Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease
Abstract
:1. Introduction
2. Neuroprotective Mechanisms of RIC on CCH
2.1. Improvement of Cerebral Blood Flow (CBF)
2.2. Reduction of Apoptosis
2.3. Alleviation of Synaptic Dysfunction
2.4. Attenuation of White Matter Damage
2.5. Increase of Energy Supply
3. Neuroprotective Mechanisms of RIC on Stroke
3.1. Acute Phase Neuroprotection
3.1.1. Reduction of Excitotoxicity
3.1.2. Reduction of Apoptosis
3.1.3. Increase in Oxygen Supply
3.1.4. Attenuation of Oxidative Stress
3.1.5. Anti-Inflammatory Effects
3.1.6. Preservation of Blood-Brain Barrier (BBB) Integrity
3.2. Chronic Recovery Phase Neuroprotection
3.2.1. Stimulation of Angiogenesis and Arteriogenesis
3.2.2. Promotion of Neurogenesis
3.2.3. Amelioration of White Matter Injury
4. Transmission Pathway of RIC on Neuroprotection
4.1. Peripheral Nervous Transmission
4.2. Immune Modulation
4.3. Exosomes
5. Synergistic Effect of RIC Combined with Other Therapies
5.1. RIC Combined with Atorvastatin
5.2. RIC Combined with Exercise
6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Longstreth, W.T., Jr.; Bernick, C.; Fitzpatrick, A.; Cushman, M.; Knepper, L.; Lima, J.; Furberg, C.D. Frequency and predictors of stroke death in 5,888 participants in the Cardiovascular Health Study. Neurology 2001, 56, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Thom, T.; Haase, N.; Rosamond, W.; Howard, V.J.; Rumsfeld, J.; Manolio, T.; Zheng, Z.J.; Flegal, K.; O’Donnell, C.; Kittner, S.; et al. Heart disease and stroke statistics-2006 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2006, 113, e85–e151. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, L.N.; Bergeron, C.; Butany, J. Neuropathology of cerebrovascular diseases. Semin. Diagn. Pathol. 2009, 26, 103–115. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, M.; Liu, B.; Tang, Y.; Wang, Z.; Wang, T.; Zheng, J.; Zhang, J. Honokiol prevents chronic cerebral hypoperfusion induced astrocyte A1 polarization to alleviate neurotoxicity by targeting SIRT3-STAT3 axis. Free Radic. Biol. Med. 2023, 202, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Duncombe, J.; Kitamura, A.; Hase, Y.; Ihara, M.; Kalaria, R.N.; Horsburgh, K. Chronic cerebral hypoperfusion: A key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin. Sci. 2017, 131, 2451–2468. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wei, D.; Liang, J.; Xie, X.; Song, K.; Huang, L. Comprehensive Evaluation of White Matter Damage and Neuron Death and Whole-Transcriptome Analysis of Rats With Chronic Cerebral Hypoperfusion. Front. Cell Neurosci. 2019, 13, 310. [Google Scholar] [CrossRef] [PubMed]
- Du, S.Q.; Wang, X.R.; Xiao, L.Y.; Tu, J.F.; Zhu, W.; He, T.; Liu, C.Z. Molecular Mechanisms of Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion? Mol. Neurobiol. 2017, 54, 3670–3682. [Google Scholar] [CrossRef]
- Wolters, F.J.; Zonneveld, H.I.; Hofman, A.; van der Lugt, A.; Koudstaal, P.J.; Vernooij, M.W.; Ikram, M.A. Cerebral Perfusion and the Risk of Dementia: A Population-Based Study. Circulation 2017, 136, 719–728. [Google Scholar] [CrossRef]
- Krause, G.S.; White, B.C.; Aust, S.D.; Nayini, N.R.; Kumar, K. Brain cell death following ischemia and reperfusion: A proposed biochemical sequence. Crit. Care Med. 1988, 16, 714–726. [Google Scholar] [CrossRef]
- Jolugbo, P.; Ariëns, R.A.S. Thrombus Composition and Efficacy of Thrombolysis and Thrombectomy in Acute Ischemic Stroke. Stroke 2021, 52, 1131–1142. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, Y.; Ji, X. Immune and inflammatory mechanism of remote ischemic conditioning: A narrative review. Brain Circ. 2023, 9, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Lee, H.; Wu, C. Intravenous thrombolysis for acute ischemic stroke: From alteplase to tenecteplase. Brain Circ. 2023, 9, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Tong, Y.; Ding, Y.; Han, Z.; Duan, H.; Geng, X. Optimal rehabilitation strategies for early postacute stroke recovery: An ongoing inquiry. Brain Circ. 2023, 9, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Deng, G.; Chu, Y.H.; Xiao, J.; Shang, K.; Zhou, L.Q.; Qin, C.; Tian, D.S. Risk Factors, Pathophysiologic Mechanisms, and Potential Treatment Strategies of Futile Recanalization after Endovascular Therapy in Acute Ischemic Stroke. Aging Dis. 2023, 14, 2096–2112. [Google Scholar] [CrossRef]
- Zhao, W.; Hausenloy, D.J.; Hess, D.C.; Yellon, D.M.; Ji, X. Remote Ischemic Conditioning: Challenges and Opportunities. Stroke 2023, 54, 2204–2207. [Google Scholar] [CrossRef]
- You, J.; Feng, L.; Bao, L.; Xin, M.; Ma, D.; Feng, J. Potential Applications of Remote Limb Ischemic Conditioning for Chronic Cerebral Circulation Insufficiency. Front. Neurol. 2019, 10, 467. [Google Scholar] [CrossRef]
- Ren, C.; Li, N.; Li, S.; Han, R.; Huang, Q.; Hu, J.; Jin, K.; Ji, X. Limb Ischemic Conditioning Improved Cognitive Deficits via eNOS-Dependent Augmentation of Angiogenesis after Chronic Cerebral Hypoperfusion in Rats. Aging Dis. 2018, 9, 869–879. [Google Scholar] [CrossRef]
- Khan, M.B.; Hoda, M.N.; Vaibhav, K.; Giri, S.; Wang, P.; Waller, J.L.; Ergul, A.; Dhandapani, K.M.; Fagan, S.C.; Hess, D.C. Remote ischemic postconditioning: Harnessing endogenous protection in a murine model of vascular cognitive impairment. Transl. Stroke Res. 2015, 6, 69–77. [Google Scholar] [CrossRef]
- Kan, X.; Yan, Z.; Wang, F.; Tao, X.; Xue, T.; Chen, Z.; Wang, Z.; Chen, G. Efficacy and safety of remote ischemic conditioning for acute ischemic stroke: A comprehensive meta-analysis from randomized controlled trials. CNS Neurosci. Ther. 2023, 29, 2445–2456. [Google Scholar] [CrossRef]
- Ma, X.; Ji, C. Remote Ischemic Conditioning: A Potential Treatment for Chronic Cerebral Hypoperfusion. Eur. Neurol. 2022, 85, 253–259. [Google Scholar] [CrossRef]
- Hess, D.C.; Blauenfeldt, R.A.; Andersen, G.; Hougaard, K.D.; Hoda, M.N.; Ding, Y.; Ji, X. Remote ischaemic conditioning-a new paradigm of self-protection in the brain. Nat. Rev. Neurol. 2015, 11, 698–710. [Google Scholar] [CrossRef] [PubMed]
- Al Kasab, S.; Hess, D.C.; Chimowitz, M.I. Rationale for ischemic conditioning to prevent stroke in patients with intracranial arterial stenosis. Brain Circ. 2016, 2, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Hou, C.; Lan, J.; Lin, Y.; Song, H.; Wang, Y.; Zhao, W.; Li, S.; Meng, R.; Hao, J.; Ding, Y.; et al. Chronic remote ischaemic conditioning in patients with symptomatic intracranial atherosclerotic stenosis (the RICA trial): A multicentre, randomised, double-blind sham-controlled trial in China. Lancet Neurol. 2022, 21, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Asmaro, K.; Meng, L.; Liu, Y.; Ma, C.; Xi, C.; Li, G.; Ren, C.; Luo, Y.; Ling, F.; et al. Upper limb ischemic preconditioning prevents recurrent stroke in intracranial arterial stenosis. Neurology 2012, 79, 1853–1861. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.M.; Kharbanda, R.K.; Konstantinov, I.E.; Shimizu, M.; Frndova, H.; Li, J.; Holtby, H.M.; Cox, P.N.; Smallhorn, J.F.; Van Arsdell, G.S.; et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: First clinical application in humans. J. Am. Coll. Cardiol. 2006, 47, 2277–2282. [Google Scholar] [CrossRef] [PubMed]
- Blauenfeldt, R.A.; Hougaard, K.D.; Mouridsen, K.; Andersen, G. High Prestroke Physical Activity Is Associated with Reduced Infarct Growth in Acute Ischemic Stroke Patients Treated with Intravenous tPA and Randomized to Remote Ischemic Perconditioning. Cerebrovasc. Dis. 2017, 44, 88–95. [Google Scholar] [CrossRef]
- Hu, Q.; Luo, W.; Huang, L.; Huang, R.; Chen, R.; Gao, Y. Multiorgan protection of remote ischemic perconditioning in valve replacement surgery. J. Surg. Res. 2016, 200, 13–20. [Google Scholar] [CrossRef]
- Chen, H.S.; Cui, Y.; Li, X.Q.; Wang, X.H.; Ma, Y.T.; Zhao, Y.; Han, J.; Deng, C.Q.; Hong, M.; Bao, Y.; et al. Effect of Remote Ischemic Conditioning vs Usual Care on Neurologic Function in Patients With Acute Moderate Ischemic Stroke: The RICAMIS Randomized Clinical Trial. JAMA 2022, 328, 627–636. [Google Scholar] [CrossRef]
- Che, R.; Zhao, W.; Ma, Q.; Jiang, F.; Wu, L.; Yu, Z.; Zhang, Q.; Dong, K.; Song, H.; Huang, X.; et al. rt-PA with remote ischemic postconditioning for acute ischemic stroke. Ann. Clin. Transl. Neurol. 2019, 6, 364–372. [Google Scholar] [CrossRef]
- Hess, D.C.; Hoda, M.N.; Bhatia, K. Remote limb perconditioning [corrected] and postconditioning: Will it translate into a promising treatment for acute stroke? Stroke 2013, 44, 1191–1197. [Google Scholar] [CrossRef]
- Ren, C.; Yan, Z.; Wei, D.; Gao, X.; Chen, X.; Zhao, H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009, 1288, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Kisler, K.; Nelson, A.R.; Montagne, A.; Zlokovic, B.V. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat. Rev. Neurosci. 2017, 18, 419–434. [Google Scholar] [CrossRef] [PubMed]
- You, T.Y.; Dong, Q.; Cui, M. Emerging Links between Cerebral Blood Flow Regulation and Cognitive Decline: A Role for Brain Microvascular Pericytes. Aging Dis. 2023, 14, 1276–1291. [Google Scholar] [CrossRef] [PubMed]
- Ciacciarelli, A.; Sette, G.; Giubilei, F.; Orzi, F. Chronic cerebral hypoperfusion: An undefined, relevant entity. J. Clin. Neurosci. 2020, 73, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Otori, T.; Katsumata, T.; Muramatsu, H.; Kashiwagi, F.; Katayama, Y.; Terashi, A. Long-term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin. Exp. Pharmacol. Physiol. 2003, 30, 266–272. [Google Scholar] [CrossRef]
- Jian, H.; Yi-Fang, W.; Qi, L.; Xiao-Song, H.; Gui-Yun, Z. Cerebral blood flow and metabolic changes in hippocampal regions of a modified rat model with chronic cerebral hypoperfusion. Acta Neurol. Belg. 2013, 113, 313–317. [Google Scholar] [CrossRef]
- Khan, M.B.; Hafez, S.; Hoda, M.N.; Baban, B.; Wagner, J.; Awad, M.E.; Sangabathula, H.; Haigh, S.; Elsalanty, M.; Waller, J.L.; et al. Chronic Remote Ischemic Conditioning Is Cerebroprotective and Induces Vascular Remodeling in a VCID Model. Transl. Stroke Res. 2018, 9, 51–63. [Google Scholar] [CrossRef]
- Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016, 8, 603–619. [Google Scholar] [CrossRef]
- Stanojlović, M.; Guševac, I.; Grković, I.; Zlatković, J.; Mitrović, N.; Zarić, M.; Horvat, A.; Drakulić, D. Effects of chronic cerebral hypoperfusion and low-dose progesterone treatment on apoptotic processes, expression and subcellular localization of key elements within Akt and Erk signaling pathways in rat hippocampus. Neuroscience 2015, 311, 308–321. [Google Scholar] [CrossRef]
- Li, X.; Ren, C.; Li, S.; Han, R.; Gao, J.; Huang, Q.; Jin, K.; Luo, Y.; Ji, X. Limb Remote Ischemic Conditioning Promotes Myelination by Upregulating PTEN/Akt/mTOR Signaling Activities after Chronic Cerebral Hypoperfusion. Aging Dis. 2017, 8, 392–401. [Google Scholar] [CrossRef]
- Eren, F.; Yilmaz, S.E. Neuroprotective approach in acute ischemic stroke: A systematic review of clinical and experimental studies. Brain Circ. 2022, 8, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Gong, C.X. From chronic cerebral hypoperfusion to Alzheimer-like brain pathology and neurodegeneration. Cell Mol. Neurobiol. 2015, 35, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Meftahi, G.H.; Bayat, M.; Zarifkar, A.H.; Akbari, S.; Borhani Haghighi, A.; Naseh, M.; Yousefi Nejad, A.; Haghani, M. Treatment with edaravone improves the structure and functional changes in the hippocampus after chronic cerebral hypoperfusion in rat. Brain Res. Bull. 2021, 174, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.H.; Wang, J.; Yuan, J.P.; Xiao, K.; Zhang, S.F.; Xie, Y.C.; Mei, J.H. EGB761 ameliorates chronic cerebral hypoperfusion-induced cognitive dysfunction and synaptic plasticity impairment. Aging 2021, 13, 9522–9541. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ren, C.; Li, S.; Yu, W.; Jin, K.; Ji, X. Remote ischemic conditioning alleviates chronic cerebral hypoperfusion-induced cognitive decline and synaptic dysfunction via the miR-218a-5p/SHANK2 pathway. Prog. Neurobiol. 2023, 230, 102514. [Google Scholar] [CrossRef]
- Prins, N.D.; Scheltens, P. White matter hyperintensities, cognitive impairment and dementia: An update. Nat. Rev. Neurol. 2015, 11, 157–165. [Google Scholar] [CrossRef]
- Zhou, D.; Ding, J.; Ya, J.; Pan, L.; Bai, C.; Guan, J.; Wang, Z.; Jin, K.; Yang, Q.; Ji, X.; et al. Efficacy of remote ischemic conditioning on improving WMHs and cognition in very elderly patients with intracranial atherosclerotic stenosis. Aging 2019, 11, 634–648. [Google Scholar] [CrossRef]
- Benarroch, E.E. Brain glucose transporters: Implications for neurologic disease. Neurology 2014, 82, 1374–1379. [Google Scholar] [CrossRef]
- Daulatzai, M.A. Cerebral hypoperfusion and glucose hypometabolism: Key pathophysiological modulators promote neurodegeneration, cognitive impairment, and Alzheimer’s disease. J. Neurosci. Res. 2017, 95, 943–972. [Google Scholar] [CrossRef]
- Ren, C.; Liu, Y.; Stone, C.; Li, N.; Li, S.; Li, H.; Cheng, Z.; Hu, J.; Li, W.; Jin, K.; et al. Limb Remote Ischemic Conditioning Ameliorates Cognitive Impairment in Rats with Chronic Cerebral Hypoperfusion by Regulating Glucose Transport. Aging Dis. 2021, 12, 1197–1210. [Google Scholar] [CrossRef]
- Jachova, J.; Gottlieb, M.; Nemethova, M.; Bona, M.; Bonova, P. Brain to blood efflux as a mechanism underlying the neuroprotection mediated by rapid remote preconditioning in brain ischemia. Mol. Biol. Rep. 2020, 47, 5385–5395. [Google Scholar] [CrossRef] [PubMed]
- Končekova, J.; Kotorova, K.; Gottlieb, M.; Bona, M.; Bonova, P. Remote Ischaemic Preconditioning Accelerates Brain to Blood Glutamate Efflux via EAATs-mediated Transport. Neurochem. Res. 2023, 48, 3560–3570. [Google Scholar] [CrossRef] [PubMed]
- Končeková, J.; Kotorová, K.; Gottlieb, M.; Bona, M.; Bonová, P. Changes in excitatory amino acid transporters in response to remote ischaemic preconditioning and glutamate excitotoxicity. Neurochem. Int. 2024, 173, 105658. [Google Scholar] [CrossRef] [PubMed]
- Uzdensky, A.B. Apoptosis regulation in the penumbra after ischemic stroke: Expression of pro- and antiapoptotic proteins. Apoptosis 2019, 24, 687–702. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhou, T.; Ji, Q.; He, L.; Lan, Y.; Ding, L.; Li, L.; Wang, Z. Myricetin improves apoptosis after ischemic stroke via inhibiting MAPK-ERK pathway. Mol. Biol. Rep. 2023, 50, 2545–2557. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, M.; Yan, F.; Yin, J.; Shi, W.; Yang, N.; Zhao, H.; Fang, Y.; Huang, Y.; Zheng, Y.; et al. Inhibition of the JAK2/STAT3 pathway and cell cycle re-entry contribute to the protective effect of remote ischemic pre-conditioning of rat hindlimbs on cerebral ischemia/reperfusion injury. CNS Neurosci. Ther. 2023, 29, 866–877. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, S.; Liu, F.; Kang, J.; Xiao, A.; Li, F.; Zhang, C.; Yan, F.; Zhao, H.; Luo, M.; et al. Remote ischemic postconditioning alleviates cerebral ischemic injury by attenuating endoplasmic reticulum stress-mediated apoptosis. Transl. Stroke Res. 2014, 5, 692–700. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, R.; Tao, Z.; Gao, L.; Yan, F.; Gao, Z.; Liu, X.; Ji, X.; Luo, Y. Ischemic postconditioning relieves cerebral ischemia and reperfusion injury through activating T-LAK cell-originated protein kinase/protein kinase B pathway in rats. Stroke 2014, 45, 2417–2424. [Google Scholar] [CrossRef]
- Dirnagl, U.; Iadecola, C.; Moskowitz, M.A. Pathobiology of ischaemic stroke: An integrated view. Trends Neurosci. 1999, 22, 391–397. [Google Scholar] [CrossRef]
- He, Q.; Ma, Y.; Liu, J.; Zhang, D.; Ren, J.; Zhao, R.; Chang, J.; Guo, Z.N.; Yang, Y. Biological Functions and Regulatory Mechanisms of Hypoxia-Inducible Factor-1α in Ischemic Stroke. Front. Immunol. 2021, 12, 801985. [Google Scholar] [CrossRef]
- Wang, L.; Ren, C.; Li, Y.; Gao, C.; Li, N.; Li, H.; Wu, D.; He, X.; Xia, C.; Ji, X. Remote ischemic conditioning enhances oxygen supply to ischemic brain tissue in a mouse model of stroke: Role of elevated 2,3-biphosphoglycerate in erythrocytes. J. Cereb. Blood Flow Metab. 2021, 41, 1277–1290. [Google Scholar] [CrossRef] [PubMed]
- Lipton, P. Ischemic cell death in brain neurons. Physiol. Rev. 1999, 79, 1431–1568. [Google Scholar] [CrossRef] [PubMed]
- Orellana-Urzúa, S.; Rojas, I.; Líbano, L.; Rodrigo, R. Pathophysiology of Ischemic Stroke: Role of Oxidative Stress. Curr. Pharm. Des. 2020, 26, 4246–4260. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Su, L.; Li, X.; Di, W.; Zhang, X.; Zhang, C.; He, T.; Zhu, X.; Zhang, Y.; Li, Y. Remote limb ischemic postconditioning protects mouse brain against cerebral ischemia/reperfusion injury via upregulating expression of Nrf2, HO-1 and NQO-1 in mice. Int. J. Neurosci. 2016, 126, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Gao, J.; Kohls, W.; Geng, X.; Ding, Y. Perspectives on benefit of early and prereperfusion hypothermia by pharmacological approach in stroke. Brain Circ. 2022, 8, 69–75. [Google Scholar] [CrossRef]
- Sun, Y.Y.; Zhu, H.J.; Zhao, R.Y.; Zhou, S.Y.; Wang, M.Q.; Yang, Y.; Guo, Z.N. Remote ischemic conditioning attenuates oxidative stress and inflammation via the Nrf2/HO-1 pathway in MCAO mice. Redox Biol. 2023, 66, 102852. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef]
- Xia, M.; Ding, Q.; Zhang, Z.; Feng, Q. Remote Limb Ischemic Preconditioning Protects Rats Against Cerebral Ischemia via HIF-1α/AMPK/HSP70 Pathway. Cell. Mol. Neurobiol. 2017, 37, 1105–1114. [Google Scholar] [CrossRef]
- Qin, L.; Kamash, P.; Yang, Y.; Ding, Y.; Ren, C. A narrative review of potential neural repair poststroke: Decoction of Chinese angelica and peony in regulating microglia polarization through the neurosteroid pathway. Brain Circ. 2024, 10, 5–10. [Google Scholar] [CrossRef]
- Su, C.; Lu, Y.; Wang, Z.; Guo, J.; Hou, Y.; Wang, X.; Qin, Z.; Gao, J.; Sun, Z.; Dai, Y.; et al. Atherosclerosis: The Involvement of Immunity, Cytokines and Cells in Pathogenesis, and Potential Novel Therapeutics. Aging Dis. 2023, 14, 1214–1242. [Google Scholar] [CrossRef]
- Chamorro, Á.; Dirnagl, U.; Urra, X.; Planas, A.M. Neuroprotection in acute stroke: Targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol. 2016, 15, 869–881. [Google Scholar] [CrossRef] [PubMed]
- DeLong, J.H.; Ohashi, S.N.; O’Connor, K.C.; Sansing, L.H. Inflammatory Responses After Ischemic Stroke. Semin. Immunopathol. 2022, 44, 625–648. [Google Scholar] [CrossRef] [PubMed]
- Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13, 159–175. [Google Scholar] [CrossRef] [PubMed]
- Doeppner, T.R.; Zechmeister, B.; Kaltwasser, B.; Jin, F.; Zheng, X.; Majid, A.; Venkataramani, V.; Bähr, M.; Hermann, D.M. Very Delayed Remote Ischemic Post-conditioning Induces Sustained Neurological Recovery by Mechanisms Involving Enhanced Angioneurogenesis and Peripheral Immunosuppression Reversal. Front. Cell Neurosci. 2018, 12, 383. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Ding, Y.; Asmaro, K.; Brogan, D.; Meng, L.; Sui, M.; Shi, J.; Duan, Y.; Sun, Z.; Yu, Y.; et al. Ischemic Conditioning Is Safe and Effective for Octo- and Nonagenarians in Stroke Prevention and Treatment. Neurotherapeutics 2015, 12, 667–677. [Google Scholar] [CrossRef]
- Yang, C.; Hawkins, K.E.; Doré, S.; Candelario-Jalil, E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol. 2019, 316, C135–C153. [Google Scholar] [CrossRef]
- Candelario-Jalil, E.; Dijkhuizen, R.M.; Magnus, T. Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities. Stroke 2022, 53, 1473–1486. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, W.; Geng, P.; Du, W.; Guo, C.; Wang, Q.; Zheng, G.Q.; Jin, X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis. 2023, 15, 5. [Google Scholar] [CrossRef]
- Chen, X.; An, H.; Wu, D.; Ji, X. Research progress of selective brain cooling methods in the prehospital care for stroke patients: A narrative review. Brain Circ. 2023, 9, 16–20. [Google Scholar] [CrossRef]
- Ren, C.; Li, N.; Wang, B.; Yang, Y.; Gao, J.; Li, S.; Ding, Y.; Jin, K.; Ji, X. Limb Ischemic Perconditioning Attenuates Blood-Brain Barrier Disruption by Inhibiting Activity of MMP-9 and Occludin Degradation after Focal Cerebral Ischemia. Aging Dis. 2015, 6, 406–417. [Google Scholar] [CrossRef]
- Ren, C.; Gao, M.; Dornbos, D., 3rd; Ding, Y.; Zeng, X.; Luo, Y.; Ji, X. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol. Res. 2011, 33, 514–519. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ma, Y.; Fang, C.; Deng, Z.; Wang, F.; Qu, Y.; Yin, M.; Zhao, R.; Zhang, D.; Guo, F.; et al. Remote ischemic conditioning attenuates blood-brain barrier disruption after recombinant tissue plasminogen activator treatment via reducing PDGF-CC. Pharmacol. Res. 2023, 187, 106641. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; et al. Heart Disease and Stroke Statistics-2016 Update: A Report From the American Heart Association. Circulation 2016, 133, e38–e360. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Wang, Z.; Miao, C.Y. Angiogenesis after ischemic stroke. Acta Pharmacol. Sin. 2023, 44, 1305–1321. [Google Scholar] [CrossRef] [PubMed]
- Heil, M.; Eitenmüller, I.; Schmitz-Rixen, T.; Schaper, W. Arteriogenesis versus angiogenesis: Similarities and differences. J. Cell Mol. Med. 2006, 10, 45–55. [Google Scholar] [CrossRef]
- Kanazawa, M.; Takahashi, T.; Ishikawa, M.; Onodera, O.; Shimohata, T.; Del Zoppo, G.J. Angiogenesis in the ischemic core: A potential treatment target? J. Cereb. Blood Flow. Metab. 2019, 39, 753–769. [Google Scholar] [CrossRef]
- Jiang, G.; Li, X.; Liu, M.; Li, H.; Shen, H.; Liao, J.; You, W.; Fang, Q.; Chen, G. Remote ischemic postconditioning ameliorates stroke injury via the SDF-1α/CXCR4 signaling axis in rats. Brain Res. Bull. 2023, 197, 31–41. [Google Scholar] [CrossRef]
- Ren, C.; Li, S.; Wang, B.; Han, R.; Li, N.; Gao, J.; Li, X.; Jin, K.; Ji, X. Limb remote ischemic conditioning increases Notch signaling activity and promotes arteriogenesis in the ischemic rat brain. Behav. Brain Res. 2018, 340, 87–93. [Google Scholar] [CrossRef]
- Zhou, Z.; Lu, J.; Liu, W.W.; Manaenko, A.; Hou, X.; Mei, Q.; Huang, J.L.; Tang, J.; Zhang, J.H.; Yao, H.; et al. Advances in stroke pharmacology. Pharmacol. Ther. 2018, 191, 23–42. [Google Scholar] [CrossRef]
- Onose, G.; Anghelescu, A.; Blendea, D.; Ciobanu, V.; Daia, C.; Firan, F.C.; Oprea, M.; Spinu, A.; Popescu, C.; Ionescu, A.; et al. Cellular and Molecular Targets for Non-Invasive, Non-Pharmacological Therapeutic/Rehabilitative Interventions in Acute Ischemic Stroke. Int. J. Mol. Sci. 2022, 23, 907. [Google Scholar] [CrossRef]
- Geng, X.; Wang, Q.; Lee, H.; Huber, C.; Wills, M.; Elkin, K.; Li, F.; Ji, X.; Ding, Y. Remote Ischemic Postconditioning vs. Physical Exercise After Stroke: An Alternative Rehabilitation Strategy? Mol. Neurobiol. 2021, 58, 3141–3157. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Yang, Y.; Li, N.; Li, H.; Xu, J.; Zhao, W.; Wang, X.; Ma, L.; Gao, C.; Ding, Y.; et al. Limb Remote Ischemic Conditioning Promotes Neurogenesis after Cerebral Ischemia by Modulating miR-449b/Notch1 Pathway in Mice. Biomolecules 2022, 12, 1137. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Li, N.; Yang, Y.; Yang, Y.; Ren, C. Limb remote ischemic perconditioning combined with remote ischemic postconditioning promotes neurogenesis in rat models of ischemic stroke. J. Cap. Med. Univ. 2023, 44, 54–61. [Google Scholar] [CrossRef]
- Fern, R.F.; Matute, C.; Stys, P.K. White matter injury: Ischemic and nonischemic. Glia 2014, 62, 1780–1789. [Google Scholar] [CrossRef] [PubMed]
- Matute, C.; Domercq, M.; Pérez-Samartín, A.; Ransom, B.R. Protecting white matter from stroke injury. Stroke 2013, 44, 1204–1211. [Google Scholar] [CrossRef]
- Ho, P.W.; Reutens, D.C.; Phan, T.G.; Wright, P.M.; Markus, R.; Indra, I.; Young, D.; Donnan, G.A. Is white matter involved in patients entered into typical trials of neuroprotection? Stroke 2005, 36, 2742–2744. [Google Scholar] [CrossRef]
- Liao, Z.; Bu, Y.; Li, M.; Han, R.; Zhang, N.; Hao, J.; Jiang, W. Remote ischemic conditioning improves cognition in patients with subcortical ischemic vascular dementia. BMC Neurol. 2019, 19, 206. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, R.; Song, H.; Liu, G.; Hua, Y.; Cui, D.; Zheng, L.; Feng, W.; Liebeskind, D.S.; Fisher, M.; et al. Remote Ischemic Conditioning May Improve Outcomes of Patients With Cerebral Small-Vessel Disease. Stroke 2017, 48, 3064–3072. [Google Scholar] [CrossRef]
- Wei, D.; Ren, C.; Chen, X.; Zhao, H. The chronic protective effects of limb remote preconditioning and the underlying mechanisms involved in inflammatory factors in rat stroke. PLoS ONE 2012, 7, e30892. [Google Scholar] [CrossRef]
- Liu, Z.J.; Chen, C.; Li, X.R.; Ran, Y.Y.; Xu, T.; Zhang, Y.; Geng, X.K.; Zhang, Y.; Du, H.S.; Leak, R.K.; et al. Remote Ischemic Preconditioning-Mediated Neuroprotection against Stroke is Associated with Significant Alterations in Peripheral Immune Responses. CNS Neurosci Ther 2016, 22, 43–52. [Google Scholar] [CrossRef]
- Nizari, S.; Basalay, M.; Chapman, P.; Korte, N.; Korsak, A.; Christie, I.N.; Theparambil, S.M.; Davidson, S.M.; Reimann, F.; Trapp, S.; et al. Glucagon-like peptide-1 (GLP-1) receptor activation dilates cerebral arterioles, increases cerebral blood flow, and mediates remote (pre)conditioning neuroprotection against ischaemic stroke. Basic Res Cardiol 2021, 116, 32. [Google Scholar] [CrossRef] [PubMed]
- Illes, P.; Verkhratsky, A.; Burnstock, G.; Franke, H. P2X receptors and their roles in astroglia in the central and peripheral nervous system. Neuroscientist 2012, 18, 422–438. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Hafeez, A.; Zhang, Y.; Liu, S.; Kong, Q.; Duan, Y.; Luo, Y.; Ding, Y.; Shi, H.; Ji, X. Neuroprotection by peripheral nerve electrical stimulation and remote postconditioning against acute experimental ischaemic stroke. Neurol. Res. 2015, 37, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Liu, K.; Li, N.; Cui, X.; Gao, J.; Ji, X.; Ding, Y. Neural transmission pathways are involved in the neuroprotection induced by post- but not perischemic limb remote conditioning. Brain Circ. 2015, 1, 159–166. [Google Scholar] [CrossRef]
- Basalay, M.; Barsukevich, V.; Mastitskaya, S.; Mrochek, A.; Pernow, J.; Sjöquist, P.O.; Ackland, G.L.; Gourine, A.V.; Gourine, A. Remote ischaemic pre- and delayed postconditioning—Similar degree of cardioprotection but distinct mechanisms. Exp. Physiol. 2012, 97, 908–917. [Google Scholar] [CrossRef]
- Yang, J.; Balkaya, M.; Beltran, C.; Heo, J.H.; Cho, S. Remote Postischemic Conditioning Promotes Stroke Recovery by Shifting Circulating Monocytes to CCR2(+) Proinflammatory Subset. J Neurosci 2019, 39, 7778–7789. [Google Scholar] [CrossRef]
- Gurung, S.; Perocheau, D.; Touramanidou, L.; Baruteau, J. The exosome journey: From biogenesis to uptake and intracellular signalling. Cell Commun. Signal 2021, 19, 47. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Chen, W.; Li, G.; Li, Z.; Lei, J. The updated role of exosomal proteins in the diagnosis, prognosis, and treatment of cancer. Exp. Mol. Med. 2022, 54, 1390–1400. [Google Scholar] [CrossRef]
- Li, Y.; Ren, C.; Li, H.; Jiang, F.; Wang, L.; Xia, C.; Ji, X. Role of exosomes induced by remote ischemic preconditioning in neuroprotection against cerebral ischemia. Neuroreport 2019, 30, 834–841. [Google Scholar] [CrossRef]
- Li, D.; Zhao, Y.; Zhang, C.; Wang, F.; Zhou, Y.; Jin, S. Plasma Exosomes at the Late Phase of Remote Ischemic Pre-conditioning Attenuate Myocardial Ischemia-Reperfusion Injury Through Transferring miR-126a-3p. Front. Cardiovasc. Med. 2021, 8, 736226. [Google Scholar] [CrossRef]
- García-Bonilla, L.; Campos, M.; Giralt, D.; Salat, D.; Chacón, P.; Hernández-Guillamon, M.; Rosell, A.; Montaner, J. Evidence for the efficacy of statins in animal stroke models: A meta-analysis. J. Neurochem. 2012, 122, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Li, S.; Liu, K.; Rajah, G.B.; Zhang, A.; Han, R.; Liu, Y.; Huang, Q.; Li, H.; Ding, Y.; et al. Enhanced oxidative stress response and neuroprotection of combined limb remote ischemic conditioning and atorvastatin after transient ischemic stroke in rats. Brain Circ. 2017, 3, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Kohls, W.; Wills, M.; Li, F.; Pang, Q.; Geng, X.; Ding, Y. A novel stroke rehabilitation strategy and underlying stress granule regulations through inhibition of NLRP3 inflammasome activation. CNS Neurosci. Ther. 2024, 30, e14405. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wehbe, A.; Wills, M.; Li, F.; Geng, X.; Ding, Y. The Key Role of Initiation Timing on Stroke Rehabilitation by Remote Ischemic Conditioning with Exercise (RICE). Neurol. Res. 2023, 45, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Ren, C.; Du, J.; Zhao, W.; Guo, W.; Ji, X. Remote Ischemic Conditioning for Motor Recovery after Acute Ischemic Stroke. Neurologist 2023, 28, 367–372. [Google Scholar] [CrossRef]
- England, T.J.; Hedstrom, A.; O’Sullivan, S.; Donnelly, R.; Barrett, D.A.; Sarmad, S.; Sprigg, N.; Bath, P.M. RECAST (Remote Ischemic Conditioning After Stroke Trial): A Pilot Randomized Placebo Controlled Phase II Trial in Acute Ischemic Stroke. Stroke 2017, 48, 1412–1415. [Google Scholar] [CrossRef]
Animal | Model | Biological Mechanism | When RIC Was Started | RIC Protocol | References |
---|---|---|---|---|---|
SD male rats | 2VO | synaptic plasticity | 3 days after 2VO | 10 min × 3 cycles, once daily | [45] |
SD male rats | 2VO | CBF, angiogenesis | 3 days after 2VO | 10 min × 3 cycles, once daily | [17] |
C57BL/6J male mice | BCAS | CBF, angiogenesis, arteriogenesis, white matter | 1 week after BCAS | 5 min × 4 cycles, once daily | [37] |
C57BL/6 J male mice | BCAS | CBF, inflammation, Aβ, cell death, demyelination | 1 week after BCAS | 10 min × 4 cycles, once daily | [18] |
SD male rats | 2VO | ATP, glucose transport | 3 days after 2VO | 10 min × 3 cycles, once daily | [50] |
SD male rats | 2VO | demyelination, white matter | 3 days after 2VO | 10 min × 3 cycles, once daily | [40] |
Animal | Model | Biological Mechanism | When RIC Was Started | RIC Protocol | References |
---|---|---|---|---|---|
SD male rats | MCAO for 2 h | cell apoptosis, endoplasmic reticulum stress | immediately after ischemia | 10 min × 3 cycles, once daily | [57] |
C57BL/6J male mice | MCAO for 70 min | oxygen supply, cell death | immediately after ischemia | 10 min × 3 cycles, once daily | [61] |
C57BL/6J male mice | MCAO for 60 min | brain edema, antioxidant, oxidative stress | immediately after stroke. | 5 min × 3 cycles, once daily | [64] |
C57BL/6J male mice | MCAO for 60 min | oxidative stress, inflammation | immediately after reperfusion | 5 min × 4 cycles, once daily | [66] |
SD male rats | MCAO for 90 min | brain edema, oxidative damage, inflammation, apoptosis. | at 1 h before MCAO | 5 min × 4 cycles, once daily | [68] |
C57BL/6J male mice | MCAO for 60 min | angiogenesis, neurogenesis, immunosuppression, | very delayed remote ischemic post-conditioning, depending on the survival periods of the animals | 10 min × 3 cycles, once daily | [74] |
SD male rats | MCAO for 90 min | brain edema, BBB | immediately after ischemia | 10 min × 3 cycles, once daily | [80] |
SD male rats | MCAO for 90 min | brain edema, BBB | immediately after ischemia | 10 min × 3 cycles, once daily | [81] |
SD male rats | thromboembolic stroke | BBB, cerebral hemorrhage | RIPreC: 7 days before the embolic stroke; RIPostC: immediately after rtPA infusion. | 5 min × 4 cycles, twice daily | [82] |
C57BL/6J male mice | MCAO for 60 min | neurogenesis | at 10 min after MCAO | 10 min × 3 cycles, once daily | [92] |
SD male rats | MCAO for 30 min | brain edema, BBB, inflammation | RIPreC: before stroke | 15 min × 3 cycles, once daily | [99] |
SD male rats | MCAO for 90 min | BBB, inflammation | RIPreC: 1 h before MCAO | 5 min × 4 cycles, once daily | [100] |
SD male rats | MCAO for 90 min | CBF, activates GLP-1R | at 10 min before reperfusion | 5 min × 4 cycles, once daily | [101] |
SD male rats | MCAO for 90 min | arteriogenesis, CBF | immediately after MCAO | 10 min × 3 cycles, once daily | [88] |
SD male rats | MCAO for 2 h | neurogenesis, angiogenesis | 3 days after MCAO | 10 min × 3 cycles, once daily | [87] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Tong, F.; Li, S.; Ren, C. Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease. Biomolecules 2024, 14, 1408. https://doi.org/10.3390/biom14111408
Qin L, Tong F, Li S, Ren C. Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease. Biomolecules. 2024; 14(11):1408. https://doi.org/10.3390/biom14111408
Chicago/Turabian StyleQin, Linhui, Fang Tong, Sijie Li, and Changhong Ren. 2024. "Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease" Biomolecules 14, no. 11: 1408. https://doi.org/10.3390/biom14111408
APA StyleQin, L., Tong, F., Li, S., & Ren, C. (2024). Beyond Pharmacology: The Biological Mechanisms of Remote Ischemic Conditioning in Cerebrovascular Disease. Biomolecules, 14(11), 1408. https://doi.org/10.3390/biom14111408