Therapeutic Potential of Solenopsis invicta Venom: A Scoping Review of Its Bioactive Molecules, Biological Aspects, and Health Applications
Abstract
:1. Background
1.1. Biological Aspects of Solenopsis invicta
1.2. Impact Human Health
1.3. Venom and Bioactive Molecules
2. Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search
- ✓
- Search: fire ant OR solenopsis OR RIFA Sort by: Most Recent“fire ants” [MeSH Terms] OR (“fire” [All Fields] AND “ants” [All Fields]) OR “fire ants” [All Fields] OR (“fire” [All Fields] AND “ant” [All Fields]) OR “fire ant” [All Fields] OR “solenopsis” [All Fields] OR “RIFA” [All Fields]Translationsfire ant: “fire ants” [MeSH Terms] OR (“fire” [All Fields] AND “ants” [All Fields]) OR “fire ants” [All Fields] OR (“fire” [All Fields] AND “ant” [All Fields]) OR “fire ant” [All Fields]
- ✓
- Search: Hymenoptera Formicidae Sort by: Most Recent(“hymenoptera” [MeSH Terms] OR “hymenoptera” [All Fields]) AND (“ants” [MeSH Terms] OR “ants” [All Fields] OR “formicidae” [All Fields])TranslationsHymenoptera: “Hymenoptera” [MeSH Terms] OR “Hymenoptera” [All Fields]Formicidae: “ants” [MeSH Terms] OR “ants” [All Fields] OR “formicidae” [All Fields]
- ✓
- Search: solenopsin Sort by: Most Recent“solenopsin” [All Fields]
2.5. Search Strategy of Sources of Evidence
2.6. Data Charting Process, Data Items, Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence and Results of Individual Sources of Evidence
- ✓
- ✓
First Author, Date | Country | Ant | Microorganisms | Tested Product and Concentration | Method | Results |
---|---|---|---|---|---|---|
Blum et al., 1958 [54] | USA | Solenopsis saevissima var. richteri | Micrococcus pyogenes, Streptococcus pyogenes, Escherichia coli, Lactobacillus casei | 1/50 dilution of the venom extract; | Paper disc-diffusion | antibiotic activity |
Jouvenaz et al., 1972 [55] | USA | Solenopsis invicta | Streptococcus salivariu, Streptococcus pyogenes, Streptococcus equisimilis, Streptococcus Faecalis, Staphylococcus epidermidis, Staphylococcus aureus, Bacillus pulvifacienis, Bacillus thuringientsis, Shigella flexneri, Shigella boydii, Shigella sonnei, Salmonella Typhimurium, Salmonella paratyphi, Salmonella schottmuelleri, Salmonella enteritidis, Escherichia coli, Proteus spp., Klebsiella pneumonziae, Alcaligenes faecalis and Pseudomonas aeruiginosa | 1:1000 aqueous solution of solenopsin HCl, applied to 6.0 mm paper discs and air-dried at 37 °C. | Paper disc-diffusion | Inhibition: Staphylococcus aureus and Escherichia coli |
Sullivan et al., 2009 [56] | USA | Solenopsis invicta | Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Stenotrophomonas maltophilia and Pseudomonas aeruginosa | Lyophilized venom alkaloids (1 mg/L) were diluted in a 5% solution of (2-hydroxypropyl)-β-cyclodextrin. Increasing concentrations of alkaloid were prepared by dilution of the stock 1 mg/L cyclodextrin (5%) in Mueller-Hinton broth. | MIC (Minimum Inhibitory Concentration) using broth dilution method | Inhibition: Streptococcus pneumoniae, Staphylococcus aureus, Enterococcus faecalis and Stenotrophomonas maltophilia |
Park et al., 2008 [57] | USA | Solenopsis invicta | Pseudomonas aeruginosa | Cells were diluted into fresh Luria–Bertani containing solenopsin (50 µmol/L) | Quorum-Sensing (QS) Signalling | Solenopsin A, suppressed QS signalling in Pseudomonas aeruginosa |
Carvalho et al., 2019 [58] | Brazil | Solenopsis invicta | Pseudomonas fluorescens | Solenopsins at concentrations of 500, 750, 1000, and 5000 μg/mL applied to 6 mm sterile filter paper discs | MIC (Minimum Inhibitory Concentration) | Inhibition: Pseudomonas fluorescens |
Yan et al., 2017 [59] | China | Solenopsis invicta and Solenopsis richteri | Cryptococcus neoformans, Candida albicans, Leishmania donovani promastigotes, Trypanosoma brucei, Aspergillus fumigatus, antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium | Compound 1a: IC50 of 6.6 μg/mL (Cryptococcus neoformans) and 12.4 μg/mL (Candida albicans); IC50 value of 19.4 μg/mL (Enterococcus faecium) Compound 1–3: IC50 of 5.0−6.7 μg/mL (Leishmania donovani promastigotes) and 2.7−4.0 μg/mL Trypanosoma brucei) | MIC (Minimum Inhibitory Concentration) | Antifungal activity against Cryptococcus neoformans and Candida albicans, antiprotozoal activity against Leishmania donovani promastigotes and Trypanosoma brucei |
Silva et al., 2020 [60] | Brazil | Solenopsisinvicta and Solenopsis saevissima | Trypanosoma brucei rhodesiense and Trypanosoma cruzi | Solenopsins at concentrations ranging from 0.1 to 384.0 µM tested over 16 days | MIC (Minimum Inhibitory Concentration) | Inhibition: Trypanosoma brucei rhodesiense and Trypanosoma cruzi |
First Author, Date | Country | Active Compound | Cell Lines, Animal Model | Main Results |
---|---|---|---|---|
Arbiser et al., 2007 [61] | USA | Solenopsina-A | 786-O cells, in vivo embryonic zebrafish | Inhibition of angiogenesis |
Uko et al., 2019 [62] | USA | Solenopsin Analogue | Human lung tumour cells, WB-ras rat liver epithelial | Inhibition of angiogenesis |
Karlsoon et al., 2015 [63] | USA | Solenopsin-A | Human A375 melanoma cells, human A2058 melanoma cells, immortalized murine endothelial SVR cells, primary human melanocytes, primary human keratinocyts, HaCaTs (immortalized human keratinocytes), murine embryonic NIH3T3 fibroblasts, and human UM-SCC1A squamous carcinoma cells | Biological activity similar to ceramide in human melanoma cells |
Arbiser et al., 2017 [64] | USA | Solenopsin Analogue | Mouse KC-Tie2 | Significant decreases in acanthosis and hyperkeratosis |
First Author, Date | Compound |
---|---|
Blum et al., 1958 [54] | Venom Ant |
Jouvenaz et al., 1972 [55] | trans-2- methyl-6-n-tridecylpiperidine (solenopsin B) |
trans-2-methyl-6-(cis-4-tridecenyl)-piperidine (dehydrosolenopsin B) | |
trans-2-methyl-6-n-pentadecylpiperidine (solenopsin C) | |
trans-2-methyl-6-(cis-6-pentadecyl)-piperidine (dehydrosolenopsin C) | |
Arbiser et al., 2007 [61] | Solenopsin A, (analogue: S2–17) |
Sullivan et al., 2009 [56] | (+)-solenopsin (Sol) A |
(2R, 6R)-solenopsin A | |
(2S, 6S)-solenopsin B | |
(+)-isosolenopsin A | |
(2S, 6R)-isosolenopsin A | |
(2R, 6S)-isosolenopsin A | |
(+)-isosolenopsin B | |
(2S, 6R)-isosolenopsin B | |
(2R, 6S)-isosolenopsin B | |
Park et al., 2008 [57] | Solenopsin A, (analogue: S1–5) |
Karlsoon et al., 2015 [63] | (+)-Solenopisin A |
(-)-Solenopisin A | |
Solenopsin analogue: S11: 2,4 dimethyl-6-nonadecylpiperinide | |
Solenopsin analogue: S12–15 | |
Arbiser et al., 2017 [64] | Solenopsin analogue: S12 |
Solenopsin analogue: S14 | |
Yan et al., 2017 [59] | 2-methyl-6-pentadecyl-Δ1,6-piperideine |
2-methyl-6-tetradecyl-Δ1,6-piperideine | |
2-methyl-6-hexadecyl-Δ1,6-piperideine | |
Uko et al., 2019 [62] | Solenopisin A |
Solenopsin analogue compounds B: 2-Dodecylsulfanyl-1, -4, -5, -6-tetrahydropyrimidine | |
Solenopsin analogue compounds c: [(dodecylsulfanyl)(methylamino)methyl](methyl)amine | |
Solenopsin analogue compounds d: 2-(dec-9-en-1-yl)-3-ethyl-1,3-oxazolidine | |
Carvalho et al., 2019 [58] | cis-2-Me-6-Tridecyl-Piperidine |
trans-2-Me-6-Tridecenyl-Piperidine | |
trans-2-Me-6-Tridecyl-Piperidine | |
cis-2-Me-6-Pentadecyl-Piperidine | |
trans-2-Me-6-Pentadecenyl-Piperidine | |
trans-2-Me-6-Pentadecyl-Piperidine | |
Silva et al., 2020 [60] | Isosolenopsin A: cis-2-Me-6-undecyl piperidine |
Solenopsin A: trans-2-Me-6-undecyl piperidine | |
Dehydrosolenopsin B: trans-2-Me-6-tridecenyl piperidine | |
Solenopsin B: trans-2-Me-6-tridecyl piperidine | |
Dehydrosolenopsin C: trans-2-Me-6-pentadecenyl piperidine | |
Solenopsin C: trans-2-Me-6-pentadecyl piperidine |
Molar Mass | Exact Mass | Formula | Composition | Reference | |
---|---|---|---|---|---|
cis-2-Meth-6-undecyl piperidine | 253.474 g/mol | 253.276950131 Da | C17H35N | C (80.56%), H (13.92%), N (5.53%) | Silva et al., 2020 [60] |
trans-2-Meth-6-undecyl piperidine | 253.474 g/mol | 253.276950131 Da | C17H35N | C (80.56%), H (13.92%), N (5.53%) | Silva et al., 2020 [60], Uko et al., 2019 [62], Arbiser et al., 2007 [61] |
trans-2-Meth-6-tridecenylpiperidine | 279.512 g/mol | 279.292600195 Da | C19H37N | C (81.65%), H (13.34%), N (5.01%) | Silva et al., 2020 [60], Carvalho et al., 2019 [58], Jouvenaz et al., 1972 [55] |
trans-2-Meth-6-tridecyl piperidine | 281.528 g/mol | 281.30825026 Da | C19H39N | C (81.06%), H (13.96%), N (4.98%) | Silva et al., 2020 [60], Carvalho et al., 2019 [58], Jouvenaz et al., 1972 [55] |
trans-2-Meth-6-pentadecenylpiperidine | 307.566 g/mol | 307.323900324 Da | C21H41N | C (82.01%), H (13.44%), N (4.55%) | Silva et al., 2020 [60], Carvalho et al., 2019 [58], Jouvenaz et al., 1972 [55] |
trans-2-Meth-6-pentadecylpiperidine | 309.582 g/mol | 309.339550389 Da | C21H43N | C (81.47%), H (14.00%), N (4.52%) | Silva et al., 2020 [60], Carvalho et al., 2019 [58], Jouvenaz et al., 1972 [55] |
cis-2-Meth-6-TridecylPiperidine | 281.528 g/mol | 281.30825026 Da | C19H39N | C (81.06%), H (13.96%), N (4.98%) | Carvalho et al., 2019 [58] |
cis-2-Meth-6-PentadecylPiperidine | 309.582 g/mol | 309.339550389 Da | C21H43N | C (81.47%), H (14.00%), N (4.52%) | Carvalho et al., 2019 [58] |
2-Dodecylsulfanyl-1,4,5,6-tetrahydropyrimidine | 284.51 g/mol | 284.228620212 Da | C16H32N2S | C (67.55%), H (11.34%), N (9.85%), S (11.27%) | Uko et al., 2019 [62] |
[(dodecylsulfanyl)(methylamino)methyl](methyl)amine | 274.51 g/mol | 274.244270277 Da | C15H34N2S | C (65.63%), H (12.48%), N (10.21%), S (11.68%) | Uko et al., 2019 [62] |
2-(dec-9-en-1-yl)-3-ethyl-1,3-oxazolidine | 239.403 g/mol | 239.224914558 Da | C15H29NO | C (75.26%), H (12.21%), N (5.85%), O (6.68%) | Uko et al., 2019 [62] |
2-methyl-6-pentadecyl-2,3,4,5-tetrahydropyridine | 307.566 g/mol | 307.323900324 Da | C21H41N | C (82.01%), H (13.44%), N (4.55%) | Yan et al., 2017 [59] |
2-methyl-6-tetradecyl-2,3,4,5-tetrahydropyridine | 293.539 g/mol | 293.30825026 Da | C20H39N | C (81.84%), H (13.39%), N (4.77%) | Yan et al., 2017 [59] |
6-hexadecyl-2-methyl-2,3,4,5-tetrahydropyridine | 321.593 g/mol | 321.339550389 Da | C22H43N | C (82.17%), H (13.48%), N (4.36%) | Yan et al., 2017 [59] |
2,4-dimethyl-6-nonadecylpiperidine | 379.717 g/mol | 379.417800711 Da | C26H53N | C (82.24%), H (14.07%), N (3.69%) | Karlsoon et al., 2015 [63] |
4. Discussion
Summary of Evidence
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, J.O. Pain and Lethality Induced by Insect Stings: An Exploratory and Correlational Study. Toxins 2019, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Arif, F.; Williams, M. Hymenoptera Stings. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2024. [Google Scholar]
- Pustijanac, E.; Buršić, M.; Millotti, G.; Paliaga, P.; Iveša, N.; Cvek, M. Tick-Borne Bacterial Diseases in Europe: Threats to public health. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 1261–1295. [Google Scholar] [CrossRef] [PubMed]
- Guzman, J.; Téné, N.; Touchard, A.; Castillo, D.; Belkhelfa, H.; Haddioui-Hbabi, L.; Treilhou, M.; Sauvain, M. Anti-Helicobacter pylori Properties of the Ant-Venom Peptide Bicarinalin. Toxins 2017, 10, 21. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.; Ni, Y.; Li, N.; Wang, J.; Liu, L.; Jiang, Z.H. Analgesic and anti-inflammatory activities of total extract and individual fractions of Chinese medicinal ants Polyrhachis lamellidens. Biol. Pharm. Bull. 2005, 28, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.O. Chapter 3—Arthropod Toxins and Venoms. In Medical and Veterinary Entomology, 3rd ed.; Mullen, G.R., Durden, L.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 23–31. [Google Scholar] [CrossRef]
- Wiezel, G.A.; Oliveira, I.S.; Reis, M.B.; Ferreira, I.G.; Cordeiro, K.R.; Bordon, K.C.F.; Arantes, E.C. The complex repertoire of Tityus spp. venoms: Advances on their composition and pharmacological potential of their toxins. Biochimie 2024, 220, 144–166. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, C.; Tan, H.; Wang, H.; Jiang, Y.; Liang, S.; Zhang, F.; Liu, Z. A survey of the venom of the spider Lycosa vittata by biochemical, pharmacological and transcriptomic analyses. Toxicon 2015, 107, 335–343. [Google Scholar] [CrossRef]
- Dueñas-Cuellar, R.A.; Santana, C.J.C.; Magalhães, A.C.M.; Pires, O.R., Jr.; Fontes, W.; Castro, M.S. Scorpion Toxins and Ion Channels: Potential Applications in Cancer Therapy. Toxins 2020, 12, 326. [Google Scholar] [CrossRef]
- Dioguardi, M.; Caloro, G.A.; Laino, L.; Alovisi, M.; Sovereto, D.; Crincoli, V.; Aiuto, R.; Dioguardi, A.; De Lillo, A.; Troiano, G.; et al. Therapeutic Anticancer Uses of the Active Principles of “Rhopalurus junceus” Venom. Biomedicines 2020, 8, 382. [Google Scholar] [CrossRef]
- Honorato, L.; Artunduaga Bonilla, J.J.; Ribeiro da Silva, L.; Kornetz, J.; Zamith-Miranda, D.; Valdez, A.F.; Nosanchuk, J.D.; Gonçalves Paterson Fox, E.; Nimrichter, L. Alkaloids solenopsins from fire ants display in vitro and in vivo activity against the yeast Candida auris. Virulence 2024, 15, 2413329. [Google Scholar] [CrossRef]
- Praphawilai, P.; Kaewkod, T.; Suriyaprom, S.; Panya, A.; Disayathanoowat, T.; Tragoolpua, Y. Anti-Herpes Simplex Virus and Anti-Inflammatory Activities of the Melittin Peptides Derived from Apis mellifera and Apis florea Venom. Insects 2024, 15, 109. [Google Scholar] [CrossRef]
- Ni, L.L.; Che, Y.H.; Sun, H.M.; Wang, B.; Wang, M.Y.; Yang, Z.Z.; Liu, H.; Xiao, H.; Yang, D.S.; Zhu, H.L.; et al. The therapeutic effect of wasp venom (Vespa magnifica, Smith) and its effective part on rheumatoid arthritis fibroblast-like synoviocytes through modulating inflammation, redox homeostasis and ferroptosis. J. Ethnopharmacol. 2023, 317, 116700. [Google Scholar] [CrossRef] [PubMed]
- Paes, L.C.F.; Lima, D.B.; da Silva, D.M.A.; Valentin, J.T.; de Aquino, P.E.A.; García-Jareño, A.B.; Orzaéz, M.; de França Fonteles, M.M.; Martins, A.M.C. Exploring the neuroprotective potential of antimicrobial peptides from Dinoponera quadriceps venom against pentylenetetrazole-induced seizures in vivo. Toxicon 2024, 237, 107538. [Google Scholar] [CrossRef] [PubMed]
- Piao, C.; Tachikawa, E.; Hu, Y.; Sato, Y.; Yang, P.; Yamamoto, K.-i.; Shinada, T.; Suzuki, K. In vitro pharmacological activities of the extracts from red ant Formica aquilonia as potential therapeutic agents. J. Tradit. Med. 2009, 26, 61–67. [Google Scholar]
- Mo, Y.; Shi, Q.; Qi, G.; Chen, K. Potential anti-tumor effects of Solenopsis invicta venom. Front. Immunol. 2023, 14, 1200659. [Google Scholar] [CrossRef]
- Bragard, C.; Baptista, P.; Chatzivassiliou, E.; Di Serio, F.; Gonthier, P.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. Pest categorisation of Solenopsis invicta. EFSA J. 2023, 21, e07998. [Google Scholar] [CrossRef]
- Vinson, S.B. Invasion of the red imported fire ant (Hymenoptera: Formicidae): Spread, biology, and impact. Am. Entomol. 1997, 43, 23–39. [Google Scholar] [CrossRef]
- Morrill, W.L. Production and flight of alate red imported fire ants. Environ. Entomol. 1974, 3, 265–271. [Google Scholar] [CrossRef]
- Araujo, M.B.; Tschinkel, W.R. Worker allometry in relation to colony size and social form in the fire ant Solenopsis invicta. J. Insect Sci. 2010, 10, 94. [Google Scholar] [CrossRef]
- Fox, E.G.; Bueno, O.C.; Yabuki, A.T.; de Jesus, C.M.; Solis, D.R.; Rossi, M.L.; Nogueira Nde, L. General morphology and ultrastructure of the venom apparatus and convoluted gland of the fire ant, Solenopsis saevissima. J. Insect Sci. 2010, 10, 24. [Google Scholar] [CrossRef]
- Menchetti, M.; Schifani, E.; Alicata, A.; Cardador, L.; Sbrega, E.; Toro-Delgado, E.; Vila, R. The invasive ant Solenopsis invicta is established in Europe. Curr. Biol. CB 2023, 33, R896–R897. [Google Scholar] [CrossRef]
- Noordijk, J. A Risk Analysis for Fire Ants in The Netherlands; Stichting European Invertebrate Survey: Leidem, The Netherlands, 2010. [Google Scholar]
- Ross, K.G.; Gotzek, D.; Ascunce, M.S.; Shoemaker, D.D. Species delimitation: A case study in a problematic ant taxon. Syst. Biol. 2010, 59, 162–184. [Google Scholar] [CrossRef] [PubMed]
- Jemal, A.; Hugh-Jones, M. A review of the red imported fire ant (Solenopsis invicta Buren) and its impacts on plant, animal, and human health. Prev. Vet. Med. 1993, 17, 19–32. [Google Scholar] [CrossRef]
- Vanderwoude, C.; Elson-Harris, M.; Hargreaves, J.; Harris, E.; Plowman, K. An overview of the red imported fire ant (Solenopsis invicta Buren) eradication plan for Australia. Rec. South Aust. Mus. Monogr. Ser. 2004, 7, 11–16. [Google Scholar]
- Ward, D. The potential distribution of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), in New Zealand. N. Z. Entomol. 2009, 32, 67–75. [Google Scholar] [CrossRef]
- Sarty, M. Fire ant eradicated at Port of Napier. Bios 2007, 73, 10. [Google Scholar]
- McMurray, J.C.; Adams, K.E.; Wanandy, T.; Le, A.; Heddle, R.J. Stinging Ant Anaphylaxis: Advances in Diagnosis and Treatment. J. Allergy Clin. Immunol. Pract. 2024; in press. [Google Scholar] [CrossRef]
- Vargo, E.L. Mutual pheromonal inhibition among queens in polygyne colonies of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 1992, 31, 205–210. [Google Scholar] [CrossRef]
- Chen, J.; Du, Y. Fire ants feed their nestmates with their own venom. J. Insect Physiol. 2022, 142, 104437. [Google Scholar] [CrossRef]
- Chen, L.; Sharma, K.R.; Fadamiro, H.Y. Fire ant venom alkaloids act as key attractants for the parasitic phorid fly, Pseudacteon tricuspis (Diptera: Phoridae). Die Naturwissenschaften 2009, 96, 1421–1429. [Google Scholar] [CrossRef]
- Zhou, A.; Lu, Y.; Zeng, L.; Xu, Y.; Liang, G. Solenopsis invicta (Hymenoptera: Formicidae), defend Phenacoccus solenopsis (Hemiptera: Pseudococcidae) against its natural enemies. Environ. Entomol. 2013, 42, 247–252. [Google Scholar] [CrossRef]
- Wilder, S.M.; Barnum, T.R.; Holway, D.A.; Suarez, A.V.; Eubanks, M.D. Introduced fire ants can exclude native ants from critical mutualist-provided resources. Oecologia 2013, 172, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Ni, M.; Yang, X.; Zheng, Y.; Wang, Y.; Jiang, M. Discovering Native Ant Species with the Potential to Suppress Red Imported Fire Ants. Insects 2024, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Wickings, K.G.; Ruberson, J. Impact of the red imported fire ant (Hymenoptera: Formicidae) on epigeic arthropods of cotton agroecosystems. Ann. Entomol. Soc. Am. 2011, 104, 171–179. [Google Scholar] [CrossRef]
- Lafleur, B.; Hooper-Bui, L.M.; Mumma, E.P.; Geaghan, J.P. Soil fertility and plant growth in soils from pine forests and plantations: Effect of invasive red imported fire ants Solenopsis invicta (Buren). Pedobiologia 2005, 49, 415–423. [Google Scholar] [CrossRef]
- Briano, J.; Calcaterra, L.; Varone, L. Fire ants (Solenopsis spp.) and their natural enemies in southern South America. Psyche 2012, 2012, 198084. [Google Scholar]
- Abinaya, O.; Moorthy, S. Unusual cause of seizures: Imported fire ant bite reaction. J. Neurosci. Rural. Pract. 2023, 14, 363–364. [Google Scholar] [CrossRef]
- Szari, S.M.; Adams, K.E.; Quinn, J.M.; Stokes, S.C.; Sacha, J.J.; White, K.M. Characteristics of venom allergy at initial evaluation: Is fire ant hypersensitivity similar to flying Hymenoptera? Ann. Allergy Asthma Immunol. 2019, 123, 590–594. [Google Scholar] [CrossRef]
- Zhao, J.; Xu, Y. Survey of the prevalence of fire ant sting accidents based on internet reports. Chin. J. Appl. Entomol. 2015, 52, 1409–1412. [Google Scholar]
- Yuan, I.H.; Golden, D.B.K. Wings and stings: Hymenoptera on vacation. Ann. Allergy Asthma Immunol. 2023, 130, 429–437. [Google Scholar] [CrossRef]
- Caldwell, S.T.; Schuman, S.H.; Simpson, W.M., Jr. Fire ants: A continuing community health threat in South Carolina. J. South Carol. Med. Assoc. (1975) 1999, 95, 231–235. [Google Scholar]
- Von Reumont, B.M.; Campbell, L.I.; Jenner, R.A. Quo Vadis venomics? a roadmap to neglected venomous invertebrates. Toxins 2014, 6, 3488–3551. [Google Scholar] [CrossRef] [PubMed]
- Ruëff, F. [Insect venom allergies-What will change in times of global change?]. Dermatologie 2024, 75, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Patael, Y.Y.; Segal, O.; Segev, F. Fire Ant Punctate Keratopathy: A Novel Diagnosis Based on Clinical and Anterior Segment Optical Coherence Tomography Findings. Cornea 2019, 38, 1550–1553. [Google Scholar] [CrossRef]
- Stafford, C.T. Fire ant allergy. Allergy Proc. 1992, 13, 11–16. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Li, X.C.; Zhao, J.H. Pyridine Alkaloids in the Venom of Imported Fire Ants. J. Agric Food Chem. 2019, 67, 11388–11395. [Google Scholar] [CrossRef]
- Chen, L.; Lu, Y.Y.; Hu, Q.B.; Fadamiro, H.Y. Similarity in venom alkaloid chemistry of alate queens of imported fire ants: Implication for hybridization between Solenopsis richteri and S. invicta in the Southern United States. Chem Biodivers 2012, 9, 702–713. [Google Scholar] [CrossRef]
- Srisong, H.; Sukprasert, S.; Klaynongsruang, S.; Daduang, J.; Daduang, S. Identification, expression and characterization of the recombinant Sol g 4.1 protein from the venom of the tropical fire ant Solenopsis geminata. J. Venom. Anim. Toxins Incl. Trop. Dis. 2018, 24, 23. [Google Scholar] [CrossRef]
- Nowak, R.S., Jr. Cutaneous Manipulation with Topical Solenopsin Formulations of the KC-Tie2 Murine Model of Psoriasis. Ph.D. Thesis, The Ohio State University, Columbus, OH, USA, 2016. [Google Scholar]
- Kumari, J.; Sah, R.K.; Mohaideen, S.N.M.; Ahmad, S.; Pati, S.; Singh, S. Studying the rationale of fire ant sting therapy usage by the tribal natives of bastar revealed ant venom-derived peptides with promising anti-malarial activity. Toxins 2022, 14, 789. [Google Scholar] [CrossRef]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Blum, M.S.; Walker, J.R.; Callahan, P.S.; Novak, A.F. Chemical, insecticidal, and antibiotic properties of fire ant venom. Science 1958, 128, 306–307. [Google Scholar] [CrossRef]
- Jouvenaz, D.P.; Blum, M.S.; Mac, C.J. Antibacterial activity of venom alkaloids from the imported fire ant, Solenopsis invicta Buren. Antimicrob. Agents Chemother. 1972, 2, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, D.C.; Flowers, H.; Rockhold, R.; Herath, H.B.; Nanayakkara, N.D. Antibacterial activity of synthetic fire ant venom: The solenopsins and isosolenopsins. Am. J. Med. Sci. 2009, 338, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kaufmann, G.F.; Bowen, J.P.; Arbiser, J.L.; Janda, K.D. Solenopsin A, a venom alkaloid from the fire ant Solenopsis invicta, inhibits quorum-sensing signaling in Pseudomonas aeruginosa. J. Infect. Dis. 2008, 198, 1198–1201. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, D.B.d.; Fox, E.G.P.; Santos, D.G.d.; Sousa, J.S.d.; Freire, D.M.G.; Nogueira, F.C.; Domont, G.B.; Castilho, L.V.A.d.; Machado, E.d.A. Fire ant venom alkaloids inhibit biofilm formation. Toxins 2019, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; An, Y.; Wang, X.; Chen, Y.; Jacob, M.R.; Tekwani, B.L.; Dai, L.; Li, X.-C. Synthesis and antimicrobial evaluation of fire ant venom alkaloid based 2-methyl-6-alkyl-Δ1,6-piperideines. J. Nat. Prod. 2017, 80, 2795–2798. [Google Scholar] [CrossRef]
- Silva, R.C.C.; Fox, E.G.; Gomes, F.M.; Feijó, D.F.; Ramos, I.; Koeller, C.M.; Costa, T.F.; Rodrigues, N.S.; Lima, A.P.; Atella, G.C. Venom alkaloids against Chagas disease parasite: Search for effective therapies. Sci. Rep. 2020, 10, 10642. [Google Scholar] [CrossRef]
- Arbiser, J.L.; Kau, T.; Konar, M.; Narra, K.; Ramchandran, R.; Summers, S.A.; Vlahos, C.J.; Ye, K.; Perry, B.N.; Matter, W. Solenopsin, the alkaloidal component of the fire ant (Solenopsis invicta), is a naturally occurring inhibitor of phosphatidylinositol-3-kinase signaling and angiogenesis. Blood 2007, 109, 560–565. [Google Scholar] [CrossRef]
- Uko, N.E.; Güner, O.F.; Bowen, J.P.; Matesic, D.F. Akt Pathway Inhibition of the Solenopsin Analog, 2-Dodecylsulfanyl-1,-4,-5,-6-tetrahydropyrimidine. Anticancer Res. 2019, 39, 5329–5338. [Google Scholar] [CrossRef]
- Karlsson, I.; Zhou, X.; Thomas, R.; Smith, A.T.; Bonner, M.Y.; Bakshi, P.; Banga, A.K.; Bowen, J.P.; Qabaja, G.; Ford, S.L.; et al. Solenopsin A and analogs exhibit ceramide-like biological activity. Vasc. cell 2015, 7, 5. [Google Scholar] [CrossRef]
- Arbiser, J.L.; Nowak, R.; Michaels, K.; Skabytska, Y.; Biedermann, T.; Lewis, M.J.; Bonner, M.Y.; Rao, S.; Gilbert, L.C.; Yusuf, N. Evidence for biochemical barrier restoration: Topical solenopsin analogs improve inflammation and acanthosis in the KC-Tie2 mouse model of psoriasis. Sci. Rep. 2017, 7, 11198. [Google Scholar] [CrossRef]
- Bárcenas, O.; Pintado-Grima, C.; Sidorczuk, K.; Teufel, F.; Nielsen, H.; Ventura, S.; Burdukiewicz, M. The dynamic landscape of peptide activity prediction. Comput. Struct. Biotechnol. J. 2022, 20, 6526–6533. [Google Scholar] [CrossRef] [PubMed]
- Robles-Loaiza, A.A.; Pinos-Tamayo, E.A.; Mendes, B.; Ortega-Pila, J.A.; Proaño-Bolaños, C.; Plisson, F.; Teixeira, C.; Gomes, P.; Almeida, J.R. Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity. Pharmaceuticals 2022, 15, 323. [Google Scholar] [CrossRef] [PubMed]
- Morena, F.; Cencini, C.; Calzoni, E.; Martino, S.; Emiliani, C. A Novel Workflow for In Silico Prediction of Bioactive Peptides: An Exploration of Solanum lycopersicum By-Products. Biomolecules 2024, 14, 930. [Google Scholar] [CrossRef] [PubMed]
- Buraphaka, H.; Dobutr, T.; Wiese, M.D.; Lopata, A.L.; Daduang, S. Structure-based epitope prediction and assessment of cross-reactivity of Myrmecia pilosula venom-specific IgE and recombinant Sol g proteins (Solenopsis geminata). Sci. Rep. 2024, 14, 11145. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Chen, L. Biological Activities and Ecological Significance of Fire Ant Venom Alkaloids. Toxins 2023, 15, 439. [Google Scholar] [CrossRef]
- Williams, D.F. Control of the introduced pest Solenopsis invicta in the United States. In Exotic Ants; CRC Press: Boca Raton, FL, USA, 2021; pp. 282–292. [Google Scholar]
- Tuano, K.T.S.; Seth, N.; Chinen, J.; Anagnostou, A. Insights from a single center registry of infant and toddler anaphylaxis: Food and fire ants. J. Allergy Clin. Immunol. Pract. 2024, 12, 223–225. [Google Scholar] [CrossRef]
- More, D.R.; Kohlmeier, R.E.; Hoffman, D.R. Fatal anaphylaxis to indoor native fire ant stings in an infant. Am. J. Forensic Med. Pathol. 2008, 29, 62–63. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, J.; Zhou, A.; Zeng, L. Prevalence of Solenopsis invicta (Hymenoptera: Formicidae) venom allergic reactions in mainland China. Fla. Entomol. 2012, 95, 961–965. [Google Scholar] [CrossRef]
- deShazo, R.D.; Williams, D.F. Multiple fire ant stings indoors. South. Med. J. 1995, 88, 712–715. [Google Scholar] [CrossRef]
- Neaves, B.I.; Coop, C.A. Imported fire ant immunotherapy. Ann. Allergy Asthma Immunol. 2024, 133, 28–32. [Google Scholar] [CrossRef]
- Goddard, J.; de Shazo, R.D. Envenomation From Flood-Related Fire Ant Rafting: A Cautionary Note. Am. J. Med. 2023, 136, 937–940. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lu, Y.; Li, R.; Zeng, L.; Du, J.; Huang, X.; Xu, Y. Mental health effects caused by red imported fire ant attacks (Solenopsis invicta). PLoS ONE 2018, 13, e0199424. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Keshavarz, B.; Retterer, M.; Workman, L.J.; Schuyler, A.J.; McGowan, E.C.; Lane, C.; Kandeel, A.; Purser, J.; Rönmark, E.; et al. A dynamic relationship between two regional causes of IgE-mediated anaphylaxis: α-Gal syndrome and imported fire ant. J. Allergy Clin. Immunol. 2021, 147, 643–652.e7. [Google Scholar] [CrossRef] [PubMed]
- Macconnell, J.G.; Blum, M.S.; Fales, H.M. Alkaloid from fire ant venom: Identification and synthesis. Science 1970, 168, 840–841. [Google Scholar] [CrossRef]
- MacConnell, J.G.; Blum, M.S.; Fales, H.M. The chemistry of fire ant venom. Tetrahedron 1971, 27, 1129–1139. [Google Scholar] [CrossRef]
- Chen, J.; Cantrell, C.L.; Shang, H.W.; Rojas, M.G. Piperideine alkaloids from the poison gland of the red imported fire ant (Hymenoptera: Formicidae). J. Agric. Food Chem. 2009, 57, 3128–3133. [Google Scholar] [CrossRef]
- Chen, L.; Fadamiro, H.Y. Re-investigation of venom chemistry of Solenopsis fire ants. II. Identification of novel alkaloids in S. invicta. Toxicon 2009, 53, 479–486. [Google Scholar] [CrossRef]
- Aniszewski, T. Alkaloids: Chemistry, Biology, Ecology, and Applications; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Callahan, P.S.; Blum, M.S.; Walker, J.R. Morphology and histology of the poison glands and sting of the imported fire ant (Solenopsis saevissima v. richteri Forel). Ann. Entomol. Soc. Am. 1959, 52, 573–590. [Google Scholar] [CrossRef]
- Valles, S.M.; Oliver, J.B.; Addesso, K.M.; Perera, O.P. Unique venom proteins from Solenopsis invicta x Solenopsis richteri hybrid fire ants. Toxicon X 2021, 9–10, 100065. [Google Scholar] [CrossRef]
- Robert, K.V.M.; Lofgren, C.S.; Alvarez, F.M. Biochemical Evidence for Hybridization in Fire Ants. Fla. Entomol. 1985, 68, 501–506. [Google Scholar] [CrossRef]
- Lai, L.C.; Huang, R.N.; Wu, W.J. Venom alkaloids of monogyne and polygyne forms of the red imported fire ant, Solenopsis invicta, in Taiwan. Insectes Sociaux 2008, 55, 443–449. [Google Scholar] [CrossRef]
- deShazo, R.D.; Butcher, B.T.; Banks, W. Reactions to the stings of the imported fire ant. N. Engl. J. Med. 1990, 323, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Alovisi, M.; Crincoli, V.; Aiuto, R.; Malagnino, G.; Quarta, C.; Laneve, E.; Sovereto, D.; Russo, L.L.; Troiano, G.; et al. Prevalence of the genus propionibacterium in primary and persistent endodontic lesions: A systematic review. J. Clin. Med. 2020, 9, 739. [Google Scholar] [CrossRef] [PubMed]
- Zhurakivska, K.; Troiano, G.; Caponio, V.C.A.; Dioguardi, M.; Laino, L.; Maffione, A.B.; Muzio, L.L. Do changes in oral microbiota correlate with plasma nitrite response? A systematic review. Front. Physiol. 2019, 10, 1029. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Quarta, C.; Alovisi, M.; Crincoli, V.; Aiuto, R.; Crippa, R.; Angiero, F.; Laneve, E.; Sovereto, D.; De Lillo, A.; et al. Microbial association with genus Actinomyces in primary and secondary endodontic lesions, review. Antibiotics 2020, 9, 433. [Google Scholar] [CrossRef]
- Ballini, A.; Di Cosola, M.; Saini, R.; Benincasa, C.; Aiello, E.; Marrelli, B.; Rajiv Saini, S.; Ceruso, F.M.; Nocini, R.; Topi, S.; et al. A Comparison of Manual Nylon Bristle Toothbrushes versus Thermoplastic Elastomer Toothbrushes in Terms of Cleaning Efficacy and the Biological Potential Role on Gingival Health. Appl. Sci. 2021, 11, 7180. [Google Scholar] [CrossRef]
- Storey, G.K.; Vander Meer, R.K.; Boucias, D.G.; McCoy, C.W. Effect of fire ant (Solenopsis invicta) venom alkaloids on the in vitro germination and development of selected entomogenous fungi. J. Invertebr. Pathol. 1991, 58, 88–95. [Google Scholar] [CrossRef]
- Dawadi, S.; Baysal-Gurel, F.; Addesso, K.M.; Liyanapathiranage, P.; Simmons, T. Fire ant venom alkaloids: Possible control measure for soilborne and foliar plant pathogens. Pathogens 2021, 10, 659. [Google Scholar] [CrossRef]
- Lo Muzio, L.; Ballini, A.; Cantore, S.; Bottalico, L.; Charitos, I.A.; Ambrosino, M.; Nocini, R.; Malcangi, A.; Dioguardi, M.; Cazzolla, A.P.; et al. Overview of Candida albicans and Human Papillomavirus (HPV) Infection Agents and their Biomolecular Mechanisms in Promoting Oral Cancer in Pediatric Patients. BioMed Res. Int. 2021, 2021, 7312611. [Google Scholar] [CrossRef]
- Polimeno, L.; Francavilla, A.; Piscitelli, D.; Fiore, M.G.; Polimeno, R.; Topi, S.; Haxhirexha, K.; Ballini, A.; Daniele, A.; Santacroce, L. The role of PIAS3, p-STAT3 and ALR in colorectal cancer: New translational molecular features for an old disease. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 10496–10511. [Google Scholar] [CrossRef]
- Dioguardi, M.; Cantore, S.; Sovereto, D.; La Femina, L.; Spirito, F.; Caloro, G.A.; Caroprese, M.; Maci, M.; Scacco, S.; Lo Muzio, L.; et al. Does miR-197 Represent a Valid Prognostic Biomarker in Head and Neck Squamous Cell Carcinoma (HNSCC)? A Systematic Review and Trial Sequential Analysis. J. Pers. Med. 2022, 12, 1436. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Cantore, S.; Sovereto, D.; La Femina, L.; Caloro, G.A.; Spirito, F.; Scacco, S.; Di Cosola, M.; Lo Muzio, L.; Troiano, G.; et al. Potential Role of miR-196a and miR-196b as Prognostic Biomarkers of Survival in Head and Neck Squamous Cell Carcinoma: A Systematic Review, Meta-Analysis and Trial Sequential Analysis. Life 2022, 12, 1269. [Google Scholar] [CrossRef] [PubMed]
- Bright, R. Alejandro Peralta Soler: SIMILARITIES BETWEEN CANCER METASTASES AND MIGRATORY PATTERN OF INSECTS. Interalia Magazine, November 2022. [Google Scholar]
- dos Santos Pinto, J.R.A.; Fox, E.G.P.; Saidemberg, D.M.; Santos, L.D.; da Silva Menegasso, A.R.; Costa-Manso, E.; Machado, E.A.; Bueno, O.C.; Palma, M.S. Proteomic View of the Venom from the Fire Ant Solenopsis invicta Buren. J. Proteome Res. 2012, 11, 4643–4653. [Google Scholar] [CrossRef]
- Das, T.; Alabi, I.; Colley, M.; Yan, F.; Griffith, W.; Bach, S.; Weintraub, S.T.; Renthal, R. Major venom proteins of the fire ant Solenopsis invicta: Insights into possible pheromone-binding function from mass spectrometric analysis. Insect Mol. Biol. 2018, 27, 505–511. [Google Scholar] [CrossRef]
- Chen, J. Chemistry and Functions of Imported Fire Ant Venom. Toxins 2023, 15, 489. [Google Scholar] [CrossRef]
- Cai, L.; Yang, F.; Wang, Y.; Yang, J.; Zhu, Y.; Ma, X.; Höfer, J.; Wang, Y.; Ma, Y.; Xiao, L. A combined protein toxin screening based on the transcriptome and proteome of Solenopsis invicta. Proteome Sci. 2022, 20, 15. [Google Scholar] [CrossRef]
- Ng, B.H.; Tan, H.X.; Vijayasingham, S. Kounis syndrome following Solenopsis (fire ant) bite. Med. J. Malays. 2019, 74, 344–346. [Google Scholar]
- Shatursky, O.Y.; Volkova, T.M.; Himmelreich, N.H.; Grishin, E.V. The geometry of the ionic chànnel lumen formed by alpha-latroinsectotoxin from black widow spider venom in the bilayer lipid membranes. Biochim. Biophys. Acta 2007, 1768, 2757–2763. [Google Scholar] [CrossRef]
- Vidya, V.; Achar, R.R.; Himathi, M.U.; Akshita, N.; Kameshwar, V.H.; Byrappa, K.; Ramadas, D. Venom peptides—A comprehensive translational perspective in pain management. Curr. Res. Toxicol. 2021, 2, 329–340. [Google Scholar] [CrossRef]
- Lopez, D.J.; Winkel, K.D.; Wanandy, T.; van Nunen, S.; Perrett, K.P.; Lowe, A.J. The Human Health Impacts of the Red Imported Fire Ant in the Western Pacific Region Context: A Narrative Review. Trop. Med. Infect. Dis. 2024, 9, 69. [Google Scholar] [CrossRef]
- Tracy, J.M.; Demain, J.G.; Quinn, J.M.; Hoffman, D.R.; Goetz, D.W.; Freeman, T.M. The natural history of exposure to the imported fire ant (Solenopsis invicta). J. Allergy Clin. Immunol. 1995, 95, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Huang, S.A.; Lin, I.L.; Lin, C.C.; Lai, H.K.; Yang, C.H.; Huang, R.N. Establishment and social impacts of the red imported fire ant, Solenopsis invicta, (Hymenoptera: Formicidae) in Taiwan. Int. J. Environ. Res. Public Health 2021, 18, 5055. [Google Scholar] [CrossRef] [PubMed]
- Wanchoo, A.; Zhang, W.; Ortiz-Urquiza, A.; Boswell, J.; Xia, Y.X.; Keyhani, N.O. Red imported fire ant (Solenopsis invicta) chemosensory proteins are expressed in tissue, developmental, and caste-specific patterns. Front. Physiol 2020, 11, 585883. [Google Scholar] [CrossRef] [PubMed]
- Nonkhwao, S.; Plettner, E.; Daduang, S. Protein–Ligand Binding and Structural Modelling Studies of Pheromone-Binding Protein-like Sol g 2.1 from Solenopsis geminata Fire Ant Venom. Molecules 2024, 29, 1033. [Google Scholar] [CrossRef]
- Schiavo, J.H. PROSPERO: An international register of systematic review protocols. Med. Ref. Serv. Q. 2019, 38, 171–180. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dioguardi, M.; Cantore, S.; Sovereto, D.; Sanesi, L.; Martella, A.; Almasri, L.; Musella, G.; Lo Muzio, L.; Ballini, A. Therapeutic Potential of Solenopsis invicta Venom: A Scoping Review of Its Bioactive Molecules, Biological Aspects, and Health Applications. Biomolecules 2024, 14, 1499. https://doi.org/10.3390/biom14121499
Dioguardi M, Cantore S, Sovereto D, Sanesi L, Martella A, Almasri L, Musella G, Lo Muzio L, Ballini A. Therapeutic Potential of Solenopsis invicta Venom: A Scoping Review of Its Bioactive Molecules, Biological Aspects, and Health Applications. Biomolecules. 2024; 14(12):1499. https://doi.org/10.3390/biom14121499
Chicago/Turabian StyleDioguardi, Mario, Stefania Cantore, Diego Sovereto, Lorenzo Sanesi, Angelo Martella, Lynn Almasri, Gennaro Musella, Lorenzo Lo Muzio, and Andrea Ballini. 2024. "Therapeutic Potential of Solenopsis invicta Venom: A Scoping Review of Its Bioactive Molecules, Biological Aspects, and Health Applications" Biomolecules 14, no. 12: 1499. https://doi.org/10.3390/biom14121499
APA StyleDioguardi, M., Cantore, S., Sovereto, D., Sanesi, L., Martella, A., Almasri, L., Musella, G., Lo Muzio, L., & Ballini, A. (2024). Therapeutic Potential of Solenopsis invicta Venom: A Scoping Review of Its Bioactive Molecules, Biological Aspects, and Health Applications. Biomolecules, 14(12), 1499. https://doi.org/10.3390/biom14121499