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Abstract: The natural polyphenol resveratrol is a biologically active compound that interacts with
DNA and affects the activity of some nuclear enzymes. Its effect on the interaction between nucle-
osomes and poly(ADP-ribose) polymerase-1 (PARP1) and on the catalytic activity of PARP1 was
studied using Western blotting, spectrophotometry, electrophoretic mobility shift assay, and single
particle Förster resonance energy transfer microscopy. Resveratrol inhibited PARP1 activity at micro-
and sub-micromolar concentrations, but the inhibitory effect decreased at higher concentrations due
to the aggregation of the polyphenol. The inhibition of PARP1 by resveratrol was accompanied by its
binding to the enzyme catalytic center and a subsequent decrease in PARP1 affinity to nucleosomal
DNA. Concurrent binding of talazoparib to the substrate binding pocket of PARP1, which occurs
in the presence of resveratrol, restores the interaction of PARP1 with nucleosomes, suggesting that
the binding sites of resveratrol and talazoparib overlap. The data suggest that resveratrol can be
classified as a natural inhibitor of PARP1.

Keywords: poly(ADP-ribose) polymerase-1; PARP1; nucleosome; resveratrol; spFRET; Western
blotting; gel-shift analysis; absorption spectroscopy

1. Introduction

Poly(ADP-ribose) polymerase-1 (PARP1) is a nuclear enzyme that is involved in DNA
repair, replication, and transcription, cell cycle regulation, and apoptosis. Dysregulation
of PARP1 activity and expression leads to pathological processes [1]. Thus, the increased
level of PARP1 expression correlates with the severity of various oncological diseases [2–5].
Furthermore, higher levels of PARP1 expression are characteristic of tumor stem cells that
are resistant to anti-cancer therapies [6–8].

In oncology, the negative role of PARP1 is most likely related to its genome guardian
function. Increased expression of PARP1 is necessary for more efficient DNA damage repair
due to the increased instability of the nuclear structure during uncontrolled tumor cell
division and/or after radiation/chemotherapy treatments. In addition, PARP1 regulates
a number of important processes that directly affect tumor growth, such as metabolic,
angiogenetic, and proliferation pathways [9]. PARP1 might contribute to oncogenesis by
NAD+-dependent inhibition of SIRT1, which leads to significant impairment of mitochon-
drial biogenesis with a shift of cellular processes toward glycolytic metabolism. A shift
from traditional oxidative respiration to aerobic glycolysis (Warburg effect) is one of the
known hallmarks of the carcinogenic process [10–13]. Inhibition of SIRT1 by PARP1 also
promotes tumor angiogenesis [14].

PARP1 increases the expression of reactive oxygen species and exerts potent pro-
inflammatory effects through activation of NF-κB [15]. Lack of PARP1 inactivation can lead
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to a depletion of macroenergetic molecules (NAD+ and ATP) in cells [16]. In this case, cells
may undergo necrosis and PARthanatos, which are processes involved in the development
of many diseases, including neurodegeneration and neuroinflammation, as well as various
cardiovascular and metabolic disorders [15].

Accordingly, therapies aimed at pharmacological inhibition of PARP1 are considered
promising for both tumor treatment and the therapy of neurodegenerative, diabetic, and
cardiovascular diseases. Several FDA-approved PARP1 inhibitors, initially proposed for use
in tumor treatment, have also demonstrated therapeutic effects in models of non-cancerous
diseases such as stroke, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, dia-
betes, and myocardial infarction [17–22]. The main challenge with the widespread use of
PARP1 inhibitors is their high level of toxicity and the many associated side effects [23].
This is why the search for new inhibitors remains a priority.

Some plant polyphenols, including myricetin, quercetin, epigallocatechin, fisetin,
tricetin, gossypetin, and delphinidinm, have been shown to inhibit the activity of
PARP1 [24–26]. In this regard, searching for new PARP1 inhibitors having lower toxi-
city from a vast group of natural plant polyphenols represents a promising approach.
The natural polyphenol resveratrol (3,5,4′-trihydroxystilbene, RSV) has a wide range of
activities, including antioxidant, anti-inflammatory, antibacterial, antiviral, geroprotective,
and antitumor therapeutic activities [27–31]. It provides cardio-, neuro-, and hepato-
protection and improves cognitive function [32–34]. RSV has been found to affect the
functioning of many nuclear enzymes, including DNA polymerase α, topoisomerase II,
NAD+-dependent deacetylase (SIRT1), DNA methyltransferase, ribonucleotide reductase,
adenosine monophosphate kinase, and transcription factor NF-kB [35–38]. RSV interacts
with DNA [39–41], but this interaction does not cause a significant disturbance in the
nucleosome structure [31].

In this paper, we report on the effect of RSV on the interaction of PARP1 with nucleo-
somes and its catalytic activity. It is shown that RSV binds to the catalytic center of PARP1
and reduces the binding of the enzyme to nucleosomal DNA at micro- and sub-micro-molar
concentrations. This hinders enzyme activation and inhibits the poly-(ADP-ribose)ylation
(PARylation) reaction.

2. Materials and Methods
2.1. Reagents

RSV of 98% purity was supplied by Roth (Karlsruhe, Germany). RSV (100 mM) was
dissolved in dimethylsulfoxide (DMSO) and stored at −20 ◦C. Before the experiments, this
solution was fourfold diluted with distilled water. Talazoparib (TAL, Selleck, Houston, TX,
USA) was dissolved in DMSO at 10 mM, stored at −20 ◦C, and diluted before experiments
to have 1 µM in water solution containing 25% DMSO. Recombinant human histones
H2A, H2B, H3, and H4 and human PARP1 were obtained as described previously [42].
Fluorescently labeled double-stranded DNA (187 bp) containing nucleosome-positioning
sequence 603-42A [43] flanked by two fragments of 20 bp length was obtained as described
previously [31,44]. Fluorescent labels cyanine 3 (Cy3) and cyanine 5 (Cy5) were placed
at positions 13 and 91 bp, counting from the boundary of the nucleosome-positioning
sequence. Nucleosomes were assembled as described previously [45].

2.2. spFRET Microscopy

Nucleosomes (1–2 nM) were pre-incubated with different concentrations of RSV (1,
10 or 100 µM) for 20 min in low adhesion tubes in TB150 buffer (20 mM Tris-HCl (pH 7.5),
5 mM MgCl2, 150 mM KCl, 1 mM β-mercaptoethanol) at room temperature (RT), mixed
with PARP1 (40 nM) and incubated for 30 min at RT. In experiments with TAL, PARP1
(40 nM) was pre-incubated with RSV (10 µM) for 20 min, mixed with nucleosomes (2 nM)
and TAL (1 µM), and incubated for 30 min in TB150 buffer at RT. Alternatively, PARP1 was
initially incubated with TAL, followed by incubation with nucleosomes and RSV (the same
concentrations and incubation times were used).
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spFRET measurements were performed using the LSM710-Confocor3 laser scanning
confocal microscope (Zeiss, Oberkochen, Germany), as described earlier [46]. Fluorescence
was excited at 514.5 nm and recorded using avalanche photodiodes in the 530–635 nm (Cy3
fluorescence) and 635–800 nm (Cy5 fluorescence) ranges. The fluorescence intensities of
Cy3 and Cy5 measured from single nucleosomes and their complexes with PARP1 were
used to calculate proximity ratios (EPR) as described previously [43]. EPR is the FRET
efficiency without correction for quantum yields of fluorescent labels and sensitivity of
the detection system. The sets of EPR values (the sample sizes were >2500 values) were
used to calculate the frequency distributions of nucleosomes and their complexes with
PARP1 by EPR (EPR profiles). The calculated EPR profiles were averaged over at least three
independent experiments and approximated by a linear superposition of several Gaussian
peaks.

2.3. Electrophoretic Mobility Shift Assay (EMSA)

Complexes of nucleosomes with PARP1 and RSV were prepared for use in EMSA
studies in the same manner as for spFRET microscopy. Electrophoresis in the 5% poly-
acrylamide gel was performed at 100 V in 0.2×TBE buffer (3.6 mM Tris (pH 7.5), 3.6 mM
boric acid, and 0.08 mM EDTA) for 1–1.2 h at +4 ◦C. The gel was pre-run before the sample
loading. Fluorescence analysis of the gels was performed using the Amersham Typhoon
RGB laser scanner (GE Healthcare, Chicago, IL, USA) at the 532 nm excitation wavelength,
detecting the fluorescence of the Cy3 label.

2.4. Western Blot Analysis

Nucleosomes (2 nM) were pre-incubated with RSV (1 nM–100 µM) in TB150 buffer
at RT for 20 min, incubated with PARP1 (40 nM) for 10 min, supplemented with β-
nicotinadenine dinucleotide (NAD+, 20 µM, Sigma, St. Louis, MO, USA) and incubated
for 45 min at RT. Then, the samples were heated to 95 ◦C for 5–10 min after the addition
of plating buffer (5× buffer: 312 mM Tris-HCl, pH 6.8, 10% SDS, 25% β-mercaptoethanol,
0.05% bromphenol blue) and applied to the 4–12% gradient gel (Mini-protean gels TGX,
Hercules, CA, USA, Bio-Rad). Electrophoresis was performed in Tris-glycine buffer (25 mM
Tris-HCl, 192 mM glycine, and 0.1% SDS, pH 8.6) at 130 V for 1 h at RT. Protein transfer to a
nitrocellulose membrane (Bio-Rad) was performed in the transfer buffer (50 mM MOPS,
50 mM Tris-HCl, 1 mM EDTA, 3.5 mM SDS) containing 20% ethanol at 4 ◦C (350 mA, 2 h).
Then, the membrane was incubated for 1 h in PBS-T solution (2.7 mM KCl, 8 mM Na2HPO4,
2 mM KH2PO4, 37 mM NaCl, 0.5% Tween 20) supplemented with 5% skimmed milk and
washed twice with PBS-T solution for 5 min each. The membrane was incubated with
mouse monoclonal antibodies against polyADP-ribose (10H, ab14459, Abcam, Waltham,
MA, USA) for 1 h in PBS-T solution containing 5% milk, washed, incubated for 1 h with
horseradish peroxidase-conjugated secondary anti-mouse antibodies (Bio-Rad, Hercules,
CA, USA) and washed again. Imaging of the membrane was performed using the Chemi-
Doc system (Bio-Rad) and the SuperSignal™ West Pico PLUS chemiluminescent substrate
(Thermo Fisher Scientific, Waltham, MA, USA). Data of Western blotting analysis were
reproduced in three independent experiments. Original western blots can be found at
Supplementary Materials.

2.5. UV–VIS Spectrophotometry

Absorption spectra of RSV (0.1–100 µM) were measured in an aqueous solution
containing 25% dimethyl sulfoxide using a NanoDrop™ 2000c spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA) in the 250–400 nm spectral range. The spectra
recorded in two independent experiments were averaged.

3. Results

The effect of RSV on the binding and catalytic activity of PARP1 in chromatin was
studied using nucleosomes (basic structural units of chromatin) as a model system. Nucle-
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osomes and their complexes with PARP1 formed in the presence of RSV were analyzed
using the Western blotting technique, spFRET microscopy, and EMSA (Figure 1A).
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teins and the enzyme itself (auto-PARylation) [48,49]. The binding of PARP1 to nucleo-
somes also leads to its activation and NAD+-dependent auto-PARylation [50]. Accord-
ingly, Western blotting using antibodies to poly(ADP-ribose) chains reveals the accumu-
lation of heterogeneous in molecular weight auto-PARylated PARP1 in the solution con-
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Figure 1. Effect of RSV on the interaction between PARP1 and nucleosomes and on PARP1 activity.
(A) The experimental approach. Small pink and green circles show the positions of fluorescent labels
Cy3 and Cy5 on the nucleosomal DNA. Different domains of PARP1 are shown in color to highlight
the multidomain structure of the enzyme. (B) Western blotting analysis of the effect of RSV on the
PARP1 activity. Antibodies to poly(ADP-ribose) chains were used to stain auto-PARylated PARP1
after nucleosome-activated reaction of PARylation in the mixture of nucleosomes (Nuc, 2 nM), PARP1
(40 nM), NAD+ (20 µM) and different concentrations of RSV. M: protein molecular weight markers.
Similar data were obtained in three independent experiments. (C) Absorption spectra of RSV at
different concentrations in an aqueous solution containing 25% dimethyl sulfoxide. The dashed line
shows the RSV spectrum at 100 nM magnified ×10 times in intensity.

3.1. RSV Inhibits Catalytic Activity of PARP1

PARP1 is activated after its binding to DNA or to histones H3 and H4 [47]. Catalytically
active PARP1 utilizes NAD+ as a substrate to synthesize poly-(ADP-ribose) chains of
various lengths and structures. These chains are covalently attached to neighboring proteins
and the enzyme itself (auto-PARylation) [48,49]. The binding of PARP1 to nucleosomes
also leads to its activation and NAD+-dependent auto-PARylation [50]. Accordingly,
Western blotting using antibodies to poly(ADP-ribose) chains reveals the accumulation
of heterogeneous in molecular weight auto-PARylated PARP1 in the solution containing
nucleosomes, PARP1, and NAD+ (Figure 1B). The addition of RSV to this solution prior
to the addition of NAD+ leads to concentration-dependent changes in the intensity of the
poly(ADP-ribose)-related signal as detected by the Western blotting (Figure 1B). The signal
related to poly(ADP-ribose) is minimal at the 0.1 µM concentration of RSV, and it increases
both at lower and, surprisingly, at higher concentrations of RSV.

The data suggest that RSV inhibits PARP1 at micro- and sub-micro-molar concentra-
tions, but its inhibitory effect becomes weaker at concentrations above 1 µM. A possible
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explanation for the decreased PARP1 inhibition at higher concentrations of RSV is the
aggregation of RSV molecules in an aqueous solution.

3.2. RSV Aggregates in an Aqueous Solution

To evaluate the possibility of RSV aggregation in a water-based solution, UV–VIS
spectra were measured at different concentrations of RSV (Figure 1C). At concentrations
of RSV below 1 µM, the intensity of light absorption is directly proportional to the RSV
concentration, and the shape of the absorption spectrum remains unchanged. The increase
in RSV concentration above 1 µM is not accompanied by a proportional increase in light
absorption, and the shape of the spectrum changes dramatically (Figure 1C). Both ob-
servations indicate that the aggregation of RSV occurs in the 10–100 µM concentration
range. Microscopic examination of an aqueous solution of RSV revealed the formation of
precipitating needle-like crystals when the RSV concentration was greater than 100 µM.

The spectrophotometric data (Figure 1C) suggest that the decrease in the ability of RSV
to inhibit PARP1 at concentrations above 1 µM (Figure 1B) is caused by the aggregation of
RSV in solution.

3.3. RSV Reduces the Binding of PARP1 to Nucleosomes

To further study the PARP1 inhibition by RSV, the formation of complexes between
PARP1 and nucleosomes was examined in the presence of RSV using spFRET microscopy
and EMSA.

In agreement with the published results [51], the binding of PARP1 to nucleosomes
causes structural changes in nucleosomal DNA, which are detected by spFRET microscopy
as a shift of the peak of the nucleosome distribution in the EPR profile from high (~0.75)
to lower (~0.49) EPR values (Figure 2A). RSV itself minimally affects the structure of
nucleosomes and does not cause any changes in the EPR profile of nucleosomes labeled at
positions 13 and 91 bp at the concentrations of RSV ranging from 1 to 100 µM [31]. The
addition of RSV to nucleosomes alters the interaction between PARP1 and nucleosomes
(Figure 2A). RSV reverses the changes in the EPR profile of nucleosomes induced by PARP1
at RSV concentrations of 1 or 10 µM. This effect is not observed at an RSV concentration of
100 µM (Figure 2A) and can be attributed to the extensive aggregation of RSV (Figure 1).
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Figure 2. RSV reduces the binding of PARP1 to nucleosomes. (A) EPR profiles of nucleosomes (Nuc)
and their complexes with PARP1 (40 nM) in the absence and presence of RSV (1, 10 and 100 µM). EPR

profiles are presented as mean ± standard error of the mean (n = 3). (B) EMSA data for nucleosomes
and nucleosome–PARP1 complexes in the absence and presence of RSV (1, 10, and 100 µM).

EMSA confirms that RSV disturbs the interaction between PARP1 and nucleosomes
(Figure 2B). As was shown earlier, PARP1 can form several types of complexes with nu-
cleosomes that differ in the number of PARP1 molecules bound to each nucleosome [51].
The formation of PARP1–nucleosome complexes is significantly reduced at an RSV con-
centration of 1 µM (Figure 2B). However, the formation of complexes between PARP1 and
nucleosomes is progressively restored with an increase in the RSV concentration from 10 to
100 µM (Figure 2B). This observation is likely explained by the concentration-dependent
aggregation of RSV (Figure 1).
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Taken together, spFRET microscopy and EMSA data suggest that the inhibition of
PARP1 by RSV at micro- and sub-micro-molar concentrations is likely related to the RSV-
mediated decrease in the ability of PARP1 to bind to nucleosomes and become activated.

3.4. RSV Binds to the Catalytic Center of PARP1

The inhibiting effect of RSV could be explained by either the binding of RSV at the
interface of interaction between PARP1 and a nucleosome or by the binding of RSV within
the catalytic center of PARP1, similar to some other inhibitors of PARP, which also decrease
the affinity of PARP1 to DNA and nucleosomes [31,52]. Inhibitors of PARP1 that bind to
the catalytic center of the enzyme are classified into three groups based on their ability to
modify the affinity of PARP1 to DNA. These groups include inhibitors that increase affinity
(type I), decrease affinity (type III), and have no effect on the affinity of PARP1 for DNA
(type II) [53]. This classification of the inhibitors also applies to the interaction between
PARP1 and nucleosomal DNA [54].

To evaluate the hypothesis about RSV binding to the catalytic center of PARP1, we stud-
ied the interaction between PARP1, nucleosomes, and RSV in the presence of talazoparib
(TAL) using spFRET microscopy. TAL is a PARP1 inhibitor that binds to the catalytic center
of PARP1 and increases the affinity of the enzyme to DNA [52,53] and nucleosomes [55].
The addition of 1 µM TAL together with nucleosomes to the mixture of PARP1 and RSV
restores the interaction between PARP1 and nucleosomes, overcoming the inhibiting effect
of RSV. This is evident by the shift of the peak of the nucleosome distribution in the EPR
profile from higher EPR values characteristic of intact nucleosomes to lower EPR values
characteristic of PARP1–nucleosome complexes (Figure 3A). A similar effect was observed
when TAL was first mixed with PARP1 and then added to a mixture of nucleosomes and
RSV (Figure 3B). This result suggests that RSV reversibly binds to the catalytic center of
PARP1. TAL competes with RSV for the binding to the catalytic center, displacing RSV from
the center and increasing the efficiency of the formation of the complex between PARP1
and nucleosomes.
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Figure 3. Effect of RSV and TAL on the interaction between PARP1 and nucleosomes. EPR profiles of
nucleosomes (Nuc) and their complexes with PARP1 (40 nM) in the absence and presence of RSV
(10 µM) and TAL (1 µM). EPR profiles are presented as mean ± standard error of the mean (n = 3).
(A) PARP1 was pre-incubated with RSV and then incubated with nucleosomes and TAL. (B) PARP1
was pre-incubated with TAL and then incubated with nucleosomes and RSV.

4. Discussion

The data suggest that RSV is an inhibitor of PARP1. The highest inhibitory activity
is achieved at 100 nM RSV, but it decreases at higher concentrations due to aggregation
of RSV in an aqueous solution (Figure 1B). Inhibition of PARP1 is caused by the binding
of RSV in the catalytic center of the enzyme, as was demonstrated in the experiments
addressing competitive binding of TAL (Figure 3A,B). The data suggest a mechanism
involving blocking the binding of NAD+ substrate in the active center of PARP1 and the
inhibition of its catalytic activity. The RSV binding weakens the interaction between PARP1
and nucleosomal DNA, suppressing the activation of PARP1 (Figure 2A,B). This effect is
typical for type III PARP1 inhibitors, which, by binding to the catalytic center, stabilize
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the helical domain of the enzyme and change the interactions between the domains of the
enzyme, reducing its affinity to DNA [52].

Alternatively, it could be proposed that RSV binds somewhere at the interface of the
interaction of PARP1 with DNA, interfering with the formation of the complex. According
to in vitro experiments, RSV forms a complex with DNA, but the dissociation constant of
the complex is in the 52–180 µM range [39,40]. Thus, RSV does not bind to DNA in the
0.1–1 µM concentration range, in which inhibition of PARP1 is observed. The restoration
of the interaction between PARP1 and nucleosomes in the presence of TAL supports this
conclusion and allows us to rule out RSV binding to another site on PARP1 other than the
catalytic center, causing disruption of the complexes between PARP1 and nucleosomes.

To our knowledge, inhibition of PARP1 by RSV is reported for the first time. RSV
expands the list of natural polyphenols, such as myricetin, quercetin, fisetin, tricetin,
gossipetin, and delphinidin, which were reported to inhibit PARP1 [24,56]. The activity of
RSV exceeds, for example, the activity of quercetin, which inhibits PARP1 at micromolar
concentrations [57].

RSV can probably be useful as an inhibitor of unwanted PARP1 hyper-activation in
the prevention and/or in the treatment of some metabolic and inflammatory diseases such
as cardiovascular, Parkinson’s, and Alzheimer’s diseases, neurodegenerative disorders,
and diabetes [15,20,58].

The high PARP1-inhibitory activity of RSV makes it a promising candidate for the
therapy of breast and ovarian cancers having the susceptibility gene mutation (BRCAm),
where the use of synthetic PARP1 inhibitors is currently recommended.

RSV, like some other natural polyphenols, has multiple beneficial effects on the body.
Therefore, even though RSV was not previously known as a proven inhibitor of PARP1,
trials have been initiated to explore the potential of combining RSV with clinically approved
PARP1 inhibitors. After the combined application of RSV and olaparib, deregulation of the
homologous recombination (HR) pathway and an increase in apoptosis were observed in
breast cancer cells that have a BRCA wild phenotype with undisturbed HR repair. This
combination of compounds does not have restrictions on the use of olaparib as a stand-alone
drug, as this inhibitor has previously only been used to treat cancer patients with BRCA1
mutation and HR deficiency. RSV was shown to effectively sensitize talazoparib-induced
cell death in BRCA wild-type breast cancer cells (possessing undisturbed HR). It was found
that RSV caused disruption of cell cycle regulation and enhanced talazoparib-induced
double-strand breaks (DSBs), leading to abnormal mitotic progression, culminating in
mitotic catastrophe [59]. The reported effects could be at least partially related to the PARP1
inhibitory activity of RSV; a detailed study is necessary to assess the contribution of RSV
to the inhibition of PARP1 in vivo when combined with other PARP1 inhibitors. It should
be noted that the action of type III inhibitors is gentler than that of type I and II inhibitors,
as they do not cause strong toxicity or severe side effects in patients. Apparently, the
combined use of various PARP1 inhibitors, one of which is a natural polyphenol with an
overall beneficial effect on the body, could be a promising approach to the treatment of
tumors.

The concentration-dependent aggregation of RSV reported by us probably can con-
tribute to the dichotomous effect of RSV that was observed previously [60–62]. In the
clinical trial, high doses of RSV (2000 mg/day) in patients with Alzheimer’s disease were
found to lead to increased levels of beta-amyloids and worsening brain volume loss [63].
However, another clinical trial in Alzheimer’s disease showed the beneficial effects of RSV
using low doses (5 mg/day) [64]. RSV has been shown to have neuroprotective effects
at low concentrations but can be neurotoxic at higher concentrations [61]. Similarly, the
opposite effects have been observed with high and low doses of RSV in cardiovascular
studies [65–67].
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5. Conclusions

Many natural polyphenols are biologically active compounds that have a variety of
health benefits. This has led to numerous attempts to explore their potential not only as
nutritional supplements, but also as potential drugs or components for adjuvant therapy. In
line with this, the findings reported in the present study lead to the conclusion that further
clinical trials of combinations of RSV and clinically approved anticancer drugs targeting
PARP1 should take into account the direct inhibiting effect of RSV on PARP1. Additionally,
RSV itself should be investigated as a potential anticancer agent targeting PARP1.
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