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Abstract: Lipid membranes, which are fundamental to cellular function, undergo various mechanical
deformations. Accurate modeling of these processes necessitates a thorough understanding of
membrane elasticity. The lateral shear modulus, a critical parameter describing membrane resistance
to lateral stresses, remains elusive due to the membrane’s fluid nature. Two contrasting hypotheses,
local fluidity and global fluidity, have been proposed. While the former suggests a zero local lateral
shear modulus anywhere within lipid monolayers, the latter posits that only the integral of this
modulus over the monolayer thickness vanishes. These differing models lead to distinct estimations of
other elastic moduli and affect the modeling of biological processes, such as membrane fusion/fission
and membrane-mediated interactions. Notably, they predict distinct local stress distributions in
cylindrically curved membranes. The local fluidity model proposes isotropic local lateral stress,
whereas the global fluidity model predicts anisotropy due to anisotropic local lateral stretching of
lipid monolayers. Using molecular dynamics simulations, this study directly investigates these
models by analyzing local stress in a cylindrically curved membrane. The results conclusively
demonstrate the existence of static local lateral shear stress and anisotropy in local lateral stress
within the monolayers of the cylindrical membrane, strongly supporting the global fluidity model.
These findings have significant implications for the calculation of surface elastic moduli and offer
novel insights into the fundamental principles governing lipid membrane elasticity.

Keywords: lipid membranes; lipid bilayers; lipid monolayers; biological membranes; membrane
biophysics; molecular dynamics of lipid membranes; elasticity of lipid membranes

1. Introduction

Lipid membranes, essential components of living organisms, serve as semipermeable
barriers for cells and their organelles [1]. Beyond their structural role, they are integral
to vital cellular processes such as vesicle-mediated transport [2,3], cell division [4], viral
budding [5,6], membrane protein sorting [7–9], membrane-mediated interactions [10–15],
and lipid–protein interactions [16]. These processes involve mechanical deformations of the
membrane, necessitating a theoretical understanding of membrane elasticity to accurately
describe their energetics and dynamics.

Classical elasticity theory models lipid membranes as continuous, laterally fluid, elas-
tic 3D bodies [14,17–21]. The free energy of deformation is governed by elastic parameters
characterizing the energy cost of specific deformation modes. Assuming membrane in-
compressibility, three independent local elastic moduli—stretching, transverse shear, and
lateral shear modulus—describe these deformations [14,17,20]. While the local stretching
modulus is relatively well-known [22], the others remain less characterized. The transverse
shear modulus influences lipid tilt and tilt modulus, which are relevant for deformations
on the scale of membrane thickness [14,17]. The value of the transverse shear modulus can
be reasonably theoretically estimated from the consideration of the oil–water interface [17].

The lateral shear modulus, representing the membrane’s resistance to lateral defor-
mation, is particularly challenging to incorporate into elasticity theory due to the lateral
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mobility of lipid molecules. Two primary assumptions—local and global fluidity—have
been proposed to address this challenge [17]. The local fluidity assumption posits a zero
lateral shear modulus throughout the lipid monolayers, while the global fluidity assump-
tion requires only the integral of the lateral shear modulus over the monolayer thickness
to be zero. Some studies employ the local fluidity assumption [18,19,23–25], while oth-
ers consider the possibility of global fluidity [14,17,20,26–29]. The choice between these
assumptions significantly impacts the derived surface elastic moduli, including bending,
Gaussian curvature, and twist moduli [14,17,20].

Previous attempts to indirectly determine the correct fluidity assumption have yielded
conflicting results. Theoretical analyses have suggested that the global fluidity assump-
tion implies local fluidity due to the classical stability requirements [14], while molecular
dynamics observations of membrane undulations have indicated a nonzero twist modu-
lus [20,28,29], implying a non-zero local lateral shear modulus. However, these molecular
dynamics findings may be influenced by limitations of the elasticity theory at short undula-
tion wavelengths [14].

This work aims to directly determine the correct fluidity assumption using molecular
dynamics simulations. In Section 3, it is shown that by analyzing the local stress tensor in
cylindrically curved lipid bilayers, it is possible to distinguish between local and global
fluidity models. The MD simulation results, presented in Section 4, provide insights
into the nature of membrane fluidity and its implications for understanding membrane
deformation processes.

2. Materials and Methods

To conduct the molecular dynamics simulations, a coarse-grained force field was
selected. Given the conceptual nature of the problem and the focus on studying fluidity
properties, a coarse-grained representation of lipid bilayers is sufficient. These simplified
models retain the essential lateral fluidity characteristic of lipid membranes, allowing lipids
to diffuse within the membrane plane. Moreover, coarse-grained models offer significant
computational advantages.

The Martini force field [30], a widely used option for biomolecular simulations, was
employed in this study. To further reduce computational costs, the Dry Martini variant [31],
which utilizes an implicit solvent model, was chosen. In addition, the use of a wet Martini
force may complicate the analysis due to potential coupling of membrane undulations
between periodic images of cylindrical bilayers, hindering the accurate interpretation
of results.

Palmitoyloleoylphosphatidylcholine (POPC), which is present in living cells [32] and
commonly used in model membranes [33] and molecular dynamics simulations [34], was
selected to construct the lipid bilayers. In the Dry Martini force field, POPC is represented
by 12 beads: a choline bead, a phosphate bead, two glycerol beads, and four beads in
each tail.

2.1. Molecular Dynamics Parameters

MD simulations were performed using GROMACS [35,36]. Dry Martini v2.1 [31]
simulations were conducted using the stochastic dynamics integrator [37] with a 30 fs time
step and a friction constant of 4.0 ps. Non-bonded interactions were calculated using the
Verlet algorithm [38] with a 1.4 nm neighbor list updated every 10 steps. The van der
Waals and Coulomb cutoff distances were set to 1.2 nm, with van der Waals interactions
switched to zero using a force-switch modifier at 0.9 nm. Coulomb interactions employed
a reaction-field scheme with a dielectric constant of 15. Prior to the main simulations,
the systems were energy-minimized using the steepest descent integrator and soft-core
potentials [39], followed by a 0.5 ns equilibration run with a 10 fs time step. The temperature
was maintained at 300 K. Dry Martini POPC remains in a fluid state over a wide range of
temperatures, exhibiting no phase transition to the gel phase [40].
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2.2. Planar Lipid Bilayer

A planar lipid bilayer comprising 256 lipids (128 lipids per monolayer) was generated
using CHARMM-GUI software [41–45]. A semi-isotropic pressure coupling scheme with
the Berendsen barostat [46] was employed to maintain a lateral pressure of 0 bar. The lateral
box compressibility was set to 3 × 10−4 bar−1, while the bilayer thickness (z-axis) was fixed
at 10.5 nm. Before the production run of 6 µs, the bilayer was equilibrated for 130 ns.

2.3. Cylindrical Lipid Bilayer

The MD simulation of a cylindrically curved lipid bilayer requires more lipid molecules,
which may lead to a large amplitude of thermal undulations of the membrane shape, result-
ing in the smearing of local stress [47]. A thorough analysis of lipid tube undulations was
performed in Ref. [48]. In general, smaller radii lead to smaller undulation magnitudes due
to the reduced number of molecules. However, at a given tube radius, there exists a tube
length L0 where undulations are minimal, while they diverge at L > L0 [48]. The prediction
of amplitude divergence, however, is not confirmed by MD simulations [49], showing that
undulation amplitude decreases even at L > L0.

The cylindrically curved lipid bilayer was constructed using BUMPy v1.1 software [50].
The radius at the bilayer midsurface was set to 6.5 nm. While MD simulations of lipid
tubes can be performed with smaller radii, down to 4 nm [31,51], a 6.5 nm radius was
chosen as an intermediate value between large and small curvature radii. To minimize
membrane undulations, the tube length was set to 20 nm, which is approximately the
optimal length for this radius given a bending rigidity of 20 kBT (typical for lipid bilayers)
and an undulation cutoff of 2 nm (approximately monolayer thickness) [48]. The pivotal
plane was positioned at 1 nm, resulting in a lipid tube with 1483 and 1087 lipids in the
outer and inner monolayer, respectively.

MD simulations of the lipid tube were conducted in the NVT ensemble, with an initial
equilibration run of 30 nanoseconds. The simulation box size was 20 nm along the tube
axis and 40 nm in the other two directions. Lipid flip-flop, the movement of lipids between
the monolayers, does not occur in Dry Martini lipid bilayers [31]. To balance the lipid
distribution between the monolayers, inverted cylindrical flat-bottom position restraints
with a force constant of 1000 kJ/mol/nm2 were applied to the hydrocarbon lipid tails to
open membrane pores. These restraints acted along axes perpendicular to each other and
the tube axis, creating four pores. Initially, the restraint distance was set to 2 nm for 30 ns
to facilitate rapid lipid transfer. Subsequently, it was reduced to 1.2 nm and simulated for
300 ns at this value. The distance constants of the position restraints were changed gradually
in steps of 0.2–0.5 nm to avoid strong perturbations in the system; each step was simulated
for 1.5 ns. This pore-opening approach is similar to those described in Refs. [50–52]. During
the time the pores were open, 172 lipids moved from the outer monolayer to the inner
monolayer, while 175 lipids moved from the inner monolayer to the outer monolayer,
resulting in 1486 and 1084 lipids in the outer and inner monolayers, respectively. Thus, the
ratio of lipids in the monolayers did not change significantly, implying that the initial choice
of the pivotal plane at 1 nm approximately corresponds to the actual value of the pivotal
plane’s position. Following restraint removal, the lipid tube was further equilibrated for
100 ns before a 3 µs production run.

2.4. Determination of Local Stress

During MD simulations, particle coordinates and velocities were recorded every
4.98 ps. The resulting frames were analyzed using GROMACS-LS v2016.3 software [53–56],
employing the covariant central force decomposition for multi-body potentials [54]. Sta-
tistical analysis involved block averaging (10 blocks) followed by repeated resampling
(200 iterations).

In GROMACS-LS, the stress tensor is calculated using the Irving–Kirkwood–Noll
definition [57,58] of local stress and spatial averaging with trilinear weighting functions
over a 3D rectangular grid [53]. For the planar bilayer, the grid size was set to 0.05 nm
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perpendicular to the bilayer and the box size in other two directions. For the cylindrical
bilayer, the grid size was the box size along the cylinder axis and 0.05 nm in other two
directions. Before analyzing the local stress, at each simulation frame, lipid bilayers were
spatially translated with the help of MDAnalysis 2.7.0 [59,60] to ensure that their geometric
center coincided with the center of the simulation box.

To obtain local stress components in cylindrical coordinates, the calculated local stress
tensor, Σ, was transformed at each grid point using the rotation matrix, Aθ , around the
cylinder axis by the azimuthal angle θ: Σ′ = AT

θ ΣAθ . The stress components with radial
coordinates r ± 0.025 nm (where r ranges from 0.0 nm to 19.95 nm with a step of 0.05 nm, and
r = 0.0 nm corresponds to the cylinder axis passing through the box center) were averaged to
determine the radial dependence of the local stress components in cylindrical coordinates.

3. Theory
3.1. Elastic Energy

Within the framework of classical elasticity theory, a lipid monolayer is considered as a
continuous, three-dimensional elastic medium [14,17,19,20,22,61]. The average orientation
of lipid molecules is characterized by a unit vector field, referred to as the director, which
extends from the lipid heads to the lipid tails. The monolayer’s planar state serves as a
reference configuration. In this state, the director field is perpendicular to the monolayer
plane, and the monolayer exhibits transverse isotropy with respect to an axis aligned with
the director field. The elastic energy density of the lipid monolayer relative to the reference
state should be expressed in a manner consistent with this transverse isotropy. To facilitate
this, a Cartesian coordinate system xyz is introduced with the xy plane parallel to the
monolayer in its initial configuration and the z-axis aligned with the director field. An
arbitrary deformation of the monolayer can be described by a vector function R(x, y, z),
which maps the monolayer points with coordinates (x, y, z) to some other points R(x, y, z).
In the chosen coordinate system, the general quadratic expression for the elastic energy
density of the transversely isotropic material has the following form [62]:

w = σl
(
uxx + uyy

)
+ σzuzz +

1
2 λ1

(
uxx + uyy

)2
+ 1

2 λ2u2
zz + λ12

(
uxx + uyy

)
uzz

+ 1
2 λS

[(
uxx − uyy

)2
+ 4u2

xy

]
+ 2λT

(
u2

xz + u2
yz

) , (1)

where uij (i, j ∈ {x, y, z}) are the components of the Green–Lagrange strain tensor
U ≡ 1

2
(
FTF − I

)
(F is the Jacobian matrix of the deformation R), λ1, λ2, λ12, λS, and

λT are the elastic moduli, and σl and σz are the pre-stress terms. Due to transverse isotropy,
the elastic moduli and pre-stress terms are independent of x and y but may vary with z.
Equation (1) shows that the possible deformation modes can be categorized into six terms:
uxx + uyy, uzz, uxx − uyy, uxy, uxz, and uyz. The last two modes represent lipid tilt [14,17,20],
or the deviation of the director field from the monolayer normal. In the following, only
deformations in which the director field remains perpendicular to the monolayer will
be considered, which implies uxz = uyz = 0. The first two modes, uxx + uyy and uzz,
correspond to lateral and longitudinal stretching, respectively, which are characterized by
the moduli λ1 and λ2 and the coupling modulus λ12. The remaining deformation modes,
uxx − uyy and uxy, represent lateral shear, and are characterized by the lateral shear mod-
ulus, λS. If uxx, uyy, and uxy are coordinate-independent, the uxy term can be eliminated
from the elastic energy expression by rotating the Cartesian coordinate system around the
z-axis. The new coordinate axes should align with the principal axes of the strain ellipsoid
in the lateral plane [63].

Given the evidence from experiments [64–66] and MD simulations [67–69], it is com-
mon to assume that lipid monolayers are incompressible in terms of volume. Up to the first
order in uij, the incompressibility condition can be written as uzz = −

(
uxx + uyy

)
. Substi-
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tuting this condition into Equation (1) and also assuming that uxz = uyz = 0, Equation (1)
simplifies to

w = σ0
(
uxx + uyy

)
+

1
2

E
(
uxx + uyy

)2
+

1
2

λS

[(
uxx − uyy

)2
+ 4u2

xy

]
, (2)

where σ0 = σl − σz and E = λ1 + λ2 − 2λ12.

3.2. Fluidity Assumptions

Lipid monolayers are characteristically fluid in the lateral direction, enabling lipid
molecules to diffuse freely within the plane of the monolayer. This lateral fluidity neces-
sitates specific assumptions regarding the lateral shear modulus, λS, a measure of the
resistance of a material to deformation by shear stress. The two most common fluidity
assumptions, (i) local fluidity assumption and (ii) global fluidity assumption, were outlined
in Ref. [17]. In the following subsections, these assumptions are discussed in detail, along
with their implications for the local stress tensor.

3.2.1. Local Fluidity Assumption

Under the local fluidity assumption, it is assumed that the lateral shear modulus, λS(z),
is zero everywhere along the z-axis in the reference configuration of a lipid monolayer [17]:

λS(z) = 0 (local fluidity assumption) (3)

This implies that any infinitesimally thin layer of thickness dz within the lipid monolayer,
spanning from z to z + dz, experiences no resistance to lateral shear deformation. As follows
from Equation (2), the only remaining deformation mode that requires energy is uxx + uyy,
which is essentially equivalent to the relative lateral area change [17]: uxx + uyy ≈ ε(z),

where ε(z) = dA′(z)
dA . Here, dA′(z) and dA represent infinitesimal lateral area elements after

and before deformation, respectively. Thus, within the local fluidity assumption, the elastic
energy is reformulated in terms of ε(z) [14,17,19]:

wl f = σ0(z)ε(z) +
1
2

E(z)ε(z)2. (4)

Because the elastic energy wl f depends solely on the local stretching ε(z), the local stress also
depends only on ε(z) [21]. Therefore, since the value of ε(z) is independent of the coordinate
systems, the local stress is laterally isotropic and lacks a lateral shear component [21].

3.2.2. Global Fluidity Assumption

In contrast to the local fluidity assumption, which stipulates a pointwise zero lateral
shear modulus, the global fluidity assumption imposes a less stringent constraint. It
requires only that the integral of the lateral shear modulus over the monolayer thickness be
zero [17]: ∫

m0

λS(z)dz = 0 (global fluidity assumption), (5)

where
∫

m0
dz is the integral over the monolayer thickness in the reference configuration.

This assumption is physically grounded in the understanding that lipids can diffuse freely
along the monolayer plane only as a collective unit, rather than as individual parts within
their thickness. Unlike in the local fluidity model, in the global fluidity model, surface elastic
parameters, derived from integrating local elastic moduli over the monolayer thickness,
depend not only on the local stretching modulus E(z) but also on the local lateral shear
modulus λS(z). Specifically, the combination

∫
m0

λS(z)z2
[
K̃2 − 4K̃G + (∇× T)2

]
should

be taken into account [14,17,20], where K̃ is the effective curvature, K̃G is the effective
Gaussian curvature, T is the tilt vector, and ∇× T is the twist deformation mode. This
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leads to the correction in the bending modulus (coefficient of K̃2) and nonzero Gaussian
curvature and twist moduli, which are zero in the local fluidity model [14,23].

Under the assumption of global fluidity, the local stress is generally laterally anisotropic.
The general expression for the Cauchy stress tensor is given by [70]

Σ =
1

detF
F

∂w
∂U

FT , (6)

where detF is the determinant of F. It is convenient to express F and U in terms of the local
basis ei of the deformation R: ei =

∂R
∂xi , where

(
x1, x2, x3) = (x, y, z). The columns of the

matrix F are the vectors ei, while uij =
1
2
(
ei · ej − δij

)
, where δij is the Kronecker delta. Let

us consider deformations where uxx and uyy are coordinate-independent, assuming the
monolayer remains planar. Then, e1 =

√
1 + 2uxxi, and e2 =

√
1 + 2uyyj, where i and j are

the unit vectors along the x- and y-axes, respectively. From the incompressibility condition,
it follows that detF = 1 and e3 = 1√

(1+2uxx)(1+2uyy)
k, where k is the unit vector along

the z-axis. Using these expressions for ei and substituting Equation (2) into Equation (6),
we obtain

Σxx =
[
σ0(z) + E(z)

(
uxx + uyy

)
+ λS(z)

(
uxx − uyy

)]
(1 + uxx) + P,

Σyy =
[
σ0(z) + E(x)

(
uxx + uyy

)
− λS(z)

(
uxx − uyy

)](
1 + uyy

)
+ P,

Σzz = P,
Σxy = Σyx = Σxz = Σzx = Σyz = Σzy = 0,

(7)

where Σij are the components of the stress tensor and P is the Lagrange multiplier intro-
duced to account for the incompressibility constraint. From Equation (7), it follows that the
difference Σxx − Σyy can be written as

Σxx − Σyy =
[
σ0(z) + E(z)

(
uxx + uyy

)
+ λS(z)

(
2 + uxx + uyy

)](
uxx − uyy

)
. (8)

Since the right-hand side of Equation (8) is generally non-zero, this indicates that, under
the assumption of global lateral fluidity, the lateral stress is generally anisotropic.

It is important to note that the idealized state of a flat monolayer, in which it is
stretched in one direction and compressed in the other, is somewhat hypothetical. In
reality, lipid molecules would rapidly reorganize to achieve a more stable laterally isotropic
state and uniform lateral stress. However, specific geometric constraints can hinder this
relaxation process.

Consider, for instance, the deformation of a planar monolayer into a cylindrical shape.
Without loss of generality, we can assume that the monolayer is bent around the y-axis. In
this scenario, the yy-component of the strain tensor (uyy) is independent of coordinates,
while the xx-component (uxx) varies with z. Consequently, in the cylindrical configuration,
even if lipids reorganize through lateral movement (assuming global lateral fluidity),
the difference between uxx and uyy cannot be entirely eliminated along the thickness of
the monolayer.

To analyze the local stress in cylindrical geometry, it is convenient to introduce a
cylindrical coordinate system, rθz. Here, z is the axial coordinate along the cylinder’s axis,
while r and θ represent the radial distance and azimuth, respectively. In this coordinate
system, the stress tensor components are the same as those in Equation (7):

Σθθ =
[
σ0(z) + E(z)

(
uxx + uyy

)
+ λS(z)

(
uxx − uyy

)]
(1 + uxx) + P,

Σzz =
[
σ0(z) + E(x)

(
uxx + uyy

)
− λS(z)

(
uxx − uyy

)](
1 + uyy

)
+ P,

Σrr = P,
Σθz = Σzθ = Σθr = Σrθ = Σzr = Σrz = 0,

(9)

where the Lagrange multiplier P is subject to the condition of mechanical equilibrium that
the divergence of the stress tensor must vanish: ∂

∂r (rΣrr) = Σθθ . From Equation (9), it
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follows that the difference between the axial component of the local stress (Σzz) and the
azimuthal component (Σθθ) is equivalent to Equation (8) and is therefore generally non-zero.

Consequently, the local fluidity model and global fluidity model predict different
results for local stress in cylindrical lipid monolayers. According to the local fluidity model,
lateral stress is always isotropic, even in cylindrical configurations. However, the global
fluidity model suggests that local stress should be anisotropic in cylindrical configurations
due to the anisotropic lateral stretching of lipid monolayers characteristic of this geometry.
Therefore, measuring local stress in cylindrical monolayers can help determine the validity
of these models.

4. Results
4.1. Planar Lipid Bilayer

This section presents the results of molecular dynamics (MD) simulations performed
on the planar POPC bilayer. Figure 1 illustrates the obtained stress profiles as a function of
coordinates along the bilayer thickness. The lateral stress profile (Figure 1a) is similar to that
reported in Ref. [31]. Three distinct peaks are observable: in the middle of the bilayer, in the
transition zone between the hydrophobic and hydrophilic regions, and in the head-group
region. These peaks reflect the repulsive nature of the interactions in the hydrophobic and
head-group regions and the attractive nature of the interactions in the transition zone. The
lateral stress profile is symmetric with respect to the bilayer midsurface, which is defined as
the average position of the terminal beads of lipid tails in this and in subsequent sections.

Figure 1. Local stress in planar POPC bilayer. (a) Lateral stress profile. (b) Difference between the
lateral components of local stress. (c) Normal component of local stress. The shaded areas represent
95% confidence bands. The shading for the lateral stress profile is omitted due to its small magnitude
(less than 2 bar). The inset in panel (a) shows a schematic drawing of a planar bilayer with the z-axis
indicated. To illustrate the locations of lipid monolayers and lipid groups, the enlarged black, orange,
and purple tick marks on the z-axes are depicted, corresponding to the average positions of the
bilayer’s midsurface, glycerol, and choline groups of lipids, respectively.

The difference between the lateral stress components, as shown in Figure 1b, is essen-
tially zero within the error bands. This is expected due to the lateral fluidity and transverse
isotropy of the bilayer. The normal stress (Figure 1c) is also close to 0 bar, as anticipated. The
stability requirement for implicit solvent planar lipid bilayers demands a constant normal
stress of zero. A slight systematic shift towards negative values of approximately −0.5 bar
may be attributed to a finite time step, leading to minor misconvergence of local stress.
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4.2. Cylindrically Curved Lipid Bilayer

A cylindrically curved POPC bilayer with a radius of 6.5 nm and a length of 20 nm
consisting of 2570 POPC lipids was constructed and equilibrated as described in Section 2.3.
The local stress components, initially measured in the Cartesian coordinate system, were
transformed to the corresponding components in the cylindrical coordinate system, as
described in Section 2.4. Figure 2 shows the dependence of the diagonal stress components
on the radial coordinate r. As anticipated, the stress profiles exhibit asymmetry about
the bilayer center, reflecting the differing curvatures of the inner and outer monolayers.
Additionally, the azimuthal and axial components of the local stress are not identical, as
observable in the figure.

Figure 2. Local stress in cylindrically curved POPC bilayer. (a) A schematic drawing of the cross-
section of a cylindrical bilayer, showing the radial coordinate r and azimuthal angle θ. The axial
coordinate z is assumed to be perpendicular to the drawing. (b) The diagonal stress components
as functions of the radial coordinate r: Σzz (blue), Σθθ (red) and Σrr (green) correspond to the axial,
azimuthal, and radial components of local stress, respectively. The largest 95% confidence error is
approximately 2 bar and is omitted due to its small size. To illustrate the locations of lipid monolayers
and lipid groups, the enlarged black, orange, and purple tick marks on the z-axes are depicted,
corresponding to the average positions of the bilayer’s midsurface, glycerol, and choline groups of
lipids, respectively.

Figure 3 compares the azimuthal (Σθθ) and axial (Σzz) components of the stress tensor.
The difference between these components is substantial within both monolayers, deviating
significantly from zero. In the lower monolayer, Σθθ − Σzz is positive, while it is negative
in the upper monolayer. At the bilayer’s midsurface, the difference becomes zero. For
both monolayers, the magnitude of Σθθ − Σzz increases monotonically from the lipid heads,
reaching a maximum approximately halfway through the monolayer and then decreasing
to zero at the midsurface. The maximum deviations from zero are 17.2 ± 0.7 bar and
−13.4 ± 0.3 bar (95% confidence intervals) for the inner and outer monolayer, respectively.
These findings indicate that the local stress tensor within both the inner and the outer
monolayers of these bilayers is laterally anisotropic.

The observed difference in the sign of Σθθ − Σzz between the inner and outer monolay-
ers is likely due to the fact that they are curved in opposite directions, resulting in different
strain distributions within the monolayers. Σθθ − Σzz should depend on the local lateral
shear modulus, which is challenging to determine by analyzing local stress in cylindrically
curved lipid bilayers due to the interaction between the monolayers and its influence on the
stress profiles. By removing either the inner or outer monolayer from the saved simulation
trajectory, individual contributions to Σθθ − Σzz from each monolayer, as well as from
the monolayer–monolayer interaction, can be calculated. As illustrated in Figure 4, the
interaction term extends more than 1 nm from the midsurface towards the monolayers.
Within each monolayer, Σθθ − Σzz changes sign within the hydrophobic region and also
extends approximately 1 nm towards the opposite monolayer.
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Figure 3. The difference between the azimuthal (Σθθ) and the axial (Σzz) components of the local
stress as a function of the radial coordinate r in the cylindrically curved POPC bilayer. The shaded
area represents 95% confidence band. To illustrate the locations of lipid monolayers and lipid groups,
the enlarged black, orange, and purple tick marks on the z-axes are depicted, corresponding to the
average positions of the bilayer’s midsurface, glycerol, and choline groups of lipids, respectively.

Figure 4. Decomposition of Σθθ − Σzz into the contributions from the inner monolayer (blue), outer
monolayer (red), and monolayer–monolayer interaction (green). The shaded areas represent 95%
confidence bands. To illustrate the locations of lipid monolayers and lipid groups, the enlarged black,
orange, and purple tick marks on the z-axes are depicted, corresponding to the average positions of
the bilayer’s midsurface, glycerol, and choline groups of lipids, respectively.

Due to the cylindrical symmetry of the bilayer under consideration, the off-diagonal
components of the local stress tensor should be zero. As illustrated in Figure 5, the off-
diagonal component Σzθ is essentially zero within the error band. Other off-diagonal
components exhibit a similar dependence on r and are not shown.
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Figure 5. Σzθ as a function of the radial coordinate r in the cylindrically curved POPC bilayer. The
shaded area represents 95% confidence band. To illustrate the locations of lipid monolayers and lipid
groups, the enlarged black, orange, and purple tick marks on the z-axes are depicted, corresponding to
the average positions of the bilayer’s midsurface, glycerol, and choline groups of lipids, respectively.

Given that the off-diagonal components of the stress tensor are zero, the axial, az-
imuthal, and radial directions correspond to the principal directions of the stress tensor.
Consequently, the lateral shear stress of the maximum magnitude occurs in a coordinate
system in which one axis aligns with the radial direction, and the other two axes are rotated
by ±π/4 relative to the axial and azimuthal principal directions. The lateral shear stress
corresponding to a rotation by −π/4 is shown in Figure 6. Its value equals (Σθθ − Σzz)/2,
which corresponds to the off-diagonal component of the local stress after a transforma-
tion involving a rotation by −π/4. Hence, Figure 6 demonstrates the capability of lipid
monolayers to resist static local lateral shear stresses.

Figure 6. The lateral shear stress of maximum magnitude as a function of the radial coordinate r in the
cylindrically curved POPC bilayer. The shaded area represents 95% confidence band. To illustrate the
locations of lipid monolayers and lipid groups, the enlarged black, orange, and purple tick marks on
the z-axes are depicted, corresponding to the average positions of the bilayer’s midsurface, glycerol,
and choline groups of lipids, respectively.
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Section 3 established the mechanical equilibrium condition for the radial and az-
imuthal stress components: ∂

∂r (rΣrr) = Σθθ . This condition ensures that the bilayer remains
structurally stable under the influence of bending stresses. To verify the consistency of the
obtained results with this equilibrium condition, Figure 7 illustrates the difference between
∂
∂r (rΣrr) and Σθθ , with the derivative ∂

∂r (rΣrr) approximated using the central difference
formula. Figure 7 confirms that the equilibrium condition is generally satisfied within the
error bounds.

Figure 7. The difference between ∂
∂r (rΣrr) and Σθθ as a function of the radial coordinate r in the

cylindrically curved POPC bilayer. The shaded area represents 95% confidence band. To illustrate the
locations of lipid monolayers and lipid groups, the enlarged black, orange, and purple tick marks on
the z-axes are depicted, corresponding to the average positions of the bilayer’s midsurface, glycerol,
and choline groups of lipids, respectively.

5. Discussion

The obtained results of the molecular dynamics simulations provide compelling
evidence supporting the global fluidity assumption for lipid membranes. The analysis of
the local stress tensor in the cylindrically curved lipid bilayer revealed that lipid monolayers
can resist static lateral shear stress, indicating a non-zero local lateral shear modulus. This
finding directly contradicts the local fluidity assumption, which postulates a zero lateral
shear modulus throughout the monolayer thickness. Instead, the results support the global
fluidity assumption, in which only the integral of the lateral shear modulus over the
monolayer thickness is constrained to zero.

To calculate local stress, this work employs the covariant central force decomposi-
tion [54,55] and the Irving–Kirkwood contour definition [57]. Although alternative force
decompositions [53,71] and contour choices [72,73] exist, the resulting local stress tensor val-
ues are generally sensitive to these specific selections [53,71,74]. However, spatial averaging
of local stress over a sufficiently large volume domain, exceeding the range of intermolecu-
lar forces, remains independent of the chosen decomposition and contour [57,74]. Figure 6
demonstrates the significant spatial extent of non-zero lateral shear stress within each lipid
monolayer, extending beyond the 1.4 nm cutoff for long-range interactions. For instance, in
the inner monolayer, spatial averaging of the lateral shear stress over a cylindrical shell with
radii ranging from 4 nm to 6 nm yields an average value of 6.0 ± 0.1 bar (95% confidence
interval). This indicates that the presence of non-zero static local lateral shear stresses
observed in this study is independent of the specific force decomposition and contour
choice employed.
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The global fluidity assumption has important consequences for the calculation of
surface elastic moduli. Unlike the local fluidity assumption, which leads to surface elastic
moduli dependent solely on the local stretching and transverse shear moduli, the global
fluidity assumption introduces additional contributions from the local lateral shear mod-
ulus. This can affect the values of the bending, Gaussian curvature, and twist moduli,
which are crucial for describing membrane deformations [14,17,19,20,61]. The value of the
local lateral shear modulus is particularly influential on the Gaussian curvature and twist
moduli. Within the local fluidity model, the Gaussian curvature and twist moduli are zero,
whereas within the global fluidity model, these moduli are generally nonzero [14,23]. The
Gaussian curvature modulus is essential for describing the fusion/fission events of lipid
membranes [75], while the twist modulus is employed in describing membrane-mediated
interactions [13,76].

The findings of this work are consistent with previous studies that have indirectly
suggested the global fluidity assumption [20,28]. While theoretical analyses have previously
indicated that the global fluidity assumption implies local fluidity [14], the direct simulation
results provide strong empirical support for the global fluidity model. This suggests that
the lateral shear modulus should be negative at some points along the monolayer thickness,
contradicting classical stability requirements [14]. However, the local stretching modulus
is also known to be negative in certain regions, especially the head-group region [22].
This indicates the presence of a stabilization mechanism, possibly related to the structural
properties of lipid molecules and their director deformations.

Living cells contain tubular membrane structures, such as those found in the endo-
plasmic reticulum [77,78] and tunneling nanotubes [79]. Additionally, neck-like structures
form during fusion and fission events [80,81], which, like cylinders, exhibit different prin-
cipal curvatures and should therefore have anisotropic local lateral stress. The presence
of static lateral shear stress in these structures may influence the functionality and spatial
orientation of embedded proteins.

Future studies could aim to directly measure the local lateral shear modulus. However,
this is challenging due to the strong coupling between monolayers in cylindrically curved
lipid bilayers. Considering, for example, cylindrically curved lipid monolayers at the
oil–water interface might mitigate this difficulty and enable a more direct measurement of
the local lateral shear modulus.
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