function relationship of
STIM and Orai proteins, judging from the large number of publications in the past two
decades. This review will discuss the N-terminal domain of the STIM proteins, elabo-
rating on the structural organization and evolutionary significance of the EF-hand and
SAM domains. Even though both STIMs can also interact with Orai2 and Orai3, this
review will only focus on STIM–Orai1 interactions while briefly describing the evolution of
Orai channels.

2. Components of Store-Operated Calcium Entry (SOCE)

Orai1 was discovered in an RNAi-based screen of SOCE components in Drosophila
S2 cells and linkage analysis of patients with severe combined immunodeficiency [29–32].
Almost all invertebrates, such as nematodes, fruit flies, mosquitoes, sea urchins, and seq
squirts, have a single Orai protein. This evolved into Orai1 and Orai2 in vertebrates, as
shown for fish and frogs. Orai3 is formed via duplication of the Orai1 gene and is exclusive
to mammals [29,33,34]. Unlike Orai1, the knockdown of Orais 2 and 3 did not abrogate
SOCE and ICRAC. Nonetheless, both Orais contribute to other (non-SOCE) types of Ca2+

influx [34]. All three Orais show near complete conservation within the pore-lining TM1
and highly identical TMs 2 to 4 but diverging cytosolic N- and C-termini sequences. There
are 34% and 46% sequence similarity in the N- and C-termini of Orais 1 and 3. Additionally,
Orai3 exhibits a longer third extracellular loop than Orais 1 and 2 [33–35]. Orai1 has
two isoforms, Orai1α (longer, approximately 33 kDa) and Orai1β (lacks 63 aa in the
N-terminus). Orai1β arose from an alternative translation initiation site in Orai1α and
did not contain a poly-arginine sequence suggested to mediate Orai1 interaction with
plasma membrane PIP2. As such, Orai1β exhibited faster mobility than Orai1α, but it was
unclear how that would impact channel function since both isoforms generated similar
magnitudes of SOCE and ICRAC. Interestingly, Orai1α and Orai1β form only homomeric
CRAC channels [33,34,36]. In a study using a weaker TK promoter to drive Orai1 expression
in mouse embryonic fibroblasts from Orai1−/− mice (Orai1-KO MEFs), both isoforms
restored ICRAC in Orai1-KO MEFs to similar levels in wild-type MEFs. Orai1α-mediated
ICRAC exhibits a faster CDI as rapid inactivation was observed with EGTA (slower chelator)
but not BAPTA (fast chelator). However, no difference was observed for Orai1β-mediated
ICRAC. Both Orai1α and Orai1β supported ISOC when co-expressed with TRPC1 and STIM1,
but only Orai1α contributed to IARC (arachidonic acid-induced current). The authors
proposed that mammalian evolution exploited the process of alternative translation start
sites to generate different isoforms of the same channel with distinct modes of regulation
and contribution to cellular processes [33,34,37].

Orai arose earlier than STIM during evolution and may have initially contributed to
non-IP3-mediated calcium influx. When STIM arose as a complement to IP3/IP3R signaling,
the existing Orai channels may have been co-opted for SOCE [12,38–40]. The key residue
controlling Ca2+ selectivity (E106 in Orai1) is conserved in many species, suggesting that
Orai proteins have long functioned as highly Ca2+-selective channels [12]. TBlastN searches
using Caenorhabditis elegans Orai protein revealed a putative cation transporter (PfuCaT)
from the genomic sequence of Pyrococcus furiosus, with homologs of PfuCaT also present in
Pyrococcus horikoshii and Thermococcus kodakaerensis. All three cocci are hyperthermophilic
archaea found in isolated environments with high temperatures. While Orai has four TMs,
PfuCaT has five, with TM1 linked by a large hydrophilic loop to the rest. Nonetheless,
PfuCaT shares a highly conserved signature motif with two internal repeats containing
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two key residues essential for Ca2+ selectivity (similar to E106 and E190 in Orai1). Since
there is limited sequence similarity outside of the signature motif, PfuCaT is likely to have
different regulatory mechanisms than Orai. Notably, sequences similar to the coiled-coil
ezrin–radixin–moesin (ERM) domain of STIM1 have been found in hyperthermophilic
archaea genomes, suggesting that both Orai and STIM proteins may have adapted existing
domains to support SOCE during the transition to metazoans [29,41]. While Orai proteins in
nematodes and insects have a long N-terminus and short TM3-TM4 loop, those in ascidians,
non-mammal vertebrates, and mammals have a short N-terminus but longer TM3-TM4
loop. For example, the N-termini of C. elegans and Drosophila melanogaster Orai1 have 119 aa
and 160 aa c.f. 66 aa in Ciona intestinalis (sea squirt). Orai3, which is mammalian-specific,
has the longest TM3-TM4 loop (72 aa) c.f. C. elegans (13 aa) and D. melanogaster (9 aa). The
author proposed that changes in the lengths of the N-terminus and TM3-TM4 loop reflect
functional evolutionary changes between species [29].

STIM proteins were discovered by two independent groups using RNAi screens
to identify SOCE components. Roos et al. identified the role of STIM in SOCE by
knocking down the expression of STIM in lower eukaryotes, such as in fruit flies and
D. melanogaster [42]. The second group used gene silencing techniques to identify both
homologs of STIM (STIMs 1 and 2) that are involved in sensing ER-Ca2+ store depletion
and SOCE in HeLa cells [43]. In higher organisms such as vertebrates, starting from fishes,
STIM proteins have evolved into two types: STIM1 and STIM2 [12]. While gene localization
studies indicate that STIM1 and STIM2 are localized in chromosomes 11 and 4, respectively,
both proteins share high sequence and structural similarity. The functional regions of
vertebrate STIM consist of identical domains such as the N-terminal EF-SAM domain in
ER lumen, a single-pass ER-TM, followed by cytosolic coiled-coil domains, a STIM-Orai
activating region (SOAR), a Serine/Proline-rich (in STIM1) or Proline/Histidine-rich (in
STIM2) domain, and a polybasic domain in the C-terminus. Nonetheless, these homologs
have evolved to perform different functions. STIM1 has a high Ca2+-binding affinity en-
dowed by its canonical EF (cEF) hand and requires substantial ER-Ca2+ store depletion
to be activated. Conversely, the cEF-hand of STIM2 has a lower affinity that enables the
protein to sense smaller levels of ER-Ca2+ store depletion. The sensing of sub-threshold
stimuli by STIM2-cEF-hand results in the immobilization of STIM2 clusters within the
ER-PM junctions in resting cells. As such, both proteins behave differently in resting cells
where STIM2 is already pre-clustered in the ER-PM junctions but not STIM1. Moreover, the
SOAR of STIM2 is a weaker activator of Orai1 when compared to STIM1. STIM2 contributes
to constitutive or basal Ca2+ entry in resting cells by interacting with and gating Orai1.
Notably, pre-clustered STIM2 can recruit STIM1 through the C-terminal coiled-coil domain
interaction in the cytoplasm and enhance STIM1/Orai1 coupling in cells with relatively
high [Ca2+] in the ER lumen ([Ca2+]ER), such as in resting cells or when cells are stimulated
with relatively low [agonist] [26,44–47]. Therefore, the N-terminal region of STIM proteins
plays an important role in transducing stimuli into SOCE activation. The three-dimensional
structures reported for human STIM1 (PDB: 2K60) and STIM2 (PDB: 2L5Y) contain a canon-
ical and a non-canonical EF-hand motif followed by the sterile-α-motif (SAM) [27,28]. In
the following sections, we will discuss the structural organization of EF-hand motifs and
SAM domains present in STIMs in relation to other CaBPs and multi-domain-containing
eukaryotic proteins.

3. EF-Hand Motifs in Calcium-Binding Proteins: Overview and Properties

The EF-hand motif was first identified by Kretsinger while determining the struc-
ture of parvalbumin [48]. This motif is ~30 amino acids in length and folds into two
α-helices (entering (E) and exiting (F) helices), which are almost perpendicular to each
other in Ca2+-bound form. These helices are connected by a 12-residue Ca2+-binding loop
that coordinates Ca2+ by attaining a pentagonal bipyramidal geometry [48]. This motif
has been identified in several CaBPs, including ELC, RLC, troponin C, and CaM. About
156 subfamilies of EF-hand motifs and 3000 EF-hand-related entries can be found in the
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NCBI Reference Sequence Database [49,50]. Intriguingly, some CaBPs encompass only
EF-hand motifs (e.g., CaM [51], troponin C [52], calumenin [53]), while in other proteins,
EF-hand motifs are part of a large multi-domain protein. In those latter proteins, EF-hand
motifs are found either at the N-terminal, middle, or C-terminal region of the protein [49,54].
While EF-hands are associated with the SAM domain in STIM proteins, other EF-CaBPs
have cysteine protease, leucine zipper domain, and coiled coil domain associated with
it [27,28,55–57]. Two adjacent EF-hand motifs organized into a four-helix bundle domain
and occurring in pairs are known as the EF-hand domain, which is observed in many
proteins, including troponin C [52,58], calbindin D9k [59], and SCP [60]. A central hy-
drophobic core formed by domain packing of the E and F helices drives the dimerization
of EF-hand motifs [61,62]. An anti-parallel β-sheet established between the EF-hand loop
sequences additionally stabilizes its structural integrity, a common property that is present
in many EF-hand proteins [50,63]. The EF-hand domains are arranged into different
spatial conformations that primarily depend on the length of a linker region connecting
the two EF domains. For example, the four Ca2+-bound EF-hand motifs of calmodulin
(CaM) are arranged into two N and C-terminal EF-hand globular domains connected by a
linker [51,64]. The essential function of the EF-hand motifs is to translate the changes in the
local Ca2+ concentration into a physiological response. EF-hand motifs exhibit diversity in
order to achieve versatility with regards to structure, Ca2+-binding, conformations, and
domain organizations [61,65]. These motifs bind Ca2+ with dissociation constants (KD)
ranging from 10−9 to 10−4 M. The Ca2+ binding affinities vary among the EF-hand pro-
teins and primarily arise from different amino acids found in the loop region and their
intermolecular interactions with target proteins [63]. The EF-hand motifs possess diverse
metal ion bind properties and can bind other similar-sized cations, such as Mg2+, to form
a Ca2+/Mg2+ mixed site [66–68]. However, EF-hand motifs adopt different geometries
accordingly. Whereas Ca2+ is bound by seven ligands in the EF-hand loop arranged in a
pentagonal bipyramidal configuration, Mg2+ utilizes only six ligands to form an octahedral
coordination scheme [63,69].

3.1. Structural Response to Ca2+-Binding and the Stability

EF-hand motifs undergo conformational/structural changes upon coordinating Ca2+,
which is then recognized by target effector molecules to relay the Ca2+ signals. These Ca2+-
induced structural changes have been well documented for several CaBPs using biophysical
techniques, molecular dynamics simulation, and other structural characterization methods.
Based on the Ca2+-induced conformational changes, they are classified into two classes:
Ca2+ sensors and Ca2+ buffers. The key property of Ca2+ sensors is their ability to undergo
major conformational changes upon binding Ca2+ and present an open conformation
with their hydrophobic pocket exposed to the solvent, which serves as a target protein
recognition and interaction site [50]. Ca2+ binding-induced transition from a closed to
an open conformation has been reported for CaM [70], troponin C [71], and S100 family
members [72]. Ca2+ buffers are a small population of cytosolic Ca2+-binding proteins that
undergo very little/no conformational changes upon Ca2+-binding (e.g., calbindin (D9k,
D28k), α and β-parvalbumin, and calretinin [73,74]) and regulate short-lived Ca2+ signals
by modulating their spatial–temporal aspects [50,75]. The ability of these types of Ca2+-
buffers to modulate intracellular Ca2+ signaling depends on several factors, such as Ca2+

concentration, affinity to bind Ca2+ (and other similar metal ions), Ca2+-binding kinetics,
and mobility of both Ca2+-buffering proteins and the Ca2+ ions [75].

3.2. Diversity of the Amino Acids in the Loop Region

The loop region that connects the E and F helices of an EF-hand motif contains
12 amino acid residues that are arranged in a pentagonal bipyramidal fashion to coordinate
a single Ca2+ ion. The assignment of the amino acids in a typical EF-hand motif is as
follows: 1(+X), 3(+Y), 5(+Z), 7(−Y), 9(−X), and 12(−Z), where the numbers indicate the
position of amino acids in the loop that contribute oxygen (O) atoms to coordinate Ca2+
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and the axes within brackets indicate their tertiary geometry in a pentagonal bipyramidal
configuration. The Ca-O bond stabilizes this interaction, wherein the oxygen is provided
by the main-chain carbonyl oxygen atoms, side chains of the following amino acids such
as Asp, Asn, Glu, Gln, and Ser, and a water molecule [62,76]. Therefore, the loop regions
of EF-hand motifs are rich in polar and negatively charged amino acids. Of note, a web
of hydrogen bonds stabilizes the Ca2+ coordination sphere in addition to the Ca-O bond
and diminishes the electrostatic repulsion of the negatively charged amino acids in the
loop region [63]. The EF-loops of the Ca-binding proteins are divided into two types based
on length, amino acid composition, and tertiary geometry, namely canonical and non-
canonical loops. The canonical loop in an EF-hand motif contains 12-mer that contributes
to protein stabilization and helps to maintain the overall domain fold. The importance of
amino acid residues found at each position is discussed below. The first (X) and third (Y)
positions in an EF-loop participate in the stereochemical arrangement of the loop and are
occupied by Asp at a relatively higher frequency than any other amino acids. Similarly, Asp
occupies the 5th (Z) position in an EF loop. The 6th position in an EF-hand loop usually
contains Gly (96%), which provides an uncommon main chain conformation to bend the
loop at an angle of ~90◦ that enables the remaining Ca2+ ligands to occupy the coordinating
position [50,63,76]. Nonetheless, amino acids other than Gly have been reported in EF-hand
motifs of polycystin-2 (PC-2) and calumenin at the 6th position, wherein the presence of
amino acids other than Gly has been found to have a dramatic effect on the Ca2+-binding
affinity and protein folding [77,78]. The following hydrophobic amino acids, Ile, Val, and
Leu, occupy the 8th position in the loop, which enables the formation of a short anti-parallel
β-sheet that is crucial for dimerization of the EF-hand motifs to form an EF-hand domain.
The 9th position (−X) is preferably occupied by Asp, which chelates the Ca2+ ion through
hydrogen bonding or a bridging water group. In addition, the amino acid at the 9th position
initiates the F helix, which is stabilized by additional hydrogen bonding provided by the
side chain of the Glu at the 12th position (−Z) [50,62,76]. Hence, the amino acids present
in the EF-loop regions are of key importance in not only chelating metal ions but also
stabilizing the structure of the EF-hand motif.

Despite this, several EF hands have been reported to coordinate Ca2+ through an
uncommon mechanism and are called non-canonical EF (nEF) hands. These nEF-hand
loops vary in amino acid composition and length, contributing to the functional diversity
of EF-hands [63]. For example, nEF-hand motif 3 (EF3) of calcium and integrin binding
protein (CIB) possesses a similar length in the loop region but with Asp instead of Glu at the
12th position. This results in a shorter EF3 loop and has an impact on the Ca2+ coordination
sphere as well as ion selectivity [79–81]. In some nEF-hands, the Ca2+ coordination loop
is longer than a typical cEF-hand due to the insertion of additional amino acids (e.g., EF5
of ALG-2). In such EF-loops, Ca2+ is chelated only by the N-terminus of the loop and by
an additional water molecule [82]. Interestingly, some of the nEF-hands are shorter than
the normal length and contain only eleven residues within the loop. Examples of this type
are observed in the EF-hand of calpain domain VI, where the absence of the canonical 1st
and 3rd Ca2+-ligands is compensated by oxygens contributed by the main chain carboxyl
groups and water molecules [83].

3.3. Organization of EF-Hands in STIM Proteins

The N-terminal region of STIM proteins, consisting of nEF and cEF motifs as well as
the SAM domain, share high sequence homology and similar domain architecture. Studies
have reported that the N-terminal of STIM1 plays a crucial role in SOCE, as mutations
in the EF-hands or SAM show major differences in physiological function [18]. Purified
recombinant EF-SAM region of STIM1 elutes as a dimer or oligomer in the absence of Ca2+.
However, in the presence of Ca2+, the protein elutes in a monomeric form. Consistent with
this, secondary structure determination using far-UV CD spectroscopy indicates that the
EF-SAM exists in a random coil-like conformation, and STIM1 adopts an α-helical structure
upon binding Ca2+ [27,84]. This Ca2+-induced structural transition is a signature of many
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EF-hand-containing Ca2+-sensor proteins, where the Ca2+-induced structural transitions
play an important role in protein–protein interaction and target recognition [85,86]. In
addition, Ca2+-bound STIM1 (holo-STIM1) is more thermostable than Ca2+-free STIM1 (apo-
STIM1), indicating that Ca2+-binding imparts structural stability. Furthermore, STIM1 binds
Ca2+ with a relatively high affinity (KD ~200–600 mM) when compared to STIM2 [84,87].
Recent studies have shown that the GrpE-fused EF-SAM domain of STIM1 can bind ~5 Ca2+

ions/monomer as determined by isothermal titration calorimetry studies [88]. Consistent
with this, molecular dynamics simulations showed the clustering of Ca2+ ions around
the nEF-hand and SAM domain of STIM1, in addition to cEF-hand [89]. Interestingly, the
binding of Ca2+ at these additional sites is solely dependent on the cEF-hand’s Ca2+-binding
ability, as it is not detected in the case of the GrpE-fused D76A-EF-SAM mutant of STIM1
(which lacks the ability to bind Ca2+) [88]. Although STIM1 contains an EF-hand pair, the
NMR structure indicates that it coordinates only one Ca2+ at the cEF-hand [87]. The nEF
hand lacks the ability to bind Ca2+, which might be due to the presence of unconventional
amino acids in its loop region (1st, 3rd, 6th, and 9th positions).

Atomic-level structural information available for the Ca2+-bound EF-SAM domain of
STIM1 (PDB: 2K60) sheds light on the molecular details of the STIM1 [27]. The N-terminal
region of EF-SAM is organized into a single globular domain containing predominantly
α-helical secondary structural elements. The NMR structure shows a canonical helix–
loop–helix Ca2+-binding EF-hand, a non-canonical EF-hand motif (also known as hidden
EF-hand), and a SAM domain. Like other EF-hand pair-containing proteins, the cEF-hand
of STIM1 also pairs with the nEF-hand. Of note, the NMR structure of STIM1 indicates
that the second nEF-hand is stabilizing the cEF-hand via hydrogen bonding between the
respective EF-loop regions (C(O) Val83, Ile115: N(H) Val 83, Ile115) and forming a small
anti-parallel β-sheet, a property reminiscent of several EF-hand containing CaBPs [27,63,90].
In addition, Stathopulos et al. have reported that the STIM1 EF-hand pair shows high
homology (structural alignment) to the C-terminal of Ca2+-bound bovine CaM. Also, vector-
geometry mapping analysis measuring the interhelical angles between the E and F helices
indicates that STIM1 EF-hands exist in an open conformation similar to that observed
in Ca2+-bound CaM structures [27]. The open conformation of Ca2+-bound STIM1 may
expose hydrophobic surfaces that pack against the non-polar surfaces of the SAM domain.
However, as the apo-STIM1 structure has not been described yet, it is difficult to delineate
how STIM1 structurally transitions from its apo to holo form.

To understand the evolutionary significance of EF-hands among the STIM1 orthologs,
we performed multiple sequence alignment of STIM1 proteins from different species
(Figure 2). Briefly, human STIM1 (Uniprotkb ID: Q13586) was used as a reference sequence
and blasted against non-redundant sequences in the NCBI BLAST (protein blast)/Uniprotkb
(Swissprot) server [91,92]. About ~154 STIM1 protein sequences were collected from dif-
ferent animals, and the sequences were checked for redundancy. Since STIM1 protein
exists in different isoforms, only the longest isoform from each animal was used for mul-
tiple sequence analysis. We compared protein sequences from different animal species,
such as monkeys, tortoises, turtles, mole rats, bats, squirrels, and lemurs, for similari-
ties/differences. Only one unique representative protein sequence from each genus of
the above-mentioned animals was used in the alignment. About ~70 STIM1 orthologous
protein sequences were aligned using the MAFFT multiple sequence alignment tool [93].
MSA shows that STIM1 is an evolutionarily conserved protein among the metazoan tree
of the family and is absent in plants, fungi, and bacteria. In the lower metazoans such as
Arthropoda (D. melanogaster) and Nematoda (C. elegans, roundworm, etc.), STIM exists
as a single copy [12,94]. Previous studies have shown that the STIM family might have
undergone two rounds of gene duplication in vertebrates, one as early in the euteleostomi
lineage and another within the fish genome [94], to give rise to STIM1 and STIM2 that
perform different physiological functions. In the higher metazoans, such as in higher
vertebrates, STIM1 is an evolutionarily conserved protein and can be found in different
classes of Chordata phyla (i.e., mammals, birds, reptiles, amphibians, and fish). All STIM
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orthologs found in the Chordata phyla contain both the canonical and non-canonical EF
hands. Comparing the 12-amino acid sequences of the cEF-hand loop of human STIM1
with other animals within the Chordata phyla, it is evident that the Ca2+ coordinating
amino acids are 100% conserved except for the amino acid at the 7th position, wherein
Asp (D) is replaced by Asn (N) in reptiles and birds and Ser (S) in zebrafish. On the other
hand, STIM of the lower metazoans, such as D. melanogaster and nematodes, have Asn
(N) and Ser (S), respectively, at that position. As few variabilities in the amino acids have
been observed at the 4th, 10th, and 11th positions, the Ca2+-binding capacity of STIM1 is
well-preserved during the evolution from lower organisms to higher metazoans.

It is hypothesized that Ca2+ binding to the nEF hand might have been lost during
evolution. In our multiple sequence analysis (Figure 2), we found that the unusual amino
acids in the 1st, 3rd, 6th, and 9th positions of the Ca2+-binding loop region are highly
conserved in higher vertebrates. While few variations have been found in lower metazoans,
such as in D. melanogaster, C. elegans, and worms, these are not equivalent to the amino
acids observed in a typical Ca2+-binding cEF-hand such as in CaM or other canonical
EF-hand motifs. Therefore, STIM1 likely evolved to accommodate only one functional
Ca2+-binding EF-hand motif. Despite lacking the Ca2+ binding site, the nEF-hand motif
might play an important role in maintaining the integrity of the EF-hand pair by pairing
with the cEF-hand [27,88,89]. These observations indicate that the EF hands of STIM1 play
an important role in Ca2+ sensing by the protein and its regulation of SOCE.

Although the EF-SAM domain of STIM2 possesses a high sequence identity (~58%)
to STIM1, it differs in various biophysical and biochemical properties. In contrast to apo-
STIM1, STIM2 is a natively folded protein and exhibits an α-helical secondary structural
element in the absence of Ca2+, as determined by far-UV CD spectroscopy. Thermal
denaturation studies indicate that apo-STIM2 retains its secondary structure and exhibits a
higher melting temperature (Tm) when compared to apo-STIM1 [84]. Further addition of
Ca2+ leads to minor changes in the CD spectra of STIM2, akin to the properties of several
Ca2+-buffering proteins [75]. Although STIM2 does not undergo major conformational
changes upon Ca2+-binding (as observed for STIM1), Ca2+-induced conformational spectral
shifts were observed [84]. In addition, apo-STIM2 elutes at a slightly higher elution volume
than holo-STIM2. These results indicate that apo-STIM2 exists in a slightly extended form,
whereas holo-STIM2 is compact and well-folded. Furthermore, STIM2 binds Ca2+ with
apparently low-binding affinity (KD of ~0.5–0.8 mM [28,44,84]) (c.f. KD of ~0.2–0.6 mM for
STIM1 [84,87]).

The NMR structure of STIM2 EF-SAM (PDB: 2L5Y) reveals many interesting details
about the domain organization of STIM2 [28]. Similar to STIM1, STIM2 also contains a
Ca2+-binding cEF hand, a nEF hand, and a SAM domain. Despite lacking the Ca2+-binding
site, the nEF-loop stabilizes the cEF-loop through hydrogen bonding between N(H) of
Ile87 and C(O) of Ile119 to form EF-hand pairs. The tertiary structure of STIM2-EF-SAM is
negatively charged at pH 7, which is mainly contributed by the amino acids present in the
EF-hand pair. Like STIM1, the cEF-hand of STIM2 exists in an open conformation, which is
measured by the interhelical angles, which are about > 80◦. Because of this, STIM2 exposes
large hydrophobic surfaces contributed by the following amino acids in the cEF-hand,
namely Leu72, Ile75, His76, Met79, and Phe85. The amino acids from the nEF hand, such
as Met100, Lys103, Lys108, Leu112, Ile119, Leu124, and Trp128, equally contribute to the
hydrophobic patches. Together, the contribution of hydrophobic surfaces from the EF-hand
motifs serves as a dock for its interaction with the hydrophobic regions of SAM [28].
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Figure 2. Multiple sequence alignment of STIM1 homologs. Multiple sequence alignment of STIM1
was generated in the MAFFT alignment tool employing BLAST search using human STIM1 (Unipro-
tkb: Q13586) as a query sequence. The amino acids in the cEF loop and nEF are highly conserved
among STIM1 orthologs, shown as red and olive green, respectively. Any variations in the consensus
sequence within the loop regions are marked by different colors (dark blue, positively charged amino
acids; light green, negatively charged amino acids; light blue, polar uncharged amino acids; turquoise
blue, hydrophobic amino acids). Protein sequences of STIM2 (human), STIM from Worm (C. elegans),
and Fruit fly (D. melanogaster) were also included in the alignment, shown as #, *, and $, respectively.

4. Sterile Alpha Motif (SAM)

Sterile alpha motif, also known as SAM, is a well-conserved domain (~70 amino acids
in length) that was first discovered in yeast proteins involved in differentiation from haploid
to diploid cells [95–97]. It was later identified in many proteins from different kingdoms,
such as in eukaryotes, bacteria, and viruses. Within the eukaryotes, SAM proteins have
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been found in mammals, such as humans, chimpanzees, rats, and mice, as well as in insects,
fishes, frogs, worms, and birds. Recent SMART non-redundant database searches show
that there are 64,647 SAM domains seen in 49,933 proteins, indicating that the SAM domain
exists either as a single unit or in tandem repeats within a protein [98]. Interestingly, SAM
domains are largely seen in multi-domain-containing proteins localized to different cellular
compartments, indicating their diversified and extensive cellular functions [96].

The structural organization of the SAM domain consists of a five α-helix bundle
where the α3 helix is shorter in length than the rest of the helices. SAM domains interact
homomerically with each other or through heteromeric interactions with other proteins.
Interestingly, both the homo and heterotypic interactions are guided through head-to-
tail interactions, well known as the Mid-Loop (ML)/End-Helix (EH) model, wherein the
middle portion of one SAM domain (ML surface) binds to the EH surface (c-terminal
α5 helix and loop regions) of another SAM domain [99]. An example of the SAM het-
erotypic interactions through the ML/EH model is evident from the crystal structure of the
Anks6-Sam/Anks3-Sam complex. The complex shows that the EH surface of the Anks3
protein interacts with the ML surface of the Anks6 protein [99,100]. On the other hand,
neuronal scaffolding protein AIDA-1 contains two tandem SAM domains, which interact
homomerically with each other through the ML/EH model (homotypic interaction). In
addition to protein–protein interactions, SAM domains are also involved in SAM–lipid
and SAM–RNA interactions, wherein they bind with other biological macromolecules with
various stoichiometries [95,96,101].

As described in a recent review [99], aberrant SAM–SAM domain interactions may
cause pathological cellular responses and conditions. For instance, the SAM domain of
TEL mediates its oligomerization with various tyrosine kinases to induce constitutive
activation that is essential for cell transformation and with transcription factors that result
in the repression of gene transcription [102]. Axon degeneration is an evolutionarily
conserved process that clears irreparably damaged axons following nerve injury and
also enables developmental axon pruning. Aberrant regulation of axon degeneration
leads to dysfunctional neuronal connectivity, as seen in neurodegenerative diseases and
neuropathies. The sterile α-motif-containing and armadillo-motif-containing protein 1
(Sarm1) has a SAM domain that forms homotypic interactions. Mutating or deleting the
Sarm1–SAM domain abolishes the Sarm1–Sarm1 interaction that is required for axonal
degeneration [99,103]. Collectively, these studies suggested that signaling specificity by
SAM–SAM domain interactions is mediated by distinct residues on their binding surfaces.
The rest of the review will highlight what is currently known about the SAM domain of
STIM proteins and their contribution to their physiological functions.

5. SAM Domain in STIM Proteins

In addition to the EF-hand domains, STIM proteins have one SAM domain: aa 132–200
in STIM1 and aa 136–204 in STIM2 [104]. In our survey of recent publications and protein
databases, we found that STIMs are unique in this regard, as no other proteins contain
both EF hand and SAM domains. Similar findings were reached by Stathopulos and col-
leagues [27]. Human STIM-SAM exhibits five a-helical structures, similar to those reported
in other SAM domain-containing proteins [27,28,99]. Internal association of the STIM1
EF-hand hydrophobic cleft with the SAM domain was proposed to keep STIM1 in a com-
pact structure, precluding non-specific interactions and solvent exposure of hydrophobic
residues that could destabilize the protein [27]. For instance, to maintain STIM1 in a qui-
escent state, the C-terminal helix in STIM1-SAM (Leu195, Leu199) is anchored within the
hydrophobic cleft of the EF hands (12 residues). Following store depletion, the EF-SAM
of STIM1 unravels and oligomerizes to trigger conformational changes in the cytosolic
C-terminus and subsequent translocation to the ER-PM junctions. Interestingly, the SAM
domain of STIM1 is essential for its activation and puncta formation, as deleting the SAM
domain results in continued STIM1 tracking along the microtubule following ER-Ca2+ store
depletion [105]. In addition, recent studies indicate that amino acid substitutions in the α-7
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and α-9 attenuate puncta formation and inhibit SAM multimerization and Orai1 channel
activation [106].

Conversely, STIM2 is already partially activated in resting/unstimulated cells, re-
gardless of its higher stability (EF-SAM) than STIM1. The stability of the STIM2-EF-SAM
was enhanced by a more extensive hydrophobic cleft (12 residues) in the EF-hands and
hydrophobic core (12 residues) in the SAM domain. Additionally, ionic interactions be-
tween the Lys103 and Asp200 further stabilize STIM2-EF-SAM [28,104]. Interestingly, while
STIM2-EF-SAM is more stable than STIM1-EF-SAM, STIM2-SAM has the lowest oligomer-
ization tendency, while STIM1-SAM shows the greatest tendency. STIM1-EF-SAM exists as
a monomer in the presence of Ca2+ but forms multimers in its absence. In addition to the
stability, EF-SAM of STIM proteins differs in their interhelical angles between cEF-hand (α2
helix) and SAM domain (α10 helix). At the same time, STIM2 adopts a parallel orientation,
while STIM1 has a perpendicular orientation. It is interesting to note that STIM from C.
elegans adopts a similar parallel orientation as STIM2 [107]. The differing cEF-hand-SAM
conformations likely influence STIM-SAM domain interactions. Moreover, given the greater
STIM2-EF-SAM stability, fractional changes in STIM2 structure may be sufficient to affect
its function [108].

An early screen for human SAM (hSAM) domains for polymerization identified several
SAM domain-containing proteins in the SMART and NCBI gene databases. A total of
114 unique hSAM domains were identified from 92 proteins in the human genome. Of
these, 96 unique hSAM domains from 77 proteins were fused with the super-negatively
charged green fluorescent protein (neg-GFP) to analyze their polymerization potential.
Interestingly, STIM2 was identified as an hSAM domain that appears to form well-organized
polymers instead of simple amorphous aggregates [109]. It is not known why STIM1 was
not identified on the same screen, but one possible explanation could be its lower protein
expression. STIM proteins were proposed to have evolved to differentially regulate Orai
channels through a divergent balance between the Ca2+ binding affinity of cEF-hand and
SAM domain stability or oligomerization tendency. STIM1-SAM instability and weakly
structured Ca2+-free EF-SAM enhance STIM1/Orai1 interaction following store depletion.
In contrast, STIM2 is more stable and compact under these conditions, which increases
the time required for maximal Orai1 channel activation [28]. Combined with the ability of
STIM2 cEF-hand to sense smaller changes in [Ca2+]ER, pre-clustering of STIM2 in ER-PM
junctions enables STIM2 to more readily gate Orai1 following cell stimulation. Additionally,
STIM2 can also recruit STIM1 into the same ER-PM junctions to enhance Orai1 channel
gating, especially with relatively low physiological agonist stimulation [45]. The ability of
STIM proteins to form homomers and heteromers enables the cells to tune the response to
variable stimuli. However, the role of SAM domains in the STIM2-STIM1 interaction or
STIM2 dimerization is yet to be understood.

6. Naturally Occurring Mutations in STIM Proteins and Disease

Studies reported over the past several years have revealed significant pathological
consequences of mutations in STIM1 that lead to aberrant function. It is important to note
that disease-associated mutations in both N- and C-terminal domains have been described
only for STIM1 but not for STIM2. A change in the expression level of the STIM2 protein or
a modification of the protein that causes functional changes has been reported under certain
pathological conditions, and these might contribute to the severity of the condition. Here,
we will discuss the mutations in the N-terminal domain of STIM1. Several gain of function
(GoF) mutations have been described in the N-termini of STIM1, which cause Tubular
aggregate myopathy (TAM) (Figure 3). Of these, five mutations are located in the cEF-
hand (Figure 3a), and the remaining is in the nEF-hand [18,110–113]. H72Q and L96V are
located in the E and F helices, respectively, of the cEF-hand. While the STIM1-H72Q mutant
exhibits constitutive puncta formation, no clinical symptoms have been reported so far [111].
Although the H72Q mutation does not affect the Ca2+-coordinating residues involved in
direct Ca2+-binding in the cEF loop, it may be involved in stabilizing the intramolecular
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interactions favoring compactness of STIM1 luminal structure in cooperation with the SAM
domain [27,89]. Asn at the 5th position in the cEF loop is important as it directly coordinates
Ca2+. An Asn to Thr (N80T) mutation has been shown to cause significant STIM1 clustering
without store depletion, and the patients exhibit symptoms such as myalgia and high
creatinine kinase levels [110]. The other two mutations are at the 6th (G81D) and 9th (D84G)
in the cEF loop of STIM1. Studies suggest that both G81D and D84G cause constitutive Ca2+

entry and increase in SOCE. In addition, the D84G mutant also exhibits bleeding disorder
and malfunctioning of platelets in mice [18,114,115].
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(panel (a)) and non-canonical (panel (b)) EF-hands of STIM1 (PDB: 2K60 [27]). TAM mutations are
indicated by either dashed/solid black boxes; the dashed black box around the mutants indicates
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typical EF-hand motif; the I115F mutant, seen in both TAM and York platelet syndrome, is shown as
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Among the nEF-hand mutants, F108I/L, H109N/R/Y, and I115F are located in the
loop connecting the two helices at the 1st, 2nd, and 8th positions, respectively (Figure 3b).
It is interesting to note that the I115F mutation is seen in patients of both TAM and York
platelet syndrome. Mutation of F108 to either Leu (L) or Ile (I) causes proximal muscle
weakness and adult-onset myalgia, respectively [110,111]. Sallinger et al. reported that
these loop mutants (F108I, H109N/R, and I115F) exhibit high cytosolic Ca2+ levels in the
absence of stimulus, constitutive activation of STIM1, active Ca2+ entry, and increased
NFAT nuclear translocation [89,110,111,116]. Biophysical studies such as far-UV CD spectra
of F108I indicate a similar α-helical structure as that of wild-type STIM1. However, the
F108I mutation destabilizes the protein by affecting its Ca2+-binding affinity and overall
stability. Of note, STIM1-F108I binds Ca2+ with a comparatively weaker affinity and is
less thermostable than the wild-type STIM1. Molecular dynamics simulation studies also
indicate that the F108I mutation destabilizes the hydrophobic cleft following the unfolding
of the nEF hand, whereas the cEF-hand and SAM domain remain stable [89].

In addition to the EF-hand mutations, several studies have reported STIM1-SAM mu-
tations that caused impaired protein function and disease. One study analyzed 37 STIM1
variants found in three pancreatitis patient cohorts, 5 of which are in the SAM domain
(E136D, E152K, T153I, Q158E, and T177I). The p.E152K variant is extremely rare in the
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general population (observed in only three patients) and affects a highly conserved amino
acid located in the α2 helix of the SAM domain. HEK293 cells expressing STIM1-E152K
showed greater ER-Ca2+ store release when stimulated with thapsigargin, tBHQ, and car-
bachol, resulting in higher Ca2+ influx with re-addition of CaCl2. The three patients with
the STIM1 p.E152K variant also had heterozygous variants of other chronic pancreatitis
susceptibility genes (e.g., PRSS1 p.P365R, a rare variant). Fibroblasts isolated from a patient
with STIM1 p.E152K and PRSS1 p.P365R showed enhanced rate and magnitude of Ca2+

store release and SOCE. Similar results were obtained when STIM1-E125K was expressed
in rat pancreatic AR42J cells following stimulation with cholecystokinin, carbachol, and
thapsigargin. AR42J cells expressing STIM1-E152K also showed higher levels of activated
trypsin and cell toxicity in unstimulated cells, with further increases following stimulation
with cholecystokinin. Mutating the conserved Glu (E152) to Lys (K) destabilizes the Ca2+-
bound EF-SAM but stabilizes the Ca2+-free structure. STIM1-E152K displayed enhanced
aggregation due to the destabilized Ca2+-bound EF-SAM transitions more readily to form
aggregates, and/or the Ca2+-free EF-SAM exhibits greater stability following multimeriza-
tion. The authors proposed that STIM1-E152K interacts with the SERCA pump to modulate
its activity and enhance ER re-filling, which may account for the enhanced ER-Ca2+ release
due to higher [Ca2+]ER [117].

STIM1-P165Q is another SAM domain mutation first identified in two siblings who
harbor a novel homozygous missense mutation c.C494A in exon 4. PBMCs and PHA-
induced T cells obtained from one sibling exhibited decreased SOCE and reduced STIM1
protein expression [118]. Activation was adversely affected by impaired dimer formation
of STIM1-P165Q [108]. Another variation within the STIM1-SAM domain, V138I, leads to
constitutively higher basal [Ca2+]i and enhanced SOCE in HEK293 cells expressing STIM1-
V138I. This STIM1-SAM mutant was discovered in a cross-sectional study of patients
harboring monoallelic STIM1 variants and exhibiting musculature disorders [108,119].
STIM1-E136X is a unique mutation where an adenine insertion in exon 3 produced a
scrambled sequence of 8 amino acids and a premature stop codon (c.f. wild type STIM1),
resulting in undetectable protein levels in affected patients. Interestingly, STIM1-E136X was
also identified in Stormorken syndrome patients, who harbor a gain of function mutation
in the STIM1 C-terminus. The STIM1-SAM domains also contain several glycosylation sites
that control STIM1 function. A double mutant, STIM1-N131D-N171Q, leads to a gain of
function effect that allows faster gating of the Orai1 channel. Further studies are required
to evaluate how these STIM1-SAM domain mutations affect protein structure and behavior
in order to explain their effects on STIM1 function [108].

Unlike STIM1, there is no clear evidence of pathophysiological conditions in hu-
mans caused by single nucleotide mutations in STIM2. Although the Clinvar database
(https://www.ncbi.nlm.nih.gov/clinvar/?term=STIM2[sym]) (URL (accessed on 5th May
2024) [120] reports several missense variants in 3′UTR and protein-coding regions of STIM2,
including the cEF-, nEF-, and SAM domain, the clinical significance of these variants is
currently unknown. As these variants have been reported recently, it would be interest-
ing to see future studies evaluating their functional effects and clinical symptoms. Thus,
no single nucleotide mutations linked to diseases have been reported for STIM2 so far.
Conversely, several studies have elucidated the probable role of STIM2 in pathological
conditions related to neurodegenerative diseases, immune function, cancer, etc., which are
extensively reviewed in [114,121]. In addition, several studies report abnormal phenotypes
in patients having either proximal interstitial deletion [122,123], translocation [124], or
duplication [125] in the short arm of chromosome 4 near the STIM2 gene (p15.2). The most
common phenotypes observed in those younger patients are physical and facial anomalies,
intellectual disability, developmental delay, neurological dysfunction, and congenital heart
diseases [114,121–125]. Since multiple genes are involved in those chromosome alterations,
it is very difficult to delineate the contribution of STIM2 in those phenotypes. More studies
should be focused on understanding the pathological phenotypes associated with the
STIM2 gene alterations.

https://www.ncbi.nlm.nih.gov/clinvar/?term=STIM2[sym]
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7. Conclusions

STIM1 and STIM2 are unique bi-functional proteins that serve as sensors of [Ca2+]
in the ER lumen and activators of the Orai Ca2+ channels in the plasma membrane. Their
structure and regulation allow them to sense changes in ER-[Ca2+] and transmit the signal
to the plasma membrane channel to trigger Ca2+ entry. This mechanism, referred to as
store-operated calcium entry, is ubiquitously present in all cell types and involves activation
of Ca2+ influx into cells via Orai channels in response to agonist-stimulated decreases in ER-
[Ca2+]. The evolution and distinct functional characteristics speak to the unique function of
each protein. STIM2 and STIM1 display high and low Ca2+ affinities that permit them to
differentially sense minor or major decreases in ER-Ca2+, respectively. Further, they also
differ in their activation of Orai1, with STIM1 exerting a stronger activation of Ca2+ entry
than STIM2. These specific properties lead to the tuning of Orai1 activity over a wide range
of stimulus intensities. The STIMs have a Ca2+-sensing N-terminus, which resides in the
ER lumen, a single transmembrane domain that spans the ER membrane, and a C-terminal
domain that is located in the cytosol. The N-terminus has a Ca2+-binding canonical EF-hand
domain, a non-canonical EF-hand domain, and a SAM domain, while the C-terminus has
several coiled-coil domains, which include an Orai-binding/activation region (SOAR) and
a polybasic tail that binds to plasma membrane lipids. Unbinding of Ca2+ from the EF-hand
domain is suggested to induce conformational changes in the N-terminus that are then
propagated to the C-terminus, causing the SOAR domain to be exposed and the C-terminal
poly-basic motif to scaffold to the plasma membrane. Relatively more studies have been
carried out with the STIM1 C-terminus than its N-terminus. NMR studies have elaborated
the N-terminal structure of STIM proteins, but detailed structure–function analysis is yet
lacking. Further studies are required to determine the contributions of non-canonical and
SAM domains to the Ca2+ sensing and regulation of the protein. Recently, MD-simulation
approaches have provided insights into the conformational dynamics of STIM1 N-terminus
during Ca2+ sensing and activation. However, a lot more data are required to clarify the
same for STIM2. In particular, very little is understood regarding the conformational
changes in the STIM2-N terminus in response to Ca2+. More importantly, there are sparse
structural data on the C-terminus of both STIM1 and STIM2. As more mutations related to
human diseases are identified for STIM1 and STIM2, it will be necessary to understand the
structure–function relationships of the various functional domains of these proteins so that
knowledge-based targeting can be utilized for therapies.
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