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Abstract: Background: Type 2 diabetes mellitus is a metabolic disorder characterized by insulin
resistance (IR), which is prevalent worldwide and has significant adverse health effects. Metformin is
commonly prescribed as a pharmacological treatment. Physical exercise is also recognized as an effec-
tive regulator of glycemia, independent of metformin. However, the effects of inter-day concurrent
training (CT)—which includes both endurance and resistance exercises—combined with metformin
treatment on metabolic markers and cardiorespiratory fitness in individuals with IR remain contro-
versial. Objective: This study aimed to analyze the effects of a 12-week inter-day CT program on
metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR, both with
and without metformin treatment. Additionally, inter-individual responses to CT were examined. Ma-
terials and Methods: Data from the 2022–2023 Obesity Center database were retrospectively analyzed.
According to the eligibility criteria, 20 overweight/obese individuals diagnosed with IR participated
in a 12-week CT program (three weekly sessions: two endurance and one resistance exercise ses-
sion). Participants were divided into three groups: the exercise group (E-G: n = 7, 32.86 ± 8.32 years,
85.2 ± 19.67 kg), the exercise–metformin group (E-MG: n = 6, 34.83 ± 12.91 years, 88.13 ± 12.66 kg),
and the metformin-only control group (M-G: n = 7, 34.43 ± 13.96 years, 94.23 ± 13.93 kg). The M-G
did not perform physical exercise during the 12 weeks but continued pharmacological treatment.
Body composition, metabolic markers, and cardiorespiratory fitness were assessed before and after
the 12-week CT program. Results: A group-by-time interaction was observed for fasting insulin
(F2,17 = 34.059, p < 0.001, η2

p = 0.88), the Homeostatic Model Assessment of Insulin Resistance
(HOMA-IR) (F2,17 = 35.597, p < 0.001, η2

p = 0.80), and maximal fat oxidation (MFO) (F2,17 = 4.541,
p = 0.026, η2

p = 0.348) following the CT program. The maximal oxygen uptake (VO2max) showed
significant improvements in the E-G (F = 4.888, p = 0.041, ∆+13.3%). Additionally, the percentage
of fat mass (%FM) and body mass (BM) were significantly reduced across all groups (F = 125.244,
p < 0.001 and F = 91.130, p < 0.001, respectively). The BM decreased by ∆−9.43% in the E-G (five
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responders, Rs), ∆+9.21% in the EM-G (5 Rs), and ∆+5.15% in the M-G (3 Rs). The %FM was reduced
in the E-G by ∆−22.52% (seven Rs). Fasting insulin and the HOMA-IR significantly improved in
both the E-G and EM-G, with fasting insulin showing a ∆−82.1% reduction in the E-G (five Rs) and a
∆−85% reduction in the EM-G (six Rs). Similarly, the HOMA-IR improved by ∆+82.6% in the E-G
(three Rs) and by ∆+84.6% in the EM-G (six Rs). Conclusions: The 12-week inter-day concurrent
training program, whether combined with metformin or not, was similarly effective in improving
metabolic markers in patients with insulin resistance as metformin treatment alone. Both exercise
groups demonstrated a significant reduction in insulin sensitivity and an increase in maximal fat
oxidation. Meanwhile, exclusive pharmacological treatment with metformin markedly decreased
cardiorespiratory fitness, and consequently, fat oxidation.

Keywords: physical and rehabilitation medicine; pharmacologic treatment; cardiorespiratory fitness;
insulin sensitivity; retrospective studies

1. Introduction

Obesity and hyperlipidemia exert a negative impact on insulin sensitivity, significantly
impairing glucose transport through insulin-dependent tissues such as skeletal muscle,
adipose tissue, and the liver [1,2]. As a compensatory mechanism, the pancreas increases in-
sulin secretion into the bloodstream, leading to hyperinsulinemia and/or insulin resistance
(IR) [3]. IR subsequently results in pancreatic β-cell dysfunction and impaired glycemic
control, which promote the development of Type 2 Diabetes [3,4].

A key predictive factor for altered insulin sensitivity is the muscle’s ability to oxidize
fatty acids [5]. Additionally, individuals with IR are expected to exhibit a decreased
mitochondrial number and function, as well as a reduced muscle oxidative capacity [6].
As a result, cardiorespiratory fitness is expected to be compromised, further promoting
sedentary behavior, weight gain, and hyperlipidemia.

Metformin and physical exercise are recognized as first-line treatments for IR [7] and
Type 2 Diabetes [8]. Both interventions enhance glucose uptake in insulin-dependent
tissues, thereby improving insulin sensitivity [9–11]. Endurance exercise increases car-
diorespiratory fitness and mitochondrial function (e.g., increased fat oxidation), while
decreasing circulating lipids (e.g., triacylglycerol and low-density lipoprotein) and blood
pressure [1]. The chronic effects of endurance or aerobic- and resistance-exercise-based
programs include increased concentrations of the glucose transporter protein receptor
(GLUT–4) at the plasma membrane and sarcoplasmic reticulum, thereby enhancing the
treatment of IR by improving glucose uptake in skeletal muscle cells [12–15].

Despite the benefits of metformin and physical exercise, the interaction between
these treatments yields controversial results [16–19]. Malin and Braun [20] suggested that
metformin attenuates exercise-induced improvements in glucose homeostasis, muscle mass,
strength production [21], and cardiorespiratory fitness [22,23]. However, Ortega et al. [24]
and Boulé et al. [18] reported no detrimental chronic effects of physical exercise on insulin
sensitivity improvement in metformin-treated IR patients.

Endurance and resistance exercises are recommended by clinical guidelines for dia-
betes (e.g., American Diabetes Association and American College of Sports Medicine) and
sedentary lifestyles (e.g., World Health Organization) [25]. Nevertheless, the impact of inter-
day concurrent training (CT) with or without metformin treatment on insulin sensitivity in
individuals remains unclear [25,26]. Malin and Braun [27] demonstrated that sedentary
adults who participated in CT for 10 weeks without metformin (placebo) exhibited higher
insulin sensitivity than those treated with metformin. However, no significant increases in
maximal oxygen uptake (VO2max) or fat oxidation rates were observed.

Current evidence underscores the need to analyze the effects of CT in conjunction with
metformin treatment in individuals with IR and to assess the inter-individual variability
in CT responses. Álvarez et al. [28] investigated the effects and prevalence of individual
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responses to high-intensity interval and resistance training over 12 weeks in women with
overweight/obesity and IR. Following the intervention, significant reductions in fasting
glucose, insulin, and HOMA-IR levels were observed in both the high-intensity interval
training and resistance training groups. However, no differences were found in the preva-
lence of non-responders between high-intensity interval training and lower-body resistance
training regarding fasting glucose levels.

Therefore, this study aimed to analyze the effect of a 12-week inter-day CT program on
metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR,
treated with and without metformin. Additionally, inter-individual responses to CT were
examined. We hypothesized that the combination of CT without metformin would have a
more significant impact on metabolic markers and cardiorespiratory fitness in overweight
or obese individuals with IR than CT combined with metformin [18,20–22,24,29].

2. Material and Methods
2.1. Design and Participants

This retrospective study analyzed data from 20 individuals (15 women and 5 men)
from an obesity treatment center in Chile. Participants were included if they met the following
criteria: (a) diagnosis of overweight or obesity with a body mass index (BMI) ≥ 25 kg/m2,
(b) confirmed insulin resistance (HOMA-IR: 2.5–5.0) [30], and (c) physical inactivity as per
the International Physical Activity Questionnaire [31]. Exclusion criteria comprised use
of medications other than metformin, smoking, and incomplete assessments within the
designated timeframe.

Participants were allocated into three groups: the exercise group (E-G: n = 7, age =
32.86 ± 8.32 years, height = 165.14 ± 10.53 cm, body mass = 85.2 ± 19.67 kg), exercise-
metformin group (EM-G: n = 6, age = 34.83 ± 12.91 years, height = 159.00 ± 7.87 cm,
body mass = 88.13 ± 12.66 kg), and metformin-only control group (M-G: n = 7, age =
34.43 ± 13.96 years, height = 165.76 ± 7.24 cm, body mass = 94.23 ± 13.93 kg).

To ensure study validity, the attending physician and physiotherapist conducted
a comprehensive review of the center’s database from January 2022 to December 2023.
Eligibility was determined based on voluntary participation and full attendance at the
12-week CT sessions, or completion of baseline and final assessments only. Participants
self-reported physical inactivity via telephone contact during the 12-week period. The
main researcher, blinded to the data, verified and exported the selected data to an Excel
spreadsheet for analysis.

The study adhered to the ethical standards outlined in the Declaration of Helsinki
and STROBE guidelines for observational studies [32], as well as recommendations for
retrospective health studies [33]. The local ethics committee approved the study protocol
and data processing (registration number: 151007005).

2.2. Assessments

Assessments were conducted independently for each participant by the treating physi-
cian and physiotherapist following standardized procedures. Evaluations occurred after
enrollment, one week before, and one week after the 12-week CT period. Day one com-
prised fasting glucose and insulin, and body composition measurements. Day two involved
monitoring maximal fat oxidation (MFO) and VO2max, and heart rate during cardiorespira-
tory testing.

All assessments were performed under consistent environmental conditions (21–23 ◦C)
between 08:00 and 10:00 to minimize circadian effects. Medical professionals assessed
fasting glucose and insulin levels, while a physiotherapist evaluated VO2max, MFO, and
body composition.

2.2.1. Body Composition

Height was measured using a stadiometer (accuracy, 0.5 cm). Body mass (BM) and the
percentage of fat mass (%FM) were assessed via multifrequency octopolar bioimpedance
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(InBody 720; Seoul, Korea) after 6 h of fasting. For female participants, measurements were
taken post-menstruation and after at least 12 h without exercise.

2.2.2. Insulin Sensitivity (IS)

Insulin sensitivity was evaluated using the Homeostatic Model Assessment of Insulin
Resistance (HOMA-IR), calculated using the formula developed by Matthews et al. [34]:
(fasting insulin × fasting glucose)/405. Participants with HOMA-IR scores between 2.5 and
5.0 were classified as insulin resistant, in line with previous research conducted in Chile [30].

2.2.3. Cardiorespiratory Fitness and Maximal Fat Oxidation

Participants were familiarized with test procedures beforehand. On the day of assess-
ment, they arrived at the laboratory after fasting for 6–12 h and abstaining from alcohol,
coffee, drugs (including metformin), and other stimulants for 24 h. They then performed
an incremental test on a bicycle ergometer (Technogym Bike Med, Technogym®, Cesena,
Italy), adapted from previous recommendations [35].

The theoretical maximum load (W) was estimated using the Jones et al. equation [36].
The protocol consisted of a 3 min rest period, a 3 min warm-up at 20% of the maximum load,
followed by 6 min stages at 30, 40, 50, and 60% of the maximum load until a respiratory
exchange ratio <1 was achieved. Subsequent 6 min stages continued until maximal effort
was reached, with verbal encouragement provided.

The test was deemed maximal if the respiratory exchange ratio was ≥1.1 and/or if
the maximum heart rate (HRmax) met or exceeded the theoretical maximum predicted by
the Morris equation [37] for the bicycle ergometer test. Based on the last completed stage,
the following variables were calculated using the mean of the last 30 s of exhaled air via a
breath-by-breath gas analysis (Metalyzer 3B-R2, Cortex®, Leipzig, Germany): ventilatory
threshold 2 (provided by MetaSoft® Studio software version 5.9 and validated by visual
inspection), HRmax (beats per minute), and maximum load (watts). The VO2max (L/min)
was determined using the same methodology. The MFO rate (g/h) was measured during
exercise using the equations of Frayn (mean value of the O2 and CO2 volumes of the last
2 min of each completed 6 min stage) [38].

2.3. Inter-Day Concurrent Training Program

The 12-week inter-day CT program consisted of three distinct weekly sessions metic-
ulously programmed by the main researcher and physiotherapist [39,40]. Sessions 1 and
3 focused on endurance exercises, while session 2 emphasized resistance exercises. A 48-h
recovery period was ensured between sessions. Each session lasted 60–75 min and was
conducted under the supervision of a physiotherapist from the obesity treatment center.
Sessions were personalized for each participant to ensure tailored benefits.

All physical exercise sessions began with a 15 min warm-up, comprising 5 min of
cycloergometer exercise at 65% of the VO2max, followed by joint mobility exercises and
dynamic stretching. This structured warm-up aimed at preparing participants for the
ensuing exercise types and maximizing safety and effectiveness.

Endurance exercise sessions were based on continuous cycloergometer exercise, with
intensities ranging from 65–85% of the VO2max, monitored using heart rate telemetry (Polar
T31, Polar, Kempele, Finland). The endurance exercise intensity was prescribed based on
the training heart rate derived from a cardiorespiratory test to obtain the VO2max. This
allowed for progressive overload throughout the 12 weeks by adjusting to the individual’s
adaptive response to the training stimulus.

The program progression was as follows:

• Weeks 1–3: 50 min of continuous running at 65% VO2max.
• Weeks 4–6: third session changed to 20 min interval-based approach (1 min intervals

at 85% VO2max; 3 min active recovery at 65% VO2max).
• Weeks 7–9: 20 min intervals with 2 min intervals at 85% and 2 min of active recovery

at 65% VO2max.
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• Weeks 10–12: return to original interval structure (1 min intervals; 1 min recovery).

The second weekly session focused exclusively on resistance training, targeting both
upper body (chest press, latissimus pull-down, biceps curl) and lower body (leg press,
prone femoral curl, leg extension) exercises. Participants performed 6 resistance exercises
in each session, alternating between upper- and lower-body exercises with 30–60 s recovery
periods. This circuit was repeated 3 times per session.

In the initial three weeks, the Rating of Perceived Exertion (RPE) scale (0–10) guided
training intensity, with a target zone of 7–8. After 3, 6, and 9 weeks, the one-repetition
maximum (1-RM) was measured as described by Jimenez and De Paz [41] and LeSuer
et al. [42] to adjust resistance exercise loads and prescribe intensity as a percentage of 1-RM
(target zone: 50–60%).

2.4. Statistical Analysis

Data are presented as mean and standard deviation. A Shapiro–Wilk normality test
confirmed the normal distribution of all data. Levene’s test confirmed homoscedasticity. A
repeated-measures ANOVA analyzed the effects of time (pre- and post-intervention) and
group (E-G, E-MG, and M-G) factors. Post hoc pairwise comparisons (Bonferroni-adjusted)
identified the source of significant differences. Effect sizes (ESs) were calculated using
partial eta-squared (η2

p) values. Cohen’s d was calculated as a measure of the effect size
(ES), with threshold values as follows: <0.20 (trivial), 0.20–0.59 (small), 0.60–1.19 (moderate),
1.20–1.90 (large), 2.0–3.9 (very large), and > 4.0 (extremely large) [43]. The percentage delta
(∆%) expressed the pre- and post-intervention changes.

Participants’ inter-individual responses were classified as responders (Rs) and non-
responders (NRs), defined as individuals demonstrating a change in physical fitness greater
than twice the technical error (TE) away from zero [44]. TE was calculated using the
equation established by Bonafiglia et al. [45]. Each metabolic assessment was performed
pre- and post-intervention to calculate the TE. A change in the TE of more than twice
represented a high probability (i.e., 12:1 odds ratio) that the observed response was a true
physiological adaptation beyond what could have been expected owing to technical and/or
biological variability.

The TE values were as follows: [body mass (kg), 2.458 × 2; fat mass percentage,
1.988 × 2 (%); fasting insulin, 5.701 × 2 (mg/dl); fasting glycemia, 2.871 × 2 (mg/dl;
HOMA-IR, 1.414 × 2; VO2max, 0.181 (L/min) × 2; MFO, 4.164 × 2 (g/h)]. Fisher’s exact
test was used for comparisons between groups [46]. All statistical analyses were performed
using GraphPad PRISM (version 6.0, San Diego, CA, USA).

3. Results
3.1. Metabolic and Fitness Responses

The analysis revealed significant group-by-time interactions for fasting insulin
(F2,17 = 34.059, p < 0.001, η2

p = 0.88), the HOMA-IR F2,17 = 35.597, p < 0.001, η2
p = 0.80), and

MFO (F2,17 = 4.541, p = 0.026, η2
p = 0.348) following the CT program (Table 1).

Fasting insulin levels decreased significantly in both the E-G (−82.1%, ES = 4.06, very
large) and the EM-G (−85%, ES = 4.54, very large), while no improvement was observed
in the M-G. The HOMA-IR showed substantial reductions in the E-G (−82.6%, ES = 3.91,
very large) and EM-G (−84.6%, ES = 3.69, very large) groups. The E-G demonstrated a
significant increase in MFO of +181.1% (ES = 1.38, large).

BM exhibited significant time effects (F = 91.30, p < 0.001), with decreases observed
across all groups: E-G (−9.43%), EM-G (−9.21%), and M-G (−5.15%). The ES was more
pronounced in the E-G (ES = 0.73, moderate) compared to the EM-G (ES = 0.05, trivial) and
M-G (ES = 0.30, small).
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Table 1. Effects of concurrent training on metabolic and cardiorespiratory fitness and body composi-
tion outcomes (n = 20).

Outcomes Group Pre Post ∆% ES
(Pre vs. Post) RS (%) Group by Time

(F2,17; p Value; η2
p)

Body Mass (kg)

M-G 94.23 ± 13.93 89.39 ± 14.77 * −5.15 0.30 3 (33.3%)

11.961, 0.13, 0.088E-G 85.27 ± 19.67 77.23 ± 19.06 * −9.43 0.73 5 (71.4%)

EM-G 88.13 ± 12.66 80.00 ± 13.44 * −9.21 0.05 5 (83.3%)

%Fat Mass

M-G 41.14 ± 12.88 36.26 ± 13.67 * −11.87 0.45 5 (71.4%)

2.437, 0.11, 0.22E-G 35.21 ± 8.200 27.29 ± 6.522 * −22.52 0.83 7 (100%)

EM-G 41.53 ± 10.93 34.62 ± 11.30 * −16.65 0.63 4 (66.7%)

Fasting Insulin
(mg/dl)

M-G 15.63 ± 3.74 15.73 ± 5.86 +0.63 0.02 0

34.059, 0.001, 0.88 *E-G 16.4 ± 3.31 2.92 ± 1.89 *
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The %FM showed a significant time effect (F = 125.244; p < 0.001). The E-G demonstrated
the most substantial improvement, with a reduction of −22.52% (ES = 0.83, large) compared
to the M-G (−11.87%, ES = 0.45, moderate) and EM-G (−11.65%, ES = 0.63, moderate).

For the VO2max, a significant time effect was observed (F2,17 = 4.888, p = 0.041). The
E-G improved cardiorespiratory fitness by +13.3% (ES = 0.30, moderate), while the EM-G
showed a modest improvement of +5.26% (ES = 0.16, trivial). Notably, the M-G experienced
a decrease of −30.8% (ES = 0.05, trivial).

Fasting blood glucose levels did not vary significantly between the study groups
(F2,17 = 1.318, p = 0.294, η2

p = 0.134), although the E-G and EM-G demonstrated compara-
ble improvements of +82.6% and +84.6%, respectively (ES = 3.91 and 3.69, respectively)
(Figure 1).
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3.2. Inter-Individual Responses

For BM, the M-G presented the lowest proportion of responders (Rs) at 33.3% (n = 3),
compared to the E-G at 71.4% (n = 5) and the EM-G at 83.3% (n = 5). No significant
differences were observed in the proportion of Rs between the groups. Regarding the %FM,
the M-G had no Rs, whereas the E-G had 100% of the Rs (n = 7), and the EM-G had 66.7%
of the Rs (n = 4).

Fasting insulin levels were not recorded in the M-G; however, the E-G had a 71.1%
response rate (n = 5), and the EM-G had a 100% response rate (n = 5). Significant differences
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in R ratios were observed between the M-G and E-G (p = 0.004) and between the M-G and
EM-G (p < 0.001). For the HOMA-IR, the M-G showed no Rs, whereas the E-G had 42.8%
of the Rs (n = 3), and the EM-G had a 100% response rate (n = 3). A significant difference
was observed between the Rs values of the M-G and EM-G.

For fasting glycemia, the M-G had 28.5% of the Rs (n = 2), whereas both the E-G and
EM-G had 50% of the Rs (n = 3). For the VO2max, no Rs were recorded in the M-G, whereas the
E-G showed 42.8% of the Rs (n = 3) and the EM-G showed 16.6% of the Rs (n = 1) (Figure 2).
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4. Discussion

This study aimed to analyze the effects of a 12-week inter-day CT program on
metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR,
treated with or without metformin. Additionally, we examined inter-individual responses
to CT. The main results revealed significant improvements in both the metformin and
non-metformin training groups in terms of fasting insulin, HOMA-IR, and MFO after the
inter-day CT program. These improvements were comparable in terms of both percentage
change and effect size.

Interestingly, the individual response analysis indicated that a higher percentage of
participants in the EM-G responded positively in terms of fasting insulin and HOMA-IR
compared to the exercise-only group (E-G). Conversely, a higher percentage of MFO re-
sponders was observed in the E-G than in the EM-G. The maximal oxygen uptake (VO2max)
showed significant improvements only in the E-G, with a higher percentage of responders
than in the EM-G. Both the percentages of fat mass and body mass were significantly
reduced across all groups. Body mass decreased in the E-G, EM-G, and M-G, with the
highest percentage of responders in the E-G. The reduction in the percentage of fat mass
was significant in the E-G. These findings did not support our primary hypothesis, which
posited that CT without metformin would have a more significant impact on metabolic
markers and cardiorespiratory fitness than CT combined with metformin.

4.1. Insulin Sensitivity (HOMA-IR)

Our findings indicated a significant improvement in the HOMA-IR index in both
intervention groups, the E-G and EM-G, compared to the M-G. This trend is supported by
Malin et al. [16], who observed the effects of an endurance (60–75 min at 70% of the maximal
heart rate) and resistance (60–75 min at 70% of 1RM) training program, with and without
metformin, in men and women with IR for 12 weeks. The authors documented that the
improvement in insulin sensitivity (by hyperinsulinemic–euglycemic clamp) was 25–30%
greater after exercise without metformin, although this difference was not significant.

In contrast, Abdelbasset [46] compared the effects of endurance and resistance exercise
programs in combination with metformin in patients with T2DM. A total of 57 patients
were included in the study, which was conducted in three groups: an endurance exercise
group with metformin (50–70% HRmax, for 40–50 min), a resistance exercise group with
metformin (50–60% of 1RM, for 40–50 min), and a metformin-only group. After the 12-week
period, the exercise groups exhibited significant improvements in fasting blood glucose,
glycosylated hemoglobin (HbA1c), the HOMA-IR, and VO2max, with the endurance group
demonstrating the most pronounced enhancement. The metformin-only group demon-
strated a significant reduction in fasting glycemic levels. In conclusion, the combination of
resistance exercise and metformin was more efficacious than endurance exercise alone in
the management of T2DM.

Walton et al. [21], in a randomized, double-blind, placebo-controlled trial, investigated
the effects of metformin on muscle hypertrophy in response to a progressive resistance
program in older adults (n = 47; age range, 65–75 years). The participants were randomly
assigned to receive metformin or a placebo for 24 weeks. During this time, all participants
underwent progressive resistance training. The measures used were muscle cross-sectional
area and strength. The results showed that, compared to the placebo group, the M-G had
a smaller increase in muscle cross-sectional area and strength after 24 weeks of training.
Additionally, the M-G showed higher levels of myostatin, a protein that inhibits mus-
cle growth, and lower levels of satellite cells, which are essential for muscle repair and
growth [21].

Consistent with the above, the results show controversial findings, suggesting an
attenuating effect of metformin as a function of exercise type (i.e., endurance, resistance, or
concurrent) on insulin sensitivity adaptations. Walton et al. [21] suggested that metformin
might attenuate muscle hypertrophy in response to progressive resistance training in older
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adults. These findings have implications for the use of metformin for the treatment of
age-related muscle loss and weakness.

In terms of pharmacodynamics, metformin exerts its molecular action by inhibit-
ing complex I, mitochondrial glycerophosphate dehydrogenase, and ATP synthase [19].
This decreases ATP production and increases AMP concentration, which increases the
[AMP]/[ATP] ratio. As a result, AMP-activated protein kinase (AMPK) is activated, and
insulin sensitivity is increased [19]. However, it is important to note that this molecular
mechanism of metformin may antagonize the improvement in insulin sensitivity and car-
diorespiratory fitness induced by aerobic exercise due to mitochondrial dysfunction [23].
Interestingly, to date, only theoretical mechanisms have been proposed for the molecular
mechanisms associated with CT with or without metformin [47], which highlights the
relevance of studies in this direction.

Furthermore, it is pertinent to point out that the methodology of high-volume, moder-
ate, continuous, and frequent endurance training can negatively affect adaptations such as
protein synthesis, muscle hypertrophy, and glucose storage capacity [21] induced by resis-
tance training due to the inhibition of the mammalian target of rapamycin (mTOR) protein
by the activation of the AMPK protein [48]. In contrast, short, low-volume workouts, such
as HIIT or sprint interval training, are thought to have a minor or even no negative effect on
molecular adaptations associated with muscle protein synthesis in response to resistance
training in a concurrent program [49]. Therefore, it is critical to investigate the mecha-
nisms through which different training modalities interact, especially in combination with
metformin, to optimize IR interventions and maximize the benefits of concurrent training.

4.2. Maximal Fat Oxidation and Cardiorespiratory Fitness

The MFO results showed improvements in both the E-G and EM-G, with a greater
magnitude of change in the E-G (181.1% and 67.5%, respectively). Consistent with our
results, Malin and Braun [26] investigated whether metformin could attenuate the ability
to increase fat oxidation and free muscle glycogen levels. They evaluated the effect of a
10-week CT program that included aerobic exercise on a bicycle ergometer (60–75 min)
twice a week and resistance training (60–75 min at 70% 1RM on the second day of the
week) with and without metformin in sedentary adults with chronic glucose intolerance.
They found no group differences in MFO but observed an increase in insulin sensitivity,
which was significantly greater in the CT group without metformin after 10 weeks of CT.
Furthermore, they found that training-induced improvements in insulin sensitivity, as
measured by the hyperinsulinemic–euglycemic clamp method, correlated with increased
cardiorespiratory fitness (VO2max) (r = 0.70; p < 0.05) [27].

In contrast, Malin et al. [49] studied resting, during-, and post-aerobic exercise re-
sponses in 15 healthy, recreationally active individuals who were treated with 2000 mg/day
of metformin or placebo for 8–10 days using a double-blind crossover design. The results
showed that metformin at rest increased fat oxidation. However, metformin reduced fat
oxidation after the endurance-type exercise protocol during an exercise session on a bicycle
ergometer. The authors concluded that in healthy individuals, metformin had opposite
actions on fat oxidation [49].

Regarding cardiorespiratory fitness, our results revealed a significant improvement in
VO2max in the E-G (+13.3%), whereas the EM-G and M-G showed no significant changes.
The EM-G indicated an improvement of 5.26%, and notably, the M-G indicated a decrease of
−30.8%. These findings were described by Cadeddu et al. [22], who observed a decreasing
trend in VO2max in the metformin-only treated group. Specifically, 75 patients (35 men and
40 women [46 ± 11 years]) with IR were divided into three groups: metformin and training
(30–50 min of aerobic exercise on a bicycle ergometer at 60–80% of the baseline heart rate)
with and without metformin. After 12 weeks, a significant increase in cardiorespiratory
capacity was observed in the exercise groups with and without metformin (p < 0.01), with
no significant differences between the groups analyzed. This variability in results can
be largely attributed to methodological differences between studies, for example, acute
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exercise sessions with chronic effect interventions and assessments of healthy individuals
versus those with IR. In addition, exercise programs vary between interventions, including
endurance exercise or CT.

Obese or overweight patients with IR often have decreased endurance or cardiorespi-
ratory fitness, which could also imply a reduction in fat oxidative capacity [1]. Among the
benefits of physical exercise, it has been shown to improve oxygen uptake, transport, and
utilization and thus VO2max, potentially improving fat oxidative capacity [50]. Metformin
is also effective in reducing hepatic glucose production, thereby promoting body fat oxida-
tion [49,51–54]. In addition, metformin can reduce visceral fat by promoting fat oxidation
and thermogenesis [55]. This finding suggests that the interaction between metformin and
exercise may intensify fat oxidation during exercise and potentially increase the effect of
exercise on IR. However, it is important to keep in mind that metformin acts directly on mi-
tochondria, altering the balance between mitochondrial coupling and uncoupling reactions
and, consequently, cellular bioenergetics [56]. This effect could affect both cardiorespiratory
capacity and fat oxidation capacity, rendering cells energetically inefficient and raising
questions about the role of metformin as an enhancer or inhibitor of exercise adaptations to
improve IR in this population [19].

4.3. Inter-Individual Variability

In addition to the overall results, our study examined the interindividual responses
(Rs) of the examined groups. For the HOMA-IR, no Rs were found in the M-G, whereas
100% of the Rs were recorded in the EM-G (n = 6). The difference in the proportion of the
Rs was statistically significant (p < 0.001) (see Figure 2). However, when comparing the
M-G with E-G, no significant difference was found between 28.5% of the Rs (n = 2). As
for fasting blood glucose, 14.2% of the Rs (n = 1) were documented in both the M-G and
E-G. In the EM-G, the Rs were 50% (n = 3). No significant differences were found in the
proportions of the groups analyzed. These results were similar to those reported by Alvarez
et al. [27]. The authors evaluated the effects of high-intensity intervallic training and a
resistance program on IR in women (n = 30; range: 20–40 years). The participants were
randomly assigned to one of the following three groups: high-intensity interval training, a
resistance program, and the control. Changes in insulin sensitivity, glucose uptake, and
lipid profiles were measured. After 12 weeks, both the high-intensity interval training
group and the resistance program group showed improvements in insulin sensitivity
compared to the control group. Specifically, the HIIT group showed a 21% improvement in
insulin sensitivity, while the resistance program group showed a 12% improvement. They
concluded that both high-intensity interval training and resistance programs are effective
in improving insulin sensitivity in women with IR.

In the case of the VO2max, no Rs were observed in the M-G. However, 42.8% of the
R values (n = 3) were recorded in the E-G and 16.6% in the EM-G (n = 1). No significant
differences were found in the proportions of the groups analyzed. These results align with
those described by Seward et al. [57], who examined the efficacy of a community-based,
personalized exercise program aimed at mitigating the severity of metabolic syndrome and,
consequently, reducing T2DM and cardiovascular disease. Seward et al. [57] reported on
150 physically inactive individuals (range: 18–83 years). The participants were randomly
divided into a control group (n = 75), who were asked to maintain their usual routine, and
a treatment group (n = 75). The latter completed a 12-week personalized fitness training
program. After 12 weeks, the authors reported interindividual variability in responses to the
exercise program in terms of the VO2max. Although some individuals achieved significant
improvements, others showed minimal changes or decreases in VO2max. Importantly,
however, some participants experienced an increase ≥ 30%, underscoring the potential for
improvement in aerobic capacity with appropriate intervention. In addition, the authors
found that certain demographic and clinical characteristics, such as a younger age, a
lower basal VO2max, and the presence of certain comorbidities (e.g., hypertension and
obesity), were associated with greater improvements in cardiorespiratory capacity. This
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phenomenon has been extensively analyzed in a review by Williamson et al. [58], who
noted that genetic differences, muscle fiber composition, hormonal responses, muscle
architecture, neuromuscular coordination, body composition, nutritional status, presence
of chronic diseases, and medication use can significantly influence individual variations in
VO2max in response to physical training.

Regarding MFO, 42.8% of the Rs (n = 3) were recorded in the E-G, whereas 14.2%
of the Rs (n = 1) were recorded in both the EM-G and M-G. No significant differences
were observed in the proportions between the groups. In contrast, Malin and Stewart [1]
and Bonafiglia et al. [59] in recent reviews highlighted the significant interindividual
variability in responses to exercise therapy and metformin use, respectively. This variability
may be influenced by factors such as gut microbiota composition, gut epithelial barrier
integrity, diet, genetic variants, and miRNA and protein expression [59]. Changes in
gut microbiota and differences in drug metabolism may affect the efficacy of metformin.
However, responses to physical exercise may vary due to factors such as genomic instability,
telomere length, mitochondrial function, and chronic inflammation [59]. In addition,
nutritional, stress, sleep quality, and lifestyle factors may contribute to interindividual
variability in response to metformin treatment and the efficacy of physical and nutritional
training [58,59]. This knowledge underscores the importance of considering personalization
in health interventions to optimize their efficacy.

4.4. Limitations

It is relevant to note that our study was not without limitations. This study used
indirect measurements related to metabolic and body composition markers, whose re-
sults should be interpreted with caution. The HOMA-IR index is an indirect measure
to determine insulin sensitivity, albeit associated with pancreatic β-cells. Therefore, the
interpretation of the results related to muscle metabolic peripheral adaptations should be
analyzed with caution. However, its correlation with the gold standard “hyperinsulinemic–
euglycemic glucose clamp test”, whose high cost and complexity limit its practical applica-
tion, makes the HOMA-IR a useful measure in clinical and epidemiological studies.

In addition, it is recognized that the optimization of body composition is determined
not only by physical exercise but also by nutrition. Therefore, to interpret the results
regarding the decrease in body mass and fat mass percentage after 12 weeks of inter-day CT
requires the control of nutritional habits, although our study emphasized the adaptations of
metabolic markers and cardiorespiratory fitness. Thus, despite the monitoring of lifestyle
changes by phone calls during the 12 weeks, we acknowledge its relevance.

Moreover, bioelectrical impedance is an indirect technology to measure body compo-
sition and whose results depend on the state of hydration, which may underestimate or
overestimate the results obtained. Although, it is relevant to mention that %FM correlates
with its counterpart determined by x-ray absorptiometry.

Finally, we recognize the inherent biological differences between men and women, whose
analysis could have affected the results analyzed. However, to remedy this limitation, partici-
pant eligibility was rigorous, considering their demographic and disease-related similarities.

4.5. Perspectives and Future Studies

The prescription of physical exercise as a medicine is currently recognized to prevent
and treat diseases associated with unhealthy lifestyle habits in the population. Therefore,
this study contributes to advancing the understanding of inter-day distributed concurrent
training with an emphasis on continuous and interval aerobic exercise sessions during
pharmacological treatment with metformin. Thus, our findings highlight that a combination
of exercise and metformin may offer benefits that would outweigh those of metformin
alone in the treatment of IR.

Accordingly, from a research perspective, retrospective design studies offer answers
when logistics are limited for pure experimental design studies. Furthermore, the incor-
poration of analyses based on the principle of individuality of physical exercise enriches
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the documented results by allowing the determination of individual changes in relation
to the study group. In addition, this methodology can serve for clinical analysis as part
of the control of the treatment of these diseases. In turn, it is relevant to identify the
factors that generate interindividual variability in the responses to exercise and metformin
independently, since understanding these elements will allow a more effective personaliza-
tion of interventions, representing a challenge and an opportunity for future research and
clinical practice.

Future studies could focus on analyzing the intra-session effects of CT in combination
with metformin to determine whether the distribution of CT sessions, and thus their effects,
could have more effective group and inter-individual adaptations. Similarly, this research
design could be applied to other pathologies using pharmacotherapy in conjunction with
physical exercise.

These results reaffirm the crucial role of incorporating physical exercise, alone or in
combination with metformin, in the improvement of IR, compared to the use of metformin
as the sole pharmacological treatment. However, more detailed research is required to un-
ravel the complex interactions between the different types of physical exercise, metformin,
and IR, which could allow more precise prescription of the most beneficial type of exercise
when medication cannot be discontinued.

5. Conclusion

The 12-week inter-day concurrent training program, whether combined with met-
formin or not, was similarly effective in improving metabolic markers in patients with
insulin resistance as metformin treatment alone. Both exercise groups demonstrated a
significant reduction in insulin sensitivity by the HOMA-IR and an increase in maximal
fat oxidation. Meanwhile, exclusive pharmacological treatment with metformin markedly
decreased cardiorespiratory fitness, and consequently, fat oxidation. These findings high-
light the importance of incorporating inter-day concurrent training as part of metformin
treatment. In this sense, in the middle or long term, a gradual reduction or removal of the
medication should be considered as long as they maintain a healthy lifestyle, including
concurrent training. Additionally, healthcare professionals should carefully consider the
specificity of the exercise type and its potential adaptive effects, the distribution of training
sessions, frequency, and the inter-individual response within this population.
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