Supramolecular Protein Assemblies: Building Blocks, Organism- or Cell-Specific Varieties, and Significance
1. Homo- and Heterooligomerization of a Protein as the Building Elements of a Supramolocular Level of Protein Structures
2. Supramolecular Assemblies of Multiple Proteins
- Supramolecular assemblies created for energy storage in the form of an “energized” protein conformation, which may then be relaxed for an energy-requiring process, such as chemical synthesis, membrane transport, etc. [9];
- Supramolecular assemblies involving not only proteins, but also nucleic acids, as exemplified by ribosomes and nucleosomes;
- Biological polymers, such as microtubules or viral envelop proteins. In contrast to oligomerization, which implies hundreds of monomeric/protomeric protein units, polymeric structures involve thousands of such units.
2.1. Multienzyme Complexes
2.2. Supercomplexes
2.3. Supramolecular Protein Assemblies for the Energy Transformation
3. Advantages of Protein Supramolecular Assemblies
3.1. Regulatory Significance
3.2. Catalytic Advantages
4. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Laursen, T.; Borch, J.; Knudsen, C.; Bavishi, K.; Torta, F.; Martens, H.J.; Silvestro, D.; Hatzakis, N.S.; Wenk, M.R.; Dafforn, T.R.; et al. Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science 2016, 354, 890–893. [Google Scholar] [CrossRef]
- Wu, F.; Minteer, S. Krebs Cycle Metabolon: Structural Evidence of Substrate Channeling Revealed by Cross-Linking and Mass Spectrometry. Angew. Chem. Int. Ed. 2015, 54, 1851–1854. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Vant, J.W.; Zhang, A.; Sanchez, R.G.; Wu, Y.; Micou, M.L.; Luczak, V.; Whiddon, Z.; Carlson, N.M.; Yu, S.B.; et al. Organization of a functional glycolytic metabolon on mitochondria for metabolic efficiency. Nat. Metab. 2024, 6, 1712–1735. [Google Scholar] [CrossRef] [PubMed]
- Naka, K. Monomers, Oligomers, Polymers, and Macromolecules (Overview). In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Jenkins, A.D.; Kratochvíl, P.; Stepto, R.F.T.; Suter, U.W. Glossary of basic terms in polymer science (IUPAC Recommendations 1996). Pure Appl. Chem. 1996, 68, 2287–2311. [Google Scholar] [CrossRef]
- Bunik, V.; Kaehne, T.; Degtyarev, D.; Shcherbakova, T.; Reiser, G. Novel isoenzyme of 2-oxoglutarate dehydrogenase is identified in brain, but not in heart. FEBS J. 2008, 275, 4990–5006. [Google Scholar] [CrossRef]
- Muronetz, V.I.; Medvedeva, M.V.; Sevostyanova, I.A.; Schmalhausen, E.V. Modification of Glyceraldehyde-3-Phosphate Dehydrogenase with Nitric Oxide: Role in Signal Transduction and Development of Apoptosis. Biomolecules 2021, 11, 1656. [Google Scholar] [CrossRef]
- Lemaire, O.N.; Müller, M.-C.; Kahnt, J.; Wagner, T. Structural Rearrangements of a Dodecameric Ketol-Acid Reductoisomerase Isolated from a Marine Thermophilic Methanogen. Biomolecules 2021, 11, 1679. [Google Scholar] [CrossRef]
- Qin, K.; Fernie, A.R.; Zhang, Y. The Assembly of Super-Complexes in the Plant Chloroplast. Biomolecules 2021, 11, 1839. [Google Scholar] [CrossRef]
- Bunik, V. Vitamin-Dependent Complexes of 2-Oxo Acid Dehydrogenases: Structure, Function, Regulation and Medical Implications; Nova Science Publishers: New York, NY, USA, 2017; p. 203. [Google Scholar]
- Zavileyskiy, L.; Bunik, V. Regulation of p53 Function by Formation of Non-Nuclear Heterologous Protein Complexes. Biomolecules 2022, 12, 327. [Google Scholar] [CrossRef]
- Muronetz, V.I.; Pozdyshev, D.V.; Medvedeva, M.V.; Sevostyanova, I.A. Potential Effect of Post-Transcriptional Substitutions of Tyrosine for Cysteine Residues on Transformation of Amyloidogenic Proteins. Biochemistry 2022, 87, 170–178. [Google Scholar] [CrossRef]
- Leisi, E.V.; Moiseenko, A.V.; Kudryavtseva, S.S.; Pozdyshev, D.V.; Muronetz, V.I.; Kurochkina, L.P. Bacteriophage-encoded chaperonins stimulate prion protein fibrillation in an ATP-dependent manner. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2024, 1872, 140965. [Google Scholar] [CrossRef]
- Leisi, E.V.; Barinova, K.V.; Kudryavtseva, S.S.; Moiseenko, A.V.; Muronetz, V.I.; Kurochkina, L.P. Effect of bacteriophage-encoded chaperonins on amyloid transformation of α-synuclein. Biochem. Biophys. Res. Commun. 2022, 622, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Bettendorff, L. Update on Thiamine Triphosphorylated Derivatives and Metabolizing Enzymatic Complexes. Biomolecules 2021, 11, 1645. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Leibundgut, M.; Boehringer, D.; Ban, N. Structure and function of eukaryotic fatty acid synthases. Q. Rev. Biophys. 2010, 43, 373–422. [Google Scholar] [CrossRef] [PubMed]
- Jenni, S.; Leibundgut, M.; Maier, T.; Ban, N. Architecture of a Fungal Fatty Acid Synthase at 5 Å Resolution. Science 2006, 311, 1263–1267. [Google Scholar] [CrossRef] [PubMed]
- Lomakin, I.B.; Xiong, Y.; Steitz, T.A. The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together. Cell 2007, 129, 319–332. [Google Scholar] [CrossRef]
- Maier, T.; Jenni, S.; Ban, N. Architecture of Mammalian Fatty Acid Synthase at 4.5 Å Resolution. Science 2006, 311, 1258–1262. [Google Scholar] [CrossRef] [PubMed]
- Maier, T.; Leibundgut, M.; Ban, N. The Crystal Structure of a Mammalian Fatty Acid Synthase. Science 2008, 321, 1315–1322. [Google Scholar] [CrossRef]
- Yang, L.; Wagner, T.; Mechaly, A.; Boyko, A.; Bruch, E.M.; Megrian, D.; Gubellini, F.; Alzari, P.M.; Bellinzoni, M. High resolution cryo-EM and crystallographic snapshots of the actinobacterial two-in-one 2-oxoglutarate dehydrogenase. Nat. Commun. 2023, 14, 4851. [Google Scholar] [CrossRef]
- Sundermeyer, L.; Folkerts, J.-G.; Lückel, B.; Mack, C.; Baumgart, M.; Bott, M. Cellular localization of the hybrid pyruvate/2-oxoglutarate dehydrogenase complex in the actinobacterium Corynebacterium glutamicum. Microbiol. Spectr. 2023, 11, e02668-23. [Google Scholar] [CrossRef]
- Bunik, V.I.; Wagner, T.; Bellinzoni, M. Energy Metabolism|2-Oxoglutarate Dehydrogenase Complex. In Encyclopedia of Biological Chemistry III, 3rd ed.; Jez, J., Ed.; Elsevier: Oxford, UK, 2021; pp. 259–271. [Google Scholar]
- Blackmore, N.J.; Nazmi, A.R.; Hutton, R.D.; Webby, M.N.; Baker, E.N.; Jameson, G.B.; Parker, E.J. Complex Formation between Two Biosynthetic Enzymes Modifies the Allosteric Regulatory Properties of Both: An Example of Molecular Symbiosis*. J. Biol. Chem. 2015, 290, 18187–18198. [Google Scholar] [CrossRef]
- Nesterov, S.; Chesnokov, Y.; Kamyshinsky, R.; Panteleeva, A.; Lyamzaev, K.; Vasilov, R.; Yaguzhinsky, L. Ordered Clusters of the Complete Oxidative Phosphorylation System in Cardiac Mitochondria. Int. J. Mol. Sci. 2021, 22, 1462. [Google Scholar] [CrossRef]
- Ježek, P.; Dlasková, A.; Engstová, H.; Špačková, J.; Tauber, J.; Průchová, P.; Kloppel, E.; Mozheitova, O.; Jabůrek, M. Mitochondrial Physiology of Cellular Redox Regulations. Physiol. Res. 2024, 73, S217–S242. [Google Scholar] [CrossRef]
- Lai, Y.; Zhang, Y.; Zhou, S.; Xu, J.; Du, Z.; Feng, Z.; Yu, L.; Zhao, Z.; Wang, W.; Tang, Y.; et al. Structure of the human ATP synthase. Mol. Cell 2023, 83, 2137–2147.e2134. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.-F.; Leow, C.-Y.; Grüber, G. Cryo-EM structure of the Mycobacterium abscessus F1-ATPase. Biochem. Biophys. Res. Commun. 2023, 671, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Spikes, T.E.; Montgomery, M.G.; Walker, J.E. Structure of the dimeric ATP synthase from bovine mitochondria. Proc. Natl. Acad. Sci. USA 2020, 117, 23519–23526. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Ford, H.C.; Carroll, J.; Douglas, C.; Gonzales, E.; Ding, S.; Fearnley, I.M.; Walker, J.E. Assembly of the membrane domain of ATP synthase in human mitochondria. Proc. Natl. Acad. Sci. USA 2018, 115, 2988–2993. [Google Scholar] [CrossRef] [PubMed]
- Jonckheere, A.I.; Smeitink, J.A.M.; Rodenburg, R.J.T. Mitochondrial ATP synthase: Architecture, function and pathology. J. Inherit. Metab. Dis. 2012, 35, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Herdering, E.; Reif-Trauttmansdorff, T.; Kumar, A.; Habenicht, T.; Hochberg, G.; Bohn, S.; Schuller, J.; Schmitz, R.A. 2-oxoglutarate triggers assembly of active dodecameric Methanosarcina mazei glutamine synthetase. eLife 2024, 13, RP97484. [Google Scholar] [CrossRef]
- Yang, M.; Lu, Y.; Piao, W.; Jin, H. The Translational Regulation in mTOR Pathway. Biomolecules 2022, 12, 802. [Google Scholar] [CrossRef]
- Asahara, S.-i.; Inoue, H.; Watanabe, H.; Kido, Y. Roles of mTOR in the Regulation of Pancreatic β-Cell Mass and Insulin Secretion. Biomolecules 2022, 12, 614. [Google Scholar] [CrossRef] [PubMed]
- Daneshgar, N.; Rabinovitch, P.S.; Dai, D.-F. TOR Signaling Pathway in Cardiac Aging and Heart Failure. Biomolecules 2021, 11, 168. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-W.; Storey, K.B. mTOR Signaling in Metabolic Stress Adaptation. Biomolecules 2021, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- Gama Lima Costa, R.; Fushman, D. Reweighting methods for elucidation of conformation ensembles of proteins. Curr. Opin. Struct. Biol. 2022, 77, 102470. [Google Scholar] [CrossRef]
- McCartney, R.G.; Rice, J.E.; Sanderson, S.J.; Bunik, V.; Lindsay, H.; Lindsay, J.G. Subunit Interactions in the Mammalian α-Ketoglutarate Dehydrogenase Complex: Evidence for Direct Association of the α-Ketoglutarate Dehydrogenase and Dihydrolipoamide Dehydrogenase Components*. J. Biol. Chem. 1998, 273, 24158–24164. [Google Scholar] [CrossRef]
- Rice, J.E.; Dunbar, B.; Lindsay, J.G. Sequences directing dihydrolipoamide dehydrogenase (E3) binding are located on the 2-oxoglutarate dehydrogenase (E1) component of the mammalian 2-oxoglutarate dehydrogenase multienzyme complex. EMBO J. 1992, 11, 3229–3235. [Google Scholar] [CrossRef]
- Ozohanics, O.; Zhang, X.; Nemeria, N.S.; Ambrus, A.; Jordan, F. Probing the E1o-E2o and E1a-E2o Interactions in Binary Subcomplexes of the Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Complexes by Chemical Cross-Linking Mass Spectrometry and Molecular Dynamics Simulation. Int. J. Mol. Sci. 2023, 24, 4555. [Google Scholar] [CrossRef]
- van den Heuvel, R.H.H.; Svergun, D.I.; Petoukhov, M.V.; Coda, A.; Curti, B.; Ravasio, S.; Vanoni, M.A.; Mattevi, A. The Active Conformation of Glutamate Synthase and its Binding to Ferredoxin. J. Mol. Biol. 2003, 330, 113–128. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunik, V.I. Supramolecular Protein Assemblies: Building Blocks, Organism- or Cell-Specific Varieties, and Significance. Biomolecules 2024, 14, 1342. https://doi.org/10.3390/biom14111342
Bunik VI. Supramolecular Protein Assemblies: Building Blocks, Organism- or Cell-Specific Varieties, and Significance. Biomolecules. 2024; 14(11):1342. https://doi.org/10.3390/biom14111342
Chicago/Turabian StyleBunik, Victoria I. 2024. "Supramolecular Protein Assemblies: Building Blocks, Organism- or Cell-Specific Varieties, and Significance" Biomolecules 14, no. 11: 1342. https://doi.org/10.3390/biom14111342
APA StyleBunik, V. I. (2024). Supramolecular Protein Assemblies: Building Blocks, Organism- or Cell-Specific Varieties, and Significance. Biomolecules, 14(11), 1342. https://doi.org/10.3390/biom14111342