Molecular and Environmental Determinants of Addictive Substances
Abstract
:1. Introduction
2. Environmental Determinants of Addiction
2.1. Exposure to Heavy Metals in the Diet
2.2. The Impact of Chemical Elements
3. Risk Factors for Opioids and Addictive Substances
Pathomechanism of Opioid Addiction
4. Genetic Determinants of Addiction
4.1. Genetic Addiction Risk Scores
4.2. TaqI A Polymorphism (rs 1800497) of ANKK1 Gene
4.3. TagI B Polymorphism (rs 1079597) of the DRD2 Gene
4.4. -141C Ins/Del Polymorphism (rs 1799732) of the DRD2 Gene
4.5. A118G Polymorphism (rs 1799971) of the OPRM1 Gene
- (1)
- Control subjects with ANKK1 TaqI A-CC and TT genotypes had lower concentrations of Mn and Fe in the plasma compared to those addicted to opioids. Opioid-dependent individuals with ANKK1 TaqI A-CT, CC, and TT genotypes had higher plasma Mn and Fe concentrations than controls. Opioid addicts with the ANKK1 TaqI A-CT genotype had higher concentrations of Mn and Fe in the plasma compared to addicts with CC and TT genotypes. Control subjects with ANKK1 TaqI A-CC and TT genotypes had significantly lower plasma Yb concentrations than control subjects with CT genotypes and addicts with CC and TT genotypes.
- (2)
- Control subjects with DRD2 TaqI B-GG and AA genotypes had lower plasma Tl levels than addicted subjects. Opioid-dependent individuals with DRD2 TaqI B-GA, GG, and AA genotypes had higher plasma Tl concentrations compared to controls with these genotypes. Opioid addicts with the DRD2 TaqI B-GA genotype had higher plasma Tl levels than those with GG and AA genotypes. Opioid-dependent individuals with DRD2 TaqI B-GA, GG, and AA genotypes had higher plasma Tl concentrations compared to controls with these genotypes. Opioid addicts with the DRD2 TaqI B-AA genotype had lower Tl levels than those with GA and GG genotypes.
- (3)
- Patients addicted to addictive substances who consumed vegetables and who did not consume them had lower concentrations of Lu compared to controls who consumed vegetables and who did not consume vegetables. Controls who consumed vegetables had higher plasma Lu concentrations than those who did not consume vegetables. Consumed vegetables could be a source of lutetium in the plasma of control and addicted people.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
A | adenine |
A118G | single nucleotide polymorphism of the gene OPRM1 (rs 1799971:A>G) |
AD | alcohol dependence |
ADHD | Attention-deficit hyperactivity disorder |
Ag | silver |
Al | aluminum |
AMPA | AMPA-type glutamate receptor selectively activated by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid |
ANKK1 | ankyrin repeat and kinase domain controlling 1 (kinase domain containing 1 kinase) |
As | arsenic |
B | boron |
BGAGs | biogeographical ancestry groups |
bp | base pairs |
C | cytosine |
cAMP | cyclic adenosine monophosphate |
CanUD | cannabis use disorder |
Cd | cadmium |
Ce | cerium |
Co | cobalt |
COMT | gene encoding catechol-O-methytransferase |
CpG (CpG islands) | unmethylated DNA segments characteristic of vertebrate gene promoters |
CPP | conditioned place preference |
Cr | chromium |
CRC | colorectal cancer |
Cu | copper |
D1 | dopamine receptor D1 |
D2 | dopamine receptor D2 |
D2Lh | long isoform of the receptor D2 |
D2R | dopamine D2 receptor |
D2Sh | short isoform of the receptor D2 |
D3 | dopamine receptor D3 |
D4 | dopamine receptor D4 |
D5 | dopamine receptor D5 |
DAT1 | dopamine active transporter |
DβH | dopamine β-hydroxylase |
DRD1 | D1 receptor encoding gene |
DRD2 | D2 receptor encoding gene |
DRD4 | D4 receptor encoding gene |
EMCDDA | European Monitoring Center for Drugs and Drug Addiction |
Eu | europium |
FDA | U.S. Food and Drug Administration |
Fe | iron |
G | guanine |
GABA | γ-aminobutyric acid |
GARS | Genetic Addiction Risk Score |
Gd | gadolinium |
GSTs | glutathione S-transferases |
Hg | mercury |
HSPs | heat shock proteins |
5-HTTLPR | serotonin transporter |
ICD | International Statistical Classification of Diseases and Related Health Problems |
kb | kilo base pairs |
La | lanthanum |
µ (MOP) | mu opioid receptor |
MAO | monoamine oxidase |
MDA | malondialdehyde |
METH | methamphetamine |
miRNA | micro-RNA |
Mn | manganese |
Mo | molybdenum |
NAc | nucleus accumbens |
Nd | neodymium |
NFL | neurofilament light chain |
Ni | nickel |
NMDA | N-methyl-D-aspartate receptor |
OA | opioid addiction |
OPRM1 | μ1 opioid receptor encoding gene |
OR | odds ratio |
OUD | opioid use disorder |
P2X | P2X purinergic receptors |
Pb | lead |
PND | post nasal drip syndrome |
Pr | praxeodymium |
RIP | receptor-interacting protein |
Sb | antimony |
Sc | scandium |
Se | selenium |
Sn | tin |
SNP | single nucleotide polymorphism |
SOD | superoxide dismutase |
Sr | strontium |
SUD | substance use disorder |
ROS | reactive oxygen species |
T | thymine |
TaqI | restriction enzyme |
Taq1 A | single nucleotide polymorphism of the gene ANKK1 (rs 1800497:C>T) |
Taq1 B | single nucleotide polymorphism of the gene DRD2 (rs 1079597:G>A) |
Tl | thallium |
V | vanadium |
VTA | ventral tegmental area |
WHO | World Health Organization |
-141C Ins/Del | single nucleotide polymorphism of the gene DRD2 (rs 1799732:C>Del) |
5′UTR | 5′ untranslated region |
Zn | zinc |
References
- WHO (World Health Organization). Guidelines for the Psychosocially Assisted Pharmacological Treatment of Opioid Dependence; WHO Press: Geneva, Switzerland, 2009; 110p, Available online: https://iris.who.int/bitstream/handle/10665/43948/9789241547543_eng.pdf;jses (accessed on 2 June 2024).
- Levran, O.; Peles, E.; Randesi, M.; da Rosa, J.C.; Adelson, M.; Kreek, M.J. The μ-opioid receptor nonsynonymous variant 118A>G is associated with prolonged abstinence from heroin without agonist treatment. Pharmacogenomics 2017, 18, 1387–1391. [Google Scholar] [CrossRef] [PubMed]
- WHO (World Health Organization). International Statistical Classification of Diseases and Related Health Problems, ICD-10. 2019. Volume 1, 1075p; Volume 2, 275p. Available online: https://icd.who.int/browse10/2019/en (accessed on 2 June 2024).
- WHO (World Health Organization). International Statistical Classification of Diseases and Related Health Problems, ICD-11 (Version: 05/2024). 2024. Available online: https://icd.who.int/browse/2024-01/mms/en (accessed on 2 June 2024).
- Wagner, F.A.; Anthony, J.C. From first drug use to drug dependence: Developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 2002, 26, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Levran, O.; Peles, E.; Randesi, M.; da Rosa, J.C.; Ott Rotrosen, J.; Adelson, M.; Kreek, M.J. Dopaminergic pathway polymorphisms and heroin addiction: Further support for association of CSNK1E variants. Pharmacogenomics 2014, 15, 2001–2009. [Google Scholar] [CrossRef] [PubMed]
- Volkow, N.D.; Li, T.K. Drug addiction: The neurobiology of behaviour gone awry. Nat. Rev. Neurosci. 2004, 5, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Pasternak, E.; Paśnik, K.; Plewka, N. Opioids—From experimentation to addiction—Etiology, clinic and significant role of a nurse. Pielęgniarstwo Zdr. Publiczne 2015, 5, 209–214. [Google Scholar]
- Xie, X.; Gu, J.; Zhuang, D.; Shen, W.; Li, L.; Liu, Y.; Xu, W.; Hong, Q.; Chen, W.; Zhou, W.; et al. Association between GABA receptor delta subunit gene polymorphisms and heroin addiction. Neurosci. Lett. 2021, 755, 135905. [Google Scholar] [CrossRef]
- Khan, A.; Jahan, F.; Zahoor, M.; Ullah, R.; Albadrani, G.M.; Mohamed, H.R.H.; Khisroon, M. Association of genetic polymorphism of glutathione S-transferases with colorectal cancer susceptibility in snuff (Naswar) addicts. Braz. J. Biol. 2024, 84, e261509. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Deng, X.-D.; Ma, Y.; Liu, Y. FAAH levels and its genetic polymorphism association with susceptibility to methamphetamine dependence. Ann. Hum. Genet. 2019, 84, 259–270. [Google Scholar] [CrossRef]
- AL-Eitan, L.N.; Rababa’h, D.M.; Alghamdi, M.A. Genetic susceptibility of opioid receptor genes polymorphism to drug addiction: A candidate-gene association study. BMC Psychiatry 2021, 21, 5. [Google Scholar] [CrossRef]
- Levey, D.F.; Gelernter, J. Multi-ancestry genome-wide association study of cannabis use disorder yields insight into disease biology and public health implications. Nat. Genet. 2023, 55, 2094–2103. [Google Scholar] [CrossRef]
- Gaddis, N.; Mathur, R.; Marks, J.; Zhou, L.; Quach, B.; Waldrop, A.; Levran, O.; Agrawal, A.; Randesi, M.; Adelson, M.; et al. Multi-trait genome-wide association study of opioid addiction: OPRM1 and beyond. Sci. Rep. 2022, 12, 16873. [Google Scholar] [CrossRef] [PubMed]
- Sprague, J.E.; Freiermuth, C.E.; Lambert, J.; Braun, R.; Frey, J.A.; Bachmann, D.J.; Bischof, J.J.; Beaumont, L.; Lyons, M.S.; Pantalon, M.V.; et al. Opioid use disorder risk alleles in self-reported assigned African American/Afro-Caribbean and European biogeographical genetic ancestry groups and in males and females. Pharmacogenomics J. 2024, 24, 23. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-C.; Tu, H.Y.; Chung, R.-H.; Kuo, H.-W.; Liu, T.-H.; Chen, C.-H.; Mochly-Rosen, D.; Liu, Y.-L. Changes of Neurofilament Light Chain in Patients with Alcohol Dependence Following Withdrawal and the Genetic Effect from ALDH2 Polymorphism. Eur. Arch. Psychiatry Clin. Neurosci. 2024, 274, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Montalban, E.; Walle, R.; Castel, J.; Ansoult, A.; Hassouna, R.; Foppen, E.; Fang, X.; Hutelin, Z.; Mickus, S.; Perszyk, E.; et al. The Addiction-Susceptibility TaqIA/Ankk1 Controls Reward and Metabolism Through D2 Receptor-Expressing Neurons. Biol. Psychiatry 2023, 94, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Mufford, M.S.; van der Meer, D.; Kaufmann, T.; Frei, O.; Ramesar, R.; Thompson, P.M.; Jahanshad, N.; Morey, R.A.; Andreassen, O.A.; Stein, D.J.; et al. The Genetic Architecture of Amygdala Nuclei. Biol. Psychiatry 2024, 95, 72–84. [Google Scholar] [CrossRef]
- Strońska-Pluta, A.; Suchanecka, A.; Chmielowiec, K.; Chmielowiec, J.; Boroń, A.; Masiak, J.; Sipak-Szmigiel, O.; Recław, R.; Grzywacz, A. The Relationship between the Brain-Derived Neurotrophic Factor Gene Polymorphism (Val66Met) and Substance Use Disorder and Relapse. Int. J. Mol. Sci. 2024, 25, 788. [Google Scholar] [CrossRef]
- Guerin, A.A.; Spolding, B.; Bozaoglu, K.; Swinton, C.; Liu, Z.; Parry, B.; Truong, T.; Dean, B.; Lawrence, A.J.; Bonomo, Y.; et al. Associations between methamphetamine use disorder and SLC18A1, SLC18A2, BDNF, and FAAH gene sequence variants and expression levels. Dialogues Clin. Neurosci. 2024, 26, 64–76. [Google Scholar] [CrossRef]
- Ferraguti, G.; Francati, S.; Codazzo, C.; Blaconà, G.; Testino, G.; Angeloni, A.; Fiore, M.; Ceccanti, M.; Lucarelli, M. DNA Sequence Variations Affecting Serotonin Transporter Transcriptional Regulation and Activity: Do They Impact Alcohol Addiction? Int. J. Mol. Sci. 2024, 25, 8089. [Google Scholar] [CrossRef]
- Parker, N.; Cheng, W.; Hindley, G.F.L.; O’Connell, K.S.; Karthikeyan, S.; Holen, B.; Shadrin, A.A.; Rahman, Z.; Karadag, N.; Bahrami, S.; et al. Genetic Overlap Between Global Cortical Brain Structure, C-Reactive Protein, and White Blood Cell Counts. Biol. Psychiatry 2024, 95, 62–71. [Google Scholar] [CrossRef]
- Genc, S.; Zadeoglulari, Z.; Fuss, S.H.; Genc, K. The adverse effects of air pollution on the nervous system. J. Toxicol. 2012, 4, 782462. [Google Scholar] [CrossRef]
- Clifford, A.; Lang, L.; Chen, R.; Anstey, K.J.; Seaton, A. Exposure to air pollution and cognitive functioning across the life course—A systematic literature review. Environ. Res. 2016, 147, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Van den Bosch, M.; Meyer-Lindenberg, A. Environmental exposures and depression: Biological mechanisms and epidemiological evidence. Ann. Rev. Public Health 2019, 40, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, B.; Azadi, N.; Drebadami, A.H.; Nakhaee, S. Trace element levels: How Substance Use Disorder (SUD) contributes to the alteration of urinary essential and toxic element levels. PLoS ONE 2024, 19, e0294740. [Google Scholar] [CrossRef] [PubMed]
- Sussman, S.; Ames, S.L.; Avol, E. Could environmental exposures facilitate the incidence of addictive behaviors? Eval. Health Prof. 2015, 38, 53–58. [Google Scholar] [CrossRef]
- Ungless, M.A.; Argilli, E.; Bonci, A. Effects of stress and aversion on dopamine neurons: Implications for addiction. Neurosci. Biobehav. Rev. 2010, 35, 151–156. [Google Scholar] [CrossRef]
- Hill, M.N.; Hellemans, K.G.C.; Verma, P.; Gorzalka, B.B.; Weinberg, J. Neurobiology of chronic mild stress: Parallels to major depression. Neurosci. Biobehav. Rev. 2012, 36, 2085–2117. [Google Scholar] [CrossRef]
- Nestler, E.J. Epigenetic mechanisms of drug addiction. Neuropharmacology 2014, 76, 259–268. [Google Scholar] [CrossRef]
- Hammoud, S.S.; Cairns, B.R.; Jones, D.A. Epigenetic regulation of colon cancer and intestinal stem cells. Curr. Opin. Cell Biol. 2013, 25, 177–183. [Google Scholar] [CrossRef]
- Petronis, A.; Gottesman, I.I.; Kan, P.; Kennedy, J.L.; Geng, W.S.; Paterson, A.D.; Popendikyte, V. Monozygotic twins exhibit numerous epigenetic differences: Clues to twin discordance? Schizophr. Bull. 2003, 29, 169–178. [Google Scholar] [CrossRef]
- Kenny, P.J. Epigenetics, microRNA, and addiction. Dialogues Clin. Neurosci. 2014, 16, 335–344. [Google Scholar] [CrossRef]
- Cuitavi, J.; Hipólito, L.; Canals, M. The life cycle of the mu-opioid receptor. Trends Biochem. Sci. 2021, 46, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.J.; Feng, J.; Robison, A.J.; Maze, I.; Badimon, A.; Alvarez, E.; Chaudhury, D.; Damez-Werno, D.; Haggarty, S.J.; Han, M.H.; et al. Class I HDAC inhibition blocks cocaine-induced plasticity by targeted changes in histone methylation. Nat. Neurosci. 2013, 16, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Albores-Garcia, D.; McGlothan, J.L.; Bursac, Z.; Guilarte, T.R. Chronic developmental lead exposure increases μ-opiate receptor levels in the adolescent rat brain. Neurotoxicology 2021, 82, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Antoine, D.; Venigalla, G.; Truitt, B.; Roy, S. Linking the gut microbiome to microglial activation in opioid use disorder. Front. Neurosci. 2022, 16, 1050661. [Google Scholar] [CrossRef] [PubMed]
- Sarker, A.; Kim, J.-E.; Islam, A.R.M.d.T.; Bilal, M.; Rakib, M.d.R.J.; Nandi, R.; Rahman, M.M.; Islam, T. Heavy metals contamination and associated health risks in food webs—A review focuses on food safety and environmental sustainability in Bangladesh. Environ. Sci. Pollut. Res. Int. 2022, 29, 3230–3245. [Google Scholar] [CrossRef]
- Kempka, K.; Lorek, M.; Kamiński, P.; Baszyński, J.; Feit, J.; Gorzelańczyk, E.J. Opioids in the treatment of chronic pain, the effect on the human endocrine and immune systems. In Research and Development of Young Scientists in Poland; Nyćkowiak, J., Leśny, J., Eds.; Medical sciences and health sciences; Młodzi Naukowcy: Poznań, Poland, 2019; pp. 63–68. [Google Scholar]
- Lorek, M.; Kamiński, P.; Rektor, K.; Feit, J.; Gorzelańczyk, E.J. Pathomechanism of opioid addiction. In Selected Issues in the Field of Psychology and Medicine; Mołdoch-Mendoń, I., Danielewska, A., Eds.; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2020; pp. 205–210. [Google Scholar]
- Lorek, M. Environmental and Genetic Determinants of Addiction in Patients Taking Addictive Substances or Drugs, in Correlation with Changes in the Genetic Material and Biochemical Parameters. Ph.D. Thesis, UMK-CM, Bydgoszcz, Poland, 2022; 372p. [Google Scholar]
- Lorek, M.; Kamiński, P.; Feit, J.; Gorzelańczyk, E.J. Environmental and genetic determinants addictions in patients taking addictive substances or drugs (review of research and hypotheses). In The Role and Challenges of Medical Science; Maciąg, M., Maciąg, K., Eds.; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2018; pp. 179–188. [Google Scholar]
- Radovanović, M.R.; Milovanović, D.R.; Ignjatović-Ristić, D.; Radovanović, M.S. Heroin addict with gangrene of the extremities, rhabdomyolysis and severe hyperkalemia. Vojnosanit. Pregl. 2012, 69, 908–912. [Google Scholar] [CrossRef]
- Available online: https://www.ehealthme.com/ds/methadone-hydrochloride/high-potassium/ (accessed on 31 October 2021).
- Elnimr, T.; Hashem, A.; Assar, R. Heroin dependence effects on some major and trace elements. Biol. Trace Elem. Res. 1996, 54, 153–162. [Google Scholar] [CrossRef]
- Divsalar, K.; Haghpanah, T.; Afarinesh, M.; Mahmoudi, M. Opium and heroin alter biochemical parameters of human’s serum. Am. J. Drug Alcohol Abuse 2010, 36, 135–139. [Google Scholar]
- Afarinesh, M.; Haghpanah, T.; Divsalar, K.; Dehyadegary, E.; Shaikh-Aleslami, A.; Mahmoodi, M. Changes in serum biochemical factors associated with opium addiction after addiction desertion. Addict. Health 2014, 6, 138–145. [Google Scholar]
- Papaloucas, C.; Papaloucas, M.; Kouloulias, V.; Neanidis, K.; Gompaki-Pistevou, K.; Mystakidou, K.; Papageorgiou, C.; Zygogianni, A.; Gennimata, V.; Papaloucas, A. The amount of phosphorus in the blood of heroin abusers compared to that of healthy subjects. Clin. Lab. 2015, 61, 981–983. [Google Scholar] [CrossRef]
- Catalani, S.; Apostoli, P. Neurotoxic effects of cobalt: An open question. G. Ital. Med. Lav. Ergon. 2011, 33, 57–60. [Google Scholar]
- Adachi, T.; Aida, K.; Nishihara, H.; Kamiya, T.; Hara, H. Effect of hypoxia mimetic cobalt chloride on the expression of extracellular-superoxide dismutase in retinal pericytes. Biol. Pharm. Bull. 2011, 34, 1297–1300. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.M.; Gil Extremera, B.; Maldonado Martín, A.; Cantero-Hinojosa, J.; Moreno-Abadía, V. Trace elements in drug addicts. Klin. Wochenschr. 1990, 68, 507–511. [Google Scholar] [CrossRef] [PubMed]
- Kupnicka, P.; Kojder, K.; Metryka, E.; Kapczuk, P.; Jeżewski, D.; Gutowska, I.; Goschorska, M.; Chlubek, D.; Baranowska-Bosiacka, I. Morphine-element interactions—The influence of selected chemical elements on neural pathways associated with addiction. J. Trace Elem. Med. Biol. 2020, 60, 126495. [Google Scholar] [CrossRef] [PubMed]
- Glass, M.J. Opioid dependence and NMDA receptors. ILAR J. 2011, 52, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Lee, F.J.S.; Xue, S.; Pei, L.; Vukusic, B.; Chéry, N.; Wang, Y.; Wang, Y.T.; Niznik, H.B.; Yu, X.; Liu, F. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002, 111, 219–230. [Google Scholar] [CrossRef]
- Tamano, H.; Morioka, H.; Nishio, R.; Takeuchi, A.; Takeda, A. AMPA-induced extracellular Zn2+ influx into nigral dopaminergic neurons causes movement disorder in rats. Neurotoxicology 2018, 69, 23–28. [Google Scholar] [CrossRef]
- Dursun, N.; Erenmemişoğlu, A.; Süer, C.; Gogusten, B. The effect of zinc deficiency on morphine antinociception. Res. Commun. Alcohol Subst. Abuse 1995, 16, 47–52. [Google Scholar]
- Ciubotariu, D.; Nechifor, M. Zinc involvements in the brain. Rev. Med. Chir. Soc. Med. Nat. Iasi 2007, 111, 981–985. [Google Scholar]
- Mesbahzadeh, B.; Moradi-Kor, N.; Abbasi-Maleki, S. Zinc enhances the expression of morphine-induced conditioned place preference through dopaminergic and serotonergic systems. Biomol. Concepts 2019, 10, 51–61. [Google Scholar] [CrossRef]
- Ciubotariu, D.; Ghiciuc, C.M.; Lupușoru, C.E. Zinc involvement in opioid addiction and analgesia—Should zinc supplementation be recommended for opioid-treated persons? Subst. Abuse Treat. Prev. Policy 2015, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, A.; Siwek, A.; Wolak, M.; Pochwat, B.; Szewczyk, B.; Opoka, W.; Poleszak, E.; Nowak, G. Involvement of the monoaminergic system in the anti-depressant-like activity of chromium chloride in the forced swim test. J. Physiol. Pharmacol. 2013, 64, 493–498. [Google Scholar] [PubMed]
- Ciubotariu, D.; Nechifor, M.; Dimitriu, G. Chromium picolinate reduces morphine-dependence in rats, while increasing brain serotonin levels. J. Trace Elem. Med. Biol. 2018, 50, 676–683. [Google Scholar] [CrossRef] [PubMed]
- Molavi, N.; Ghaderi, A.; Banafshe, H.R. Determination of thallium in urine, blood, and hair in illicit opioid users in Iran. Hum. Exp. Toxicol. 2020, 39, 808–815. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.C.; Heimbach, M.D.; Truscott, D.R.; Duncan, B.D. Boric acid poisoning: Report of 11 cases. Can. Med. Assoc. J. 1964, 90, 1018–1023. [Google Scholar]
- Helaly, A.M.; Mokhtar, N.; Firgany, A.E.L.; Hazem, N.M.; El Morsi, E.; Ghorab, D. Molybdenum bupropion combined neurotoxicity in rats. Reg. Toxicol. Pharmacol. 2018, 98, 224–230. [Google Scholar] [CrossRef]
- ATSDR. Toxicological Profile for Strontium; Agency for Toxic Substances and Disease Registry, Division of Toxicology, Toxicology Information Branch: Atlanta, GA, USA, 2004; 445p. [Google Scholar]
- Johnson, A.R.; Armstrong, W.D.; Singer, L. The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues. Calcif. Tissue Res. 1968, 2, 242–252. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; 520p. [Google Scholar]
- Kabata-Pendias, A.; Szteke, B. Trace Elements in Abiotic and Biotic Environments, 1st ed.; CRC Press, Taylor & Francis LLC: Boca Raton, FL, USA, 2019; 468p. [Google Scholar]
- Nation, J.R.; Pugh, C.K.; Von Stultz, J.; Bratton, G.R.; Clark, D.E. The effects of cadmium on the self-administration of ethanol and an isocaloric/isohedonic equivalent. Neurotoxicol. Teratol. 1989, 11, 509–514. [Google Scholar] [CrossRef]
- Nation, J.R.; Miller, D.K.; Livermore, C.L. Chronic exposure to cadmium attenuates behavioral sensitization to morphine. Psychopharmacology 1997, 131, 248–254. [Google Scholar] [CrossRef]
- Miller, D.K.; Nation, J.R. Chronic cadmium exposure attenuates the conditioned reinforcing properties of morphine and fentanyl. Brain Res. 1997, 776, 162–169. [Google Scholar] [CrossRef]
- Gupta, R.; Shukla, R.K.; Pandey, A.; Sharma, T.; Dhuriya, Y.K.; Srivastava, P.; Singh, M.P.; Siddiqi, M.I.; Pant, A.B.; Khanna, V.K. Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β signaling in cadmium-induced DA-D2 receptor-mediated motor dysfunctions: Protective role of quercetin. Sci. Rep. 2018, 8, 2528. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.C.; Miller, G.W. The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction. Biochem. Pharmacol. 2008, 76, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Listos, J.; Baranowska-Bosiacka, I.; Talarek, S.; Listos, P.; Orzelska, J.; Fidecka, S.; Gutowska, I.; Kolasa, A.; Rybicka, M.; Chlubek, D. The effect of perinatal lead exposure on dopamine receptor D2 expression in morphine dependent rats. Toxicology 2013, 310, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Bourke, E.; Roberts, V.; Lim, S.M.; Johnson, D.; Hamblin, P.S.; Karunajeewa, H.; Greene, S. Lead poisoning associated with illicit opium use. Intern. Med. J. 2020, 50, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.M.M.; Akbari, A.; Mehrpour, O.; Zamani, N. Lead toxicity due to ingestion of lead-contaminated opium in a patient presenting with motor neuropathy and upper limb paresis: A case report. Sultan Qaboos Univ. Med. J. 2018, 18, 529–532. [Google Scholar] [CrossRef]
- Balachandra, A.T.; Balasooriya, B.A.; Athukorale, D.N.; Perera, C.S.; Henry, K.D. Chronic arsenic poisoning in opium addicts in Sri Lanka. Ceylon Med. J. 1983, 28, 29–34. [Google Scholar]
- Narang, A.P.S.; Chawla, L.S.; Khurana, S.B. Levels of arsenic in Indian opium eaters. Drug Alcohol Depend. 1987, 20, 149–153. [Google Scholar] [CrossRef]
- Katselou, M.; Papoutsis, I.; Nikolaou, P.; Spiliopoulou, C.; Athanaselis, S. A “krokodil” emerges from the murky waters of addiction. Abuse trends of an old drug. Life Sci. 2014, 102, 81–87. [Google Scholar] [CrossRef]
- Alves, E.A. DARK Classics in Chemical Neuroscience: Krokodil. ACS Chem. Neurosci. 2020, 11, 3968–3978. [Google Scholar] [CrossRef]
- Shabani, M.; Hadeiy, S.K.; Parhizgar, P.; Zamani, N.; Mehrad, H.; Hassanian-Moghaddam, H.; Phillips, S. Lead poisoning; a neglected potential diagnosis in abdominal pain. BMC Gastroenterol. 2020, 20, 134. [Google Scholar] [CrossRef]
- Ghane, T.; Zamani, N.; Hassanian-Moghaddam, H.; Beyrami, A.; Noroozi, A. Lead poisoning outbreak among opium users in the Islamic Republic of Iran, 2016-2017. Bull. World Health Organ. 2018, 96, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Khanna, I.K.; Pillarisetti, S. Buprenorphine—An attractive opioid with underutilized potential in the treatment of chronic pain. J. Pain Res. 2015, 8, 859–870. [Google Scholar] [PubMed]
- Everitt, B.J.; Belin, D.; Economidou, D.; Pelloux, Y.; Dalley, J.W.; Robbins, T.W. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 3125–3135. [Google Scholar] [CrossRef] [PubMed]
- Ogińska-Bulik, N. Addiction to Activities. Myth or Reality; Difin: Warszawa, Poland, 2012; 216p. [Google Scholar]
- Robbins, T.W.; Gillan, C.M.; Smith, D.G.; de Wit, S.; Ersche, K.D. Neurocognitive endophenotypes of impulsivity and compulsivity: Towards dimensional psychiatry. Trends Cogn. Sci. 2012, 16, 81–91. [Google Scholar] [CrossRef]
- Petry, N.M.; Borek, C.; Auriacombe, M.; Borges, G.; Bucholz, K.; Crowley, T.J.; Grant, B.F.; Hasin, D.S.; O’Brien, C. An overview of and rationale for changes proposed for pathological gambling in DSM-5. J. Gambl. Stud. 2014, 30, 493–502. [Google Scholar] [CrossRef]
- Volkow, N.D. Drugs, Brains, and Behavior: The Science of Addiction; Research Report Series; NIDA: Bethesda, MD, USA; U.S. Department of Health and Human Services: Washington, DC, USA, 2020; 32p.
- Ostaszewski, K.; Rustecka-Krawczyk, A.; Wójcik, W. Protective Factors and Risk Factors Related to Problem Behavior of Warsaw Junior High School Students: Grades I-II; Institute of Psychiatry and Neurology: Warsaw, Poland, 2009; 97p. [Google Scholar]
- Li, K.J.; Chen, A.; DeLisi, L.E. Opioid use and schizophrenia. Curr. Opin. Psychiatry 2020, 33, 219–224. [Google Scholar] [CrossRef]
- Volkow, N.D. Comorbidity: Addiction and Other Mental Illnesses; Research Report Series; NIDA: Bethesda, MD, USA; U.S. Department of Health and Human Services: Washington, DC, USA, 2008; 12p.
- Chambers, R.A.; Taylor, J.R.; Potenza, M.N. Developmental neurocircuitry of motivation in adolescence: A critical period of addiction vulnerability. Am. J. Psychiatry 2003, 160, 1041–1052. [Google Scholar] [CrossRef]
- Clark, R.E.; Baxter, J.D.; Aweh, G.; O’Connell, E.; Fisher, W.H.; Barton, B.A. Risk factors for relapse and higher costs among medicaid members with opioid dependence or abuse: Opioid agonists, comorbidities, and treatment history. J. Subst. Abus. Treat. 2015, 57, 75–80. [Google Scholar] [CrossRef]
- Malczewski, A.; Bevz, M.; Dalmata, M.; Jędruszak, Ł.; Kidawa, M. Report on the State of Drug Addiction in Poland 2020; National Bureau for Drug Prevention: Warszawa, Poland, 2020; 62p. [Google Scholar]
- Warner, L.A.; Kessler, R.C.; Hughes, M.; Anthony, J.C.; Nelson, C.B. Prevalence and correlates of drug use and dependence in the United States. Results from the National Comorbidity Survey. Arch. Gen. Psychiatry 1995, 52, 219–229. [Google Scholar] [CrossRef]
- Kandel, D.; Chen, K.; Warner, L.A.; Kessler, R.C.; Grant, B. Prevalence and demographic correlates of symptoms of last year dependence on alcohol, nicotine, marijuana and cocaine in the U.S. population. Drug Alcohol Depend. 1997, 44, 11–29. [Google Scholar] [CrossRef]
- UNODC (United Nations Office on Drugs and Crime). World Drug Report. Global Overview of Drug Demand and Drug Supply; United Nations: Vienna, Austria, 2021; 109p. [Google Scholar]
- Serdarevic, M.; Striley, C.W.; Cottler, L.B. Sex differences in prescription opioid use. Curr. Opin. Psychiatry 2017, 30, 238–246. [Google Scholar] [CrossRef] [PubMed]
- LeResche, L.; Saunders, K.; Dublin, S.; Thielke, S.; Merrill, J.; Shortreed, S.; Campbell, C.; Korff, M. Sex and age differences in global pain status among patients using opioids long term for chronic noncancer pain. J. Women’s Health 2015, 24, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Żulewska-Sak, J.; Dąbrowska, K. Raport: Social Perception of Independent Attempts to Overcome Addiction. Comparative Analysis; Institute of Psychiatry and Neurology: Warsaw, Poland, 2004; 72p. [Google Scholar]
- Merikangas, K.R.; Stolar, M.; Stevens, D.E.; Goulet, J.; Preisig, M.A.; Fenton, B.; Zhang, H.; O’Malley, S.S.; Rounsaville, B.J. Familial transmission of substance use disorders. Arch. Gen. Psychiatry 1998, 55, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Tsuang, M.T.; Lyons, M.J.; Meyer, J.M.; Doyle, T.; Eisen, S.A.; Goldberg, J.; True, W.; Lin, N.; Toomey, R.; Eaves, L. Co-occurrence of abuse of different drugs in men: The role of drug-specific and shared vulnerabilities. Arch. Gen. Psychiatry 1998, 55, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Tsuang, M.T.; Bar, J.L.; Harley, R.M.; Lyons, M.J. The Harvard twin study of substance abuse: What we have learned. Harv. Rev. Psychiatry 2001, 9, 267–279. [Google Scholar] [CrossRef]
- Mistry, C.J.; Bawor, M.; Desai, D.; Marsh, D.C.; Samaan, Z. Genetics of opioid dependence: A review of the genetic contribution to opioid dependence. Curr. Psychiatry Rev. 2014, 10, 156–167. [Google Scholar] [CrossRef]
- Kendler, K.S.; Jacobson, K.C.; Prescott, C.A.; Neale, M.C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry 2003, 160, 687–695. [Google Scholar] [CrossRef]
- Liao, D.; Lin, H.; Law, P.Y.; Loh, H.H. Mu-opioid receptors modulate the stability of dendritic spines. Proc. Natl. Acad. Sci. USA 2005, 102, 1725–1730. [Google Scholar] [CrossRef]
- Koob, G.F.; Volkow, N.D. Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry 2016, 3, 760–773. [Google Scholar] [CrossRef]
- Kieffer, B.L.; Evans, C.J. Opioid tolerance-in search of the holy grail. Cell 2002, 108, 587–590. [Google Scholar] [CrossRef]
- Volkow, N.D.; Fowler, J.S.; Wang, G.J.; Baler, R.; Telang, F. Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 2009, 56, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Lachowicz, J.E.; Sibley, D.R. Chimeric D2/D3 dopamine receptor coupling to adenylyl cyclase. Biochem. Biophys. Res. Commun. 1997, 237, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Schultz, W. Neuronal reward and decision signals: From theories to data. Physiol. Rev. 2015, 95, 853–951. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Wang, H.L.; Li, X.; Ng, T.H.; Morales, M. Mesocorticolimbic glutamatergic pathway. J. Neurosci. 2011, 31, 8476–8490. [Google Scholar] [CrossRef] [PubMed]
- Moran, M.; Blum, K.; Ponce, J.V.; Lott, L.; Gondre-Lewis, M.C.; Badgaiyan, S.; Brewer, R.; Downs, B.W.; Fynman, P.; Weingarten, A.; et al. High genetic addiction risk score (GARS) in chronically prescribed severe chronic opioid probands attending multi-pain clinics: An open clinical pilot trial. Mol. Neurobiol. 2021, 58, 3335–3346. [Google Scholar] [CrossRef]
- Przewłocki, R. Mechanisms of addiction to opioid analgesics. Med. Paliatywna Prakt. 2017, 11, 55–60. [Google Scholar]
- Kutlu, M.G.; Gould, T.J. Effects of drugs of abuse on hippocampal plasticity and hippocampus-dependent learning and memory: Contributions to development and maintenance of addiction. Learn. Mem. 2016, 23, 515–533. [Google Scholar] [CrossRef]
- Al-Eitan, L.; Jaradat, S.A.; Hulse, G.; Tay, G. Custom genotyping for substance addiction susceptibility genes in Jordanians of Arab descent. BMC Res. Notes 2012, 5, 497. [Google Scholar] [CrossRef]
- Hudson, J.I.; Pope, H.G.; Jonas, J.M.; Yurgelun-Todd, D. Family history study of anorexia nervosa and bulimia. Br. J. Psychiatry 1983, 142, 428–429. [Google Scholar] [CrossRef]
- Edwards, A.C.; Svikis, D.S.; Pickens, R.W.; Dick, D.M. Genetic influences on addiction. Prim. Psychiatry 2009, 16, 40–46. [Google Scholar]
- Bart, G.; Heilig, M.; LaForge, K.S.; Pollak, L.; Leal, S.M.; Ott, J.; Kreek, M.J. Substantial attributable risk related to a functional mu-opioid receptor gene polymorphism in association with heroin addiction in central Sweden. Mol. Psychiatry 2004, 9, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Kreek, M.J.; Levran, O.; Reed, B.; Schlussman, S.D.; Zhou, Y.; Butelman, E.R. Opiate addiction and cocaine addiction: Underlying molecular neurobiology and genetics. J. Clin. Investig. 2012, 122, 3387–3393. [Google Scholar] [CrossRef] [PubMed]
- Goldman, D.; Oroszi, G.; Ducci, F. The genetics of addictions: Uncovering the genes. Nat. Rev.Genet. 2005, 6, 521–532. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Lynskey, M.T. Are there genetic influences on addiction: Evidence from family, adoption and twin studies. Addiction 2008, 103, 1069–1081. [Google Scholar] [CrossRef]
- Blum, K.; Chen, A.L.C.; Thanos, P.K.; Febo, M.; Demetrovics, Z.; Dushaj, K.; Kovoor, A.; Baron, D.; Smith, D.E.; Roy, I.I.I.A.K.; et al. Genetic addiction risk score (GARS), a predictor of vulnerability to opioid dependence. Front. Biosci. 2020, 10, 175–196. [Google Scholar] [CrossRef]
- Blum, K.; Oscar-Berman, M.; Demetrovics, Z.; Barh, D.; Gold, M.S. Genetic Addiction Risk Score (GARS): Molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Mol. Neurobiol. 2014, 50, 765–796. [Google Scholar] [CrossRef]
- Hauser, J.; Leszczyńska-Rodziewicz, A.; Skibińska, M. Is there a common genetic basis for schizophrenia and bipolar disorder? Psychiatria 2005, 2, 145–153. [Google Scholar]
- Jaroniec, M.; Ostalska-Nowicka, D. Genomic disorders—Clinical consequences and application in diagnostics. Post. Biol. Komponce. 2012, 39, 112–118. [Google Scholar]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-5, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2013. [Google Scholar]
- Haerian, B.S.; Haerian, M.N. OPRM1 rs1799971 polymorphism and opioid dependence: Evidence from a meta-analysis. Pharmacogenomics 2013, 14, 813–824. [Google Scholar] [CrossRef]
- Ahmed, M.; Ul Haq, I.; Faisal, M.; Waseem, D.; Taqi, M.M. Implication of OPRM1 A118G polymorphism in opioids addicts in Pakistan: In vitro and in silico analysis. J. Mol. Neurosci. 2018, 65, 472–479. [Google Scholar] [CrossRef]
- Kula, A.; Dawidowicz, M.; Świętochowski, P.; Ostrowska, Z. Evaluation of the effect of genetic polymorphisms of opioid, purinergic and adrenergic receptors on opioid therapies. Post. Hig. Med. Dosw. 2019, 73, 189–196. [Google Scholar] [CrossRef]
- Neville, M.J.; Johnstone, E.C.; Walton, R.T. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat. 2004, 23, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, J. The association of DRD2 with insight problem solving. Front. Psychol. 2016, 7, 1865. [Google Scholar] [CrossRef] [PubMed]
- Hoenicka, J.; Quiñones-Lombraña, A.; España-Serrano, L.; Alvira-Botero, X.; Kremer, L.; Pérez-González, R.; Rodríguez-Jiménez, R.; Jiménez-Arriero, M.A.; Ponce, G.; Palomo, T. The ANKK1 gene associated with addictions is expressed in astroglial cells and upregulated by apomorphine. Biol. Psychiatry 2010, 67, 3–11. [Google Scholar] [CrossRef]
- Available online: https://www.snpedia.com/index.php/ANKK1 (accessed on 12 October 2021).
- Lucht, M.; Rosskopf, D. Comment on “Genetically determined differences in learning from errors”. Science 2008, 321, 200. [Google Scholar] [CrossRef]
- Zahari, Z.; Buitrago, M.R.; Zahri Johari, M.K.; Musa, N.; Ismail, R. A nested allele-specific multiplex polymerase chain reaction method for the detection of DRD2 polymorphisms. Malays. J. Med. Sci. 2011, 18, 44–57. [Google Scholar]
- Ghosh, J.; Pradhan, S.; Mittal, B. Identification of a novel ANKK1 and other dopaminergic (DRD2 and DBH) gene variants in migraine susceptibility. Neuromol. Med. 2013, 15, 61–73. [Google Scholar] [CrossRef]
- Jönsson, E.G.; Nöthen, M.M.; Grünhage, F.; Farde, L.; Nakashima, Y.; Propping, P.; Sedvall, G.C. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol. Psychiatry 1999, 4, 290–296. [Google Scholar] [CrossRef]
- Noble, E.P. Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: A review. Eur. Psychiatry 2000, 15, 79–89. [Google Scholar] [CrossRef]
- Holmboe, K.; Fearon, R.M.P.; Sasvari-Szekely, M.; Nemoda, Z.; Csibra, G.; Johnson, M.H. Polymorphisms in dopamine system genes are associated with individual differences in attention ininfancy. Dev. Psychol. 2010, 46, 404–416. [Google Scholar] [CrossRef]
- Lawford, B.R.; Young, R.M.; Noble, E.P.; Sargent, J.; Rowell, J.; Shadforth, S.; Zhang, X.; Ritchie, T. The D2 dopamine receptor A1 allele and opioid dependence: Association with heroin use and response to methadone treatment. Am. J. Med. Genet. 2000, 96, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, X.; Zhao, J.; Hu, X.; Ball, D.M.; Loh, E.W.; Sham, P.C.; Collier, D.A. Allelic association analysis of the dopamine D2, D3, 5-HT2A, and GABA(A)gamma2 receptors and serotonin transporter genes with heroin abuse in Chinese subjects. Am. J. Med. Genet. 2002, 114, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Shahmoradgoli, M.; Ahmad, M.; Joghataie, M.; Valaie, F.; Riazalhosseini, Y.; Mostafavi, H.; Mohammadbeigi, F.; Najmabadi, H. Association between the DRD2 A1 allele and opium addiction in the Iranian population. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2005, 134, 39–41. [Google Scholar]
- Perez de los Cobos, J.; Baiget, M.; Trujols, J.; Sinol, N.; Volpini, V.; Banuls, E.; Calafell, F.; Luquero, E.; del Rio, E.; Alvarez, E. Allelic and genotypic associations of DRD2 TaqI Apolymorphism with heroin dependence in Spanish subjects: A case control study. Behav. Brain Funct. 2007, 3, 25. [Google Scholar] [CrossRef]
- Crettol, S.; Besson, J.; Croquette-Krokar, M.; Hämmig, R.; Gothuey, I.; Monnat, M.; Déglon, J.J.; Preisig, M.; Eap, C.B. Association of dopamine and opioid receptor genetic polymorphisms with response to methadone maintenance treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 1722–1727. [Google Scholar] [CrossRef]
- Hou, X.F.; Li, S.B. Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci. Lett. 2009, 464, 127–130. [Google Scholar] [CrossRef]
- Vereczkei, A.; Demetrovics, Z.; Szekely, A.; Sarkozy, P.; Antal, P.; Szilagyi, A.; Sasvari-Szekely, M.; Barta, C. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS ONE 2013, 8, e66592. [Google Scholar] [CrossRef]
- Cai, M.; Su, Z.; Zou, H.; Zhang, Q.; Berent, J.; Zhang, L.; Wang, T.; Yang, Z.; Li, C. Association between the traditional Chinese medicine pathological factors of opioid addiction and DRD2/ANKK1 TaqIA polymorphisms. BMC Complement. Altern. Med. 2015, 15, 209. [Google Scholar] [CrossRef]
- Yilbas, B.; Akkisi Kumsar, N.; Dilbaz, N. Relation of addiction with dopamine 2 receptor (DRD2) TaqIA polymorphism in heroin addicts. Anadolu Psikiyatr. Derg. 2016, 17, 181–187. [Google Scholar] [CrossRef]
- Thompson, J.; Thomas, N.; Singleton, A.; Piggott, M.; Lloyd, S.; Perry, E.K.; Morris, C.M.; Perry, R.H.; Ferrier, I.N.; Court, J.A. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: Reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 1997, 7, 479–484. [Google Scholar] [CrossRef]
- Ritchie, T.; Noble, E.P. Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem. Res. 2003, 28, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Magistrelli, L.; Ferrari, M.; Furgiuele, A.; Milner, A.V.; Contaldi, E.; Comi, C.; Cosentino, M.; Marino, F. Polymorphisms of dopamine receptor genes and parkinson’s disease: Clinical relevance and future perspectives. Int. J. Mol. Sci. 2021, 22, 3781. [Google Scholar] [CrossRef] [PubMed]
- Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie, T.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H.; Cohn, J.B. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990, 263, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Munafò, M.R.; Matheson, I.J.; Flint, J. Association of the DRD2 gene Taq1A polymorphism and alcoholism: A meta-analysis of case-control studies and evidence of publication bias. Mol. Psychiatry 2007, 12, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Munafò, M.R.; Timpson, N.J.; David, S.P.; Ebrahim, S.; Lawlor, D.A. Association of the DRD2 gene Taq1A polymorphism and smoking behavior: A meta-analysis and new data. Nicotine Tob. Res. 2009, 11, 64–76. [Google Scholar] [CrossRef]
- Ponce, G.; Hoenicka, J.; Jiménez-Arriero, M.A.; Rodríguez-Jiménez, R.; Aragüés Martín-Suñé, N.; Huertas, E.; Palomo, T. DRD2 and ANKK1 genotype in alcohol-dependent patients with psychopathic traits: Association and interaction study. Br. J. Psychiatry 2008, 193, 121–125. [Google Scholar] [CrossRef]
- Deng, X.D.; Jiang, H.; Ma, Y.S.; Gao, Q.; Zhang, B.; Mu, B.; Zhang, L.X.; Zhang, W.; Er, Z.E.M.; Xie, Y.; et al. Association between DRD2/ANKK1 TaqIA polymorphism and common illicit drug dependence: Evidence from a meta-analysis. Hum. Immunol. 2015, 76, 42–51. [Google Scholar] [CrossRef]
- Verdejo-Garcia, A.; Clark, L.; Verdejo-Román, J.; Khaper, N.; Martinez-Gonzalez, J.M.; Gutierrez, B.; Soriano-Mas, C. Neural substrates of cognitive flexibility in cocaine and gambling addictions. Br. J. Psychiatry 2015, 207, 158–164. [Google Scholar] [CrossRef]
- Grochans, E.; Grzywacz, A.; Małecka, I.; Samochowiec, A.; Karakiewicz, B.; Samochowiec, J. Association studies of selected polymorphisms of DRD2, 5HTT, GRIK3, ADH4 genes in patients with alcohol dependence syndrome. Psych. Pol. 2011, 45, 325–335. [Google Scholar]
- Barratt, D.T.; Coller, J.K.; Somogyi, A.A. Association between the DRD2 A1 allele and response to methadone and buprenorphine maintenance treatments. Am. J. Med. Gen. B Neuropsychiatr. Genet. 2006, 141, 323–331. [Google Scholar] [CrossRef]
- Esposito-Smythers, C.; Spirito, A.; Rizzo, C.; McGeary, J.E.; Knopik, V.S. Associations of the DRD2 TaqIA polymorphism with impulsivity and substance use: Preliminary results from a clinical sample of adolescents. Pharmacol. Biochem. Behav. 2009, 93, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, J.M.; Gainetdinov, R.R. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev. 2011, 63, 182–217. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, V.V.; Nguyen, T.B.; Cui, Y.; Oh, Y.E.; Lee, K.H.; Bagalkot, T.R.; Chung, Y.C. Effects of social defeat stress on dopamine D2 receptor isoforms and proteins involved in intracellular trafficking. Behav. Brain Funct. 2018, 14, 16. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.L.; Ou, W.C.; Chen, P.L.; Liu, C.N.; Chen, L.C.C.; Chen, Y.C.; Lin, M.H.; Huang, C.S. Effects of interaction between dopamine D2 receptor and monoamine oxidase a genes on smoking status in young men. Biol. Res. Nurs. 2015, 17, 422–428. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, J.B.; Zhao, J.; Cai, X.T.; Zhu, Y.S.; Li, S.B. Association between dopamine D2 receptor gene polymorphisms and the risk of heroin dependence. Genet. Mol. Res. 2016, 15, 1–8. [Google Scholar] [CrossRef]
- Li, T.; Arranz, M.; Aitchison, K.J.; Bryant, C.; Liu, X.; Kerwin, R.W.; Murray, R.; Sham, P.; Collier, D.A. Case-control, haplotype relative risk and transmission disequilibrium analysis of a dopamine D2 receptor functional promoter polymorphism in schizophrenia. Schizophr. Res. 1998, 32, 87–92. [Google Scholar]
- Xu, K.; Lichtermann, D.; Lipsky, R.H.; Franke, P.; Liu, X.; Hu, Y.; Cao, L.; Schwab, S.G.; Wildenauer, D.B.; Bau, C.H.D.; et al. Association of specific haplotypes of D2 dopamine receptor gene with vulnerability to heroin dependence in 2 distinct populations. Arch. Gen. Psychiatry 2004, 61, 597–606. [Google Scholar] [CrossRef]
- Shao, C.; Cai, Y.; Jiang, K.; Zhao, M.; Song, L.; Xu, Y.; Zhu, M.; Wang, Q.; Zhou, W. Relationship between DRD2 receptor gene-141C Ins/Del polymorphism and heroin dependence. Chin. J. Behav. Med. Sci. 2005, 14, 885–886. [Google Scholar]
- Cordeiro, Q.; Siqueira-Roberto, J.; Zung, S.; Vallada, H. Association between the DRD2-141C Insertion/Deletion polymorphism and schizophrenia. Arq. Neuro-Psiquiatr. 2009, 67, 191–194. [Google Scholar] [CrossRef]
- Murphy, G.; Cross, A.J.; Sansbury, L.S.; Bergen, A.; Laiyemo, A.O.; Albert, P.S.; Wang, Z.; Yu, B.; Lehman, T.; Kalidindi, A.; et al. Dopamine D2 receptor polymorphisms and adenoma recurrence in the polyp prevention trial. Int. J. Cancer 2009, 124, 2148–2151. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Lind, P.A.; Wilhelmsen, K.C. Association between single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) and self-reported responses to alcohol in American Indians. BMC Med. Genet. 2008, 9, 35. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.; Chen, B.; Zheng, Y.; Lu, Q.; Liu, L.; Zhuge, Q.C. Association study of OPRM1 polymorphisms with schizophrenia in Han Chinese population. BMC Psychiatry 2013, 13, 107. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.genecards.org/cgi-bin/carddisp.pl?gene=OPRM1 (accessed on 2 June 2024).
- Wang, J.B.; Johnson, P.S.; Persico, A.M.; Hawkins, A.L.; Griffin, C.A.; Uhl, G.R. Human mu opiate receptor. CDNA and genomic clones, pharmacologic characterization and chromosomal assignment. FEBS Lett. 1994, 338, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Mestek, A.; Hurley, J.H.; Bye, L.S.; Campbell, A.D.; Chen, Y.; Tian, M.; Liu, J.; Schulman, H.; Yu, L. The human mu opioid receptor: Modulation of functional desensitization by ccalcium/calmodulin-dependent protein kinase and protein kinase C. J. Neurosci. 1995, 15, 2396–2406. [Google Scholar] [CrossRef] [PubMed]
- Al-Eitan, L.; Jaradat, S.; Dadour, I.; Tay, G. Polymorphisms in the µ-Opioid receptor gene in Jordanian Arabs with opiate drug dependence. ScienceMED 2012, 3, 91–97. [Google Scholar]
- Woodcock, E.A.; Lundahl, L.H.; Burmeister, M.; Greenwald, M.K. Functional mu opioid receptor polymorphism (OPRM1 A118G) associated with heroin use outcomes in caucasian males: A pilot study. Am. J. Addict. 2015, 24, 329–335. [Google Scholar] [CrossRef]
- Gong, X.D.; Wang, J.Y.; Liu, F.; Yuan, H.H.; Zhang, W.Y.; Guo, Y.H.; Jiang, B. Gene polymorphisms of OPRM1 A118G and ABCB1 C3435T may influence opioid requirements in Chinese patients with cancer pain. Asian Pac. J. Cancer Prev. 2013, 14, 2937–2943. [Google Scholar] [CrossRef]
- Bond, C.; LaForge, K.S.; Tian, M.; Melia, D.; Zhang, S.; Borg, L.; Gong, J.; Schluger, J.; Strong, J.A.; Leal, S.M.; et al. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: Possible implications for opiate addiction. Proc. Natl. Acad. Sci. USA 1998, 95, 9608–9613. [Google Scholar] [CrossRef]
- Salimi, V.; Hennus, M.P.; Mokhtari-Azad, T.; Shokri, F.; Janssen, R.; Hodemaekers, H.; Rygiel, T.P.; Coenjaerts, F.E.J.; Meyaard, L.; Bont, L. Opioid receptors control viral replication in the airways. Crit. Care Med. 2013, 41, 205–214. [Google Scholar] [CrossRef]
- Kim, H.; Clark, D.; Dionne, R.A. Genetic contributions to clinical pain and analgesia: Avoiding pitfalls in genetic research. J. Pain 2009, 10, 663–693. [Google Scholar] [CrossRef]
- Taqi, M.M.; Faisal, M.; Zaman, H. OPRM1 A118G Polymorphisms and its role in opioid addiction: Implication on severity and treatment approaches. Pharmgenomics Pers. Med. 2019, 12, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Schwantes-An, T.H.; Zhang, J.; Chen, L.S.; Hartz, S.M.; Culverhouse, R.C.; Chen, X.; Coon, H.; Frank, J.; Kamens, H.M.; Konte, B.; et al. Association of the OPRM1 variant rs1799971 (A118G) with non-specific liability to substance dependence in a collaborative de novo meta-analysis of European-ancestry cohorts. Behav. Genet. 2016, 46, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Levran, O.; Kreek, M.J. Population-specific genetic background for the OPRM1 variant rs1799971 (118A>G): Implications for genomic medicine and functional analysis. Mol. Psychiatry 2021, 26, 3169–3177. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.; Deng, H.; Alston, T.; Kong, Y.; Wang, J. Association of opioid receptor mu 1 (OPRM1) A118G polymorphism (rs1799971) with nicotine dependence. Oncotarget 2017, 8, 84329–84337. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Choi, S.W.; Kim, D.; Lee, J.; Kim, J.W. Associations among the opioid receptor gene (OPRM1) A118G polymorphism, psychiatric symptoms, and quantitative EEG in Korean males with gambling disorder: A pilot study. J. Behav. Addict. 2019, 8, 463–470. [Google Scholar] [CrossRef]
- Samochowiec, A.; Samochowiec, J.; Pełka-Wysiecka, J.; Kucharska-Mazur, J.; Grochans, E.; Jabłoński, M.; Bieńkowski, P.; Murawiec, S.; Małecka, I.; Mak, M.; et al. The role of OPRM1 polymorphism in the etiology of alcoholism. Adv. Clin. Exp. Med. 2019, 28, 199–202. [Google Scholar] [CrossRef]
- Olesen, A.E.; Sato, H.; Nielsen, L.M.; Staahl, C.; Droney, J.; Gretton, S.; Branford, R.; Drewes, A.M.; Arendt-Nielsen, L.; Riley, J.; et al. The genetic influences on oxycodone response characteristics in human experimental pain. Fundam. Clin. Pharmacol. 2015, 29, 417–425. [Google Scholar] [CrossRef]
- Hajj, A.; Halepian, L.; Osta, N.E.; Chahine, G.; Kattan, J.; Rabbaa Khabbaz, L. OPRM1 c.118A>G polymorphism and duration of morphine treatment associated with morphine doses and quality-of-life in palliative cancer pain settings. Int. J. Mol. Sci. 2017, 18, 669. [Google Scholar] [CrossRef]
- Oueslati, B.; Moula, O.; Ghachem, R. The impact of OPRM1’s genetic polymorphisms on methadone maintenance treatment in opioid addicts: A systematic review. Pharmacogenomics 2018, 19, 741–747. [Google Scholar] [CrossRef]
- Bauer, I.E.; Soares, J.C.; Nielsen, D.A. The role of opioidergic genes in the treatment outcome of drug addiction pharmacotherapy: A systematic review. Am. J. Addict. 2015, 24, 15–23. [Google Scholar] [CrossRef]
- Ruano, G.; Kost, J.A. Fundamental considerations for genetically-guided pain management with opioids based on CYP2D6 and OPRM1 polymorphisms. Pain Physician 2018, 21, 611–621. [Google Scholar] [CrossRef]
- Chmielowiec, J.; Boroń, A. Association of (rs 1799732), (rs1800497), (rs28363170), (exon 3–VNTR) gene polymorphisms in the context of relapses in therapy. Curr. Probl. Psychiatry 2020, 21, 193–202. [Google Scholar] [CrossRef]
- Masiak, J.; Chmielowiec, J.; Chmielowiec, K.; Grzywacz, A. DRD4, DRD2, DAT1 and ANKK1 genes polymorphisms in patients with dual diagnosis of polysubstance addictions. J. Clin. Med. 2020, 9, 3593. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.; Vignati, D.A.L.; Leyval, C.; Giamberini, L. Environmental fate and ecotoxicity of lanthanides: Are they a uniform group beyond chemistry? Environ. Int. 2014, 71, 148–157. [Google Scholar] [CrossRef]
- Li, X.; Chen, Z.; Chen, Z.; Zhang, Y. A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere 2013, 93, 1240–1246. [Google Scholar] [CrossRef]
Exposure to Elements | Interaction with Morphine | Mechanism of Interaction |
---|---|---|
Zn |
|
|
Cd |
|
|
Pb |
|
|
|
| |
Cr |
|
|
Gene | Risk Alleles | Prime Function |
---|---|---|
dopamine D1 receptor DRD1 | 48G | Regulation of dopamine release in the nucleus accumbens |
dopamine D2 receptor ANKK1/DRD2 | Taq I A1 | Controls synthesis of dopamine D2 receptors |
dopamine D3 receptor DRD3 | C | Carriers sensitive to cocaine, opioids, alcohol, and nicotine |
dopamine D4 receptor DRD4 | 7R | predisposed to novelty seeking and ADHD |
dopamine active transporter DAT1 | 9R | Fast transport of synaptic dopamine back into pre-neuron, leading to hypodopaminergic trait |
serotonin transporter SLC6A4 (5-HTTLPR) | S | Fast transport of serotonin back into neuron |
mu-opioid receptor OPRM1 | G | Predisposes to heroin addiction and pain sensitivity |
GABA B3 receptor GABRB3 | 181 | Predisposes to anxiety disorders |
monoamine oxidase A MAOA | 3.5R, 4R, 5R | Fast catabolism of mitochondria dopamine |
catechol-o-methyltransferase COMT | G | Val substitution leads to fast catabolism of synaptic dopamine, leading to reward deficiency syndrome |
Taq1 A (rs 1800497) | ||
---|---|---|
Research Results—Influence on Opioid Dependence | Population | Reference |
| Caucasian/ Australian | (Lawford et al., 2000) [141] |
| Asian/ Chinese | (Li et al., 2002) [142] |
| Caucasian/ Iranian | (Shahmoradgoli et al., 2005) [143] |
| Latina | (Perez de los Cobos et al., 2007) [144] |
| Caucasian/ Swiss | (Crettol et al., 2008) [145] |
| Asian/ Chinese | (Hou, Li 2009) [146] |
| Caucasian/ Hungarian | (Vereczkei et al., 2013) [147] |
| Asian/ Chinese | (Cai et al., 2015) [148] |
| Caucasian/ Asian/ Turkish | (Yilbas et al., 2016) [149] |
Taq1 B (rs 1079597) | ||
---|---|---|
Research Results—Influence on Opioid Dependence | Population | Reference |
| Caucasian/ Hungarian | (Vereczkei et al., 2013) [147] |
-141C Ins/Del (rs 1799732) | ||
---|---|---|
Research Results—Influence on Opioid Dependence | Population | Reference |
| Asian/ Chinese | (Li et al., 2002) [142] |
| Asian/ Chinese Caucasian/ German | (Xu et al., 2004) [167] |
| Asian/ Chinese | (Shao et al., 2005) [168] |
| Asian/ Jordanian | (Al-Eitan et al., 2012b) [116] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorek, M.; Kamiński, P.; Baszyński, J.; Tadrowski, T.; Gorzelańczyk, E.J.; Feit, J.; Kurhaluk, N.; Woźniak, A.; Tkaczenko, H. Molecular and Environmental Determinants of Addictive Substances. Biomolecules 2024, 14, 1406. https://doi.org/10.3390/biom14111406
Lorek M, Kamiński P, Baszyński J, Tadrowski T, Gorzelańczyk EJ, Feit J, Kurhaluk N, Woźniak A, Tkaczenko H. Molecular and Environmental Determinants of Addictive Substances. Biomolecules. 2024; 14(11):1406. https://doi.org/10.3390/biom14111406
Chicago/Turabian StyleLorek, Małgorzata, Piotr Kamiński, Jędrzej Baszyński, Tadeusz Tadrowski, Edward Jacek Gorzelańczyk, Julia Feit, Natalia Kurhaluk, Alina Woźniak, and Halina Tkaczenko. 2024. "Molecular and Environmental Determinants of Addictive Substances" Biomolecules 14, no. 11: 1406. https://doi.org/10.3390/biom14111406
APA StyleLorek, M., Kamiński, P., Baszyński, J., Tadrowski, T., Gorzelańczyk, E. J., Feit, J., Kurhaluk, N., Woźniak, A., & Tkaczenko, H. (2024). Molecular and Environmental Determinants of Addictive Substances. Biomolecules, 14(11), 1406. https://doi.org/10.3390/biom14111406