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Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disease with rising prevalence,
marked by eczematous lesions, itching, and a weakened skin barrier often tied to filaggrin gene
mutations. This breakdown allows allergen and microbe entry, with thymic stromal lymphopoietin
(TSLP) playing a crucial role by activating immune pathways that amplify the allergic response.
TSLP’s central role in AD pathogenesis makes it a promising therapeutic target. Consequently, in
this study, we used the virtual drug screening, molecular dynamics simulation, and binding free
energies calculation approaches to explore the African Natural Product Database against the TSLP
protein. The molecular screening identified four compounds with high docking scores, namely
SA_0090 (−7.37), EA_0131 (−7.10), NA_0018 (−7.03), and WA_0006 (−6.99 kcal/mol). Furthermore,
the KD analysis showed a strong binding affinity of these compounds with TSLP, with values of
−5.36, −5.36, −5.34, and −5.32 kcal/mol, respectively. Moreover, the strong binding affinity of these
compounds was further validated by molecular dynamic simulation analysis, which revealed that the
WA_0006-TSLP is the most stable complex with the lowest average RMSD. However, the total binding
free energies were −40.5602, −41.0967, −27.3293, and −51.3496 kcal/mol, respectively, showing
the strong interaction between the selected compounds and TSLP. Likewise, these compounds
showed excellent pharmacokinetics characteristics. In conclusion, this integrative approach provides
a foundation for the development of safe and effective treatments for AD, potentially offering relief
to millions of patients worldwide.

Keywords: atopic dermatitis; TSLP; molecular docking; MD simulation; binding free energies

1. Introduction

Atopic dermatitis (AD) is a common chronic inflammatory skin condition character-
ized by eczematous lesions, intense itching, and xerosis, significantly affecting the quality
of life of millions worldwide. AD’s prevalence has risen dramatically in recent decades,
particularly in industrialized nations, and its pathogenesis is complex, involving both
genetic and environmental factors. A key feature of AD is the breakdown of the epidermal
barrier, often linked to mutations in the filaggrin gene, which facilitates the penetration
of allergens and microbes into the skin [1]. This results in an abnormal immune response
dominated by T helper type 2 (Th2) cells, which produce interleukins that further exacer-
bate the inflammation [2]. Thymic stromal lymphopoietin (TSLP), a cytokine produced
primarily by epithelial cells, has emerged as a critical player in this process. TSLP is highly
expressed in the lesional skin of AD patients and acts by activating dendritic cells, which
then promote the differentiation of naive T cells into Th2 cells, amplifying the allergic
response [3]. Furthermore, TSLP influences the activity of other immune cells, such as
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basophils, eosinophils, and innate lymphoid cells, all of which contribute to the chronic
inflammation characteristic of AD [4]. Given the central role of TSLP in the pathogenesis
of AD, it has become a key target for therapeutic interventions. Indeed, therapies that
block TSLP signaling, such as biologics, have shown promise in reducing AD symptoms [5].
However, these treatments can be costly and may have long-term side effects, highlighting
the need for safer, more accessible alternatives [6]. In this context, natural compounds have
gained increasing attention due to their broad range of bioactive properties, low toxicity,
and potential to modulate key pathways involved in AD, including TSLP signaling [7].
Several natural compounds, such as quercetin, curcumin, epigallocatechin gallate (EGCG),
licorice (Glycyrrhiza glabra), resveratrol, and Centella asiatica, have been shown to reg-
ulate the expression of TSLP and other pro-inflammatory mediators [8,9]. Quercetin, a
flavonoid found in many fruits and vegetables, has been reported to inhibit TSLP secretion
in keratinocytes, thereby reducing the activation of dendritic cells and the downstream Th2
response [10]. Similarly, curcumin, the active compound in turmeric, has demonstrated
the ability to suppress TSLP expression in various inflammatory models, including AD, by
modulating nuclear factor kappa B (NF-κB) signaling [11]. EGCG, the major catechin in
green tea, has been shown to reduce TSLP levels in allergic skin inflammation models and
inhibit the activation of dendritic cells [12]. Licorice root extract, particularly its active com-
ponent glycyrrhizin, has long been used in traditional medicine for its anti-inflammatory
properties and has recently been found to downregulate TSLP expression in keratinocytes,
making it a potential candidate for AD treatment [13]. Resveratrol, a polyphenol found
in grapes and berries, has also been shown to inhibit TSLP production and attenuate Th2-
mediated inflammation in AD models [14]. Centella asiatica, commonly known as Gotu
Kola, is a traditional medicinal herb that has demonstrated significant anti-inflammatory
effects, including the inhibition of TSLP production in human keratinocytes [15]. These
natural compounds not only reduce TSLP expression but also target other aspects of the
immune response, providing a multifaceted approach to AD management. Despite the
promising results from preclinical studies, further research is needed to validate the clinical
efficacy of these natural compounds and determine optimal formulations and dosages for
AD treatment. Moreover, the potential for synergistic effects between these compounds
and existing therapies, such as corticosteroids and biologics, warrants exploration. As
the demand for more natural and holistic approaches to treating chronic diseases like
AD grows, the development of TSLP-targeted therapies using natural compounds offers
a promising avenue for future research and clinical practice. This study demonstrates
the potential of using of virtual drug screening and molecular dynamics simulations to
reposition natural compounds for the treatment of atopic dermatitis. In this study, the
African natural compounds were screened against TSLP, and strong binding affinity of the
selected compounds was further verified by using the molecular dynamics simulation and
binding free calculation approaches. The integrative approach adopted herein not only
enhances our understanding of the molecular interactions involved but also provides a
foundation for the development of safer and more effective treatments for AD, potentially
offering relief to millions of patients worldwide.

2. Materials and Methods
2.1. Crystal Structure Retrieval and Preparation

The crystal structure of the TSLP complex (PDB ID: 5J12) was sourced from the Protein
Data Bank (RCSB PDB) [16] (https://www.rcsb.org/structure/5nt1) (accessed on 7 August
2024). PyMOL was then used to remove any water molecules from the structure [17].
Hydrogen atoms were added, and structural minimization was performed on the protein
using Chimera [18,19].

2.2. Molecular Screening of Natural Product Libraries

This study utilized the African Natural Product Database, containing diverse African
medicinal compounds, and screened them for drug-likeness and toxicity using the FAF4drug
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webserver, filtering out compounds that violated Lipinski’s rule of five [19]. Ligands
were prepared by converting them to the pdbqt format, with tools like Open Babel as-
signing charges and atom types; the ligand preparation process included considering
non-polar hydrogen atoms, Gasteiger charges, and defining torsion tree roots for flex-
ibility analysis, while receptors were prepared using AutoGrid to define the docking
space. The virtual screening was performed with EasyDock Vina 2.0, starting with an
initial low-exhaustiveness screening (set to 16) for efficiency, followed by a more rigorous
re-screening (exhaustiveness of 64) for top hits to reduce false positives. Then, the top
10% of high-ranking compounds underwent induced-fit docking (IFD) with AutoDockFR,
accommodating receptor flexibility and enabling covalent docking using default parame-
ters [20]. AutoDockFR generally utilizes force fields like AMBER or CHARMM, molecular
dynamics (MD) simulation protocols, and scoring functions such as AMBER scoring or
force-field-based scoring for induced-fit docking (IFD) simulations. Finally, on the basis of
high docking scores and favorable interaction, the top four compounds were selected and
virtualized with PyMOL software [21].

2.3. Molecular Simulation of Shortlisted Drug–Protein Complexes

The molecular dynamics (MD) simulations were set up using AMBER21, a robust
tool recognized for its efficient algorithms and high precision, giving researchers detailed
insight into biomolecular interactions. Using the tLeap module, coordinates and topology
files for each protein–ligand complex were generated [22,23]. Each system was immersed in
an Optimal Point Charge (OPC) water box, and counterions were added to neutralize any
net charges. Ligand parameters were derived using the GAFF2 force field, with initial topol-
ogy and frcmod files created via antechamber and parmchk2 tools. Energy minimization
was carried out iteratively, alternating between steepest descent and conjugate gradient
methods, until a specified threshold for energy change or force was reached. Systems
were then gradually heated to the target temperature, with temperature controlled using
coupling algorithms such as Langevin dynamics or the Berendsen thermostat. Long-range
electrostatics were computed using the Particle Mesh Ewald (PME) approach, and van der
Waals forces were modeled with the Lennard-Jones potential [24]. Equilibration occurred
in stages, involving restrained minimization, controlled heating, and unrestrained stabiliza-
tion to reach stable conditions at the designated temperature and pressure. The SHAKE
algorithm ensured fixed covalent bond lengths and angles, while pressure control was man-
aged through a barostat (Berendsen or Andersen) [25]. Each system then proceeded to a
300-nanosecond production simulation under either NPT or NVT ensemble conditions [26].

2.4. Post-Simulation Analysis of the Top Hit-NS1 Complexes

The trajectory generated from the simulation production was evaluated using the
CPPTRAJ or PTRAJ modules [27]. This analysis involved computing several critical metrics,
including RMSD, RMSF, radius of gyration (Rg), and hydrogen bonding interactions for
each system [28–30]. RMSD can be calculated using the equation outlined below:

RMSD =

√
∑ d2i = 1

Natoms
(1)

Here, ‘di’ denotes the positional variance between atoms, while ‘i’ refers to both the
original and superimposed structures. Moreover, to analyze the fluctuation of the TSLP
protein after binding to the ligand molecule, we calculated the RMSF by using the following
mathematical equation:

Thermal f actor or B- f actor = [(8π∗∗2)/3] (ms f ) (2)
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However, to analyze the compactness of the shortlisted compounds and TSLP com-
plexes, we calculated the Rg value with respect to time by using the following equation:

r2
RG =

∑N
i=1 mi(ri − rCM)2

∑N
i=1 mi

(3)

2.5. Binding Free Energy and Dissociation Constant (KD) Analysis

The total binding free energy at the end-point was assessed using the molecular
mechanics generalized Born surface area (MM/GBSA) methodology, a well-established
and dependable technique for determining the binding affinity of protein-ligand com-
plexes [21]. To perform the free energy calculations, stable frames from the simulation
trajectories were selected utilizing the MMPBSA.py script [19]. The following equations
were used to calculate the total binding free energies for the shortlisted compounds and
TSLP target protein:

∆Gbind = G(complex, solvated) − G(receptor, solvated) − G(ligand solvated) (4)

This formula is used to evaluate the role or impact of interactions within the complex
and can be expressed as follows:

G = EMolecular Mechanics − Gsolvated − TS (5)

The rearranged versions of the above equation for calculating specific energy are
as follows:

∆Gbind = ∆EMolecular Mechanics + ∆Gsolvated − ∆TS = ∆Gvaccum + ∆Gsolvated (6)

∆EMolecular Mechanics = ∆Eint + ∆Eelectrostatic + ∆EvdW (7)

∆Gsolvated = ∆GGeneralized born + ∆Gsur f ace area (8)

∆Gsur f ace area = γ.SASA + b (9)

∆Gvaccum = ∆EMolecular Mechanics − T∆S (10)

Furthermore, the dissociation constant (KD) for the top hits was computationally
predicted by using PRODIGY-LIGAND webservers. This server was previously used to
predict the KD of different molecules used against different diseases [31].

2.6. Lipinski’s Rule and Pharmacokinetics Analysis

Lipinski’s rule of five is a critical framework in drug development, indicating that
effective orally administered drugs typically exhibit certain molecular characteristics. These
include a molecular weight of less than 500, a maximum of five hydrogen bond donors, no
more than ten hydrogen bond acceptors, and a logP value of five or lower. This guideline
helps predict a compound’s oral bioavailability and permeability, thereby optimizing its
drug-like properties for successful pharmaceutical applications [32]. To evaluate adherence
to these criteria, we utilized the online platform SwissADME (http://www.swissadme.ch/)
(accessed on 15 September 2024) [33]. Furthermore, the assessment of ADMET (absorption,
distribution, metabolism, excretion, and toxicity) properties is essential, as nearly 50% of
drug candidates fail during development due to non-compliance with these pharmacoki-
netic principles [34]. In silico ADMET analyses were performed using the pkCSM tool
(https://biosig.lab.uq.edu.au/pkcsm/) (accessed on 15 September 2024), where we cal-
culated key pharmacokinetic parameters [35]. These included water solubility, Caco-2
permeability, human intestinal absorption, blood–brain barrier penetration, cytochrome
P450 inhibition and substrate potential, AMES toxicity, skin sensitization, and hepatotoxic-
ity for the top-selected natural compounds.

http://www.swissadme.ch/
https://biosig.lab.uq.edu.au/pkcsm/
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3. Results and Discussion
3.1. Virtual Drug Screening of Phytocompounds Against the TSLP Protein

Virtual drug screening plays a vital role in the drug design field by expediting the
identification of promising drug candidates and enhancing their chemical and biological
properties. Virtual drug screening of phytocompounds offers a fast, cost-effective way
to explore natural compounds for new therapeutics, making it invaluable in drug dis-
covery. By screening large libraries of plant-derived molecules, researchers can identify
novel drug candidates with unique structural features that are often safer and more ef-
fective. This approach targets specific disease-related biomolecules, allowing for more
precise and potent therapies. Additionally, virtual screening reduces environmental im-
pact, enables toxicity and drug-likeness predictions, and accelerates lead optimization,
helping prioritize compounds with the highest therapeutic potential. Overall, it bridges
traditional natural medicine and advanced technology, facilitating the development of
affordable and targeted treatments for complex diseases [36–39]. Consequently, in the
present study, we used the virtual drug screening of the South African Natural Prod-
uct Database to identify the lead compounds that can target the TSLP protein. Before
conducting database screening, we applied Lipinski’s rule of five to filter out drug-like
molecules, which has been used by several studies [40]. The computational drug screening
was performed using AutoDock Vina, targeting the TSLP protein. We initially evalu-
ated 954 compounds from the South African database, narrowing down to 793 based
on adherence to the rule of five. These selected compounds, totaling 823, then entered
a multi-tiered screening process. In the first stage of virtual screening, docking scores
ranged from −5.72 to 4.49 kcal/mol, allowing us to focus on compounds scoring between
−5.72 and −5.50 kcal/mol. This subset was then processed through induced-fit docking,
where scores fell between −7.37 and −6.50 kcal/mol. From this group, only 10 compounds
stood out, displaying docking scores above −6.80 kcal/mol alongside strong interaction profiles.
Based on the high docking score, only four compounds, namely 8-oxo-16-[(2R,3S,4S,5S,6R)-3,4,5-
trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-hexadecanoic, [(2S,4aS)-5-hydroxy-7-
isopropyl-1,1,4a-trimethyl-6-oxo-3,4-dihydro-2H-phenanthren-2-yl], (2R,3S,4R,5R)-2,3,4,5-
tetrahydroxy-6-[(2R)-5-hydroxy-2-(4-methoxyphenyl)-4-oxo-chroman-7-yl]oxy-hexa, and
(2S,3S)-6-[(2E)-3,7-dimethylocta-2,6-dienyl]-3,5,7-trihydroxy-2-(4-hydroxyphenyl)chroman-
4-one, with docking scores of −7.37 kcal/mol, −7.10 kcal/mol, −7.03 kcal/mol, and
−6.99 kcal/mol, respectively, were selected for further analysis. We are also including
the compounds’ IUPAC equivalents to ensure both scientific accuracy and practical utility.
These are, respectively, (2R,3S,4S,5S,6R)-2-[16-(8-oxohexadecanoyl)oxy]-3,4,5-trihydroxy-6-
(hydroxymethyl)tetrahydropyran, 2S,4aS)-5-hydroxy-7-isopropyl-1,1,4a-trimethyl-6-oxo-
1,2,3,4-tetrahydrophenanthrene, (2R,3S,4R,5R,6S)-6-[(2R)-5-hydroxy-2-(4-methoxyphenyl)-
4-oxo-4H-1-benzopyran-7-yloxy]-2,3,4,5-tetrahydroxyhexanal, and (2S,3S)-2-(4-hydroxyphenyl)-
3,5,7-trihydroxy-6-[(2E)-3,7-dimethylocta-2,6-dienyl]-4H-1-benzopyran-4-one.

The drugs’ IDs, 2D structures, name, and docking score are shown in Table 1.

3.2. Bonding Network Analysis of Shortlisted Compounds and TSLP Complexes

The interaction analysis of TSLP complexes with compounds SA_0090 and EA_0131
uncovered a variety of stabilizing forces, including both hydrogen bonds and hydropho-
bic interactions, between each compound and the protein target. For the SA_0090-TSLP
complex, a docking score of −7.37 kcal/mol indicated strong binding affinity, which was
reinforced by 11 hydrogen bonds and four hydrophobic contacts with key amino acids.
Notable residues contributing to these interactions were Tyr29, Gln80, Phe84, Pro86, Ala94,
Lys103, Tyr113, Thr116, Gln117, and Thr121 (Figure 1a). Similarly, the EA_0131-TSLP com-
plex achieved a docking score of −7.10 kcal/mol, attributed to seven hydrogen bonds and
13 hydrophobic contacts. Essential residues facilitating these interactions included Gln80,
Ser92, Ala94, Lys95, Lys103, Tyr113, Thr116, Gln117, Ile118, and Thr121, supporting both
hydrogen bonding and hydrophobic interactions (Figure 1b). These results emphasize the
crucial role of specific residues in promoting stable and effective drug-protein complexes.
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Table 1. List of top hit compounds along with structures and docking scores.

Drug ID Two-Dimensional Structure Name Docking Score

SA_0090

 

8-oxo-16-[(2R,3S,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)tetrahydropyran-2-yl]oxy-

hexadecanoic

−7.37
kcal/mol

EA_0131 [(2S,4aS)-5-hydroxy-7-isopropyl-1,1,4a-trimethyl-6-
oxo-3,4-dihydro-2H-phenanthren-2-yl]

−7.10
kcal/mol

NA_0018 (2R,3S,4R,5R)-2,3,4,5-tetrahydroxy-6-[(2R)-5-hydroxy-
2-(4-methoxyphenyl)-4-oxo-chroman-7-yl]oxy-hexa

−7.03
kcal/mol

WA_0006 (2S,3S)-6-[(2E)-3,7-dimethylocta-2,6-dienyl]-3,5,7-
trihydroxy-2-(4-hydroxyphenyl)chroman-4-one

−6.99
kcal/mol

Figure 1. Bonding network analysis of SA_0090–TSLP and EA_0131-TSLP complexes. (a) shows
the stick representation of the bonding network of the SA_0090-TSLP complex. (b) shows the stick
representation of the bonding network of the EA_0131-TSLP complex.

Moreover, NA_0018 compound displayed a significant affinity for the TSLP protein,
achieving a docking score of −7.03 kcal/mol. This interaction involved a dense network of
bonds, forming 14 hydrogen bonds and five hydrophobic contacts. Key residues involved
included Tyr29, Gln80, Phe84, Asn85, Ala94, Lys103, Tyr113, Thr116, Gln117, Ile118, and
Thr121 (Figure 2a). On the other hand, the WA_0006-TSLP complex showed a binding score
of −6.99 kcal/mol, facilitated by 12 hydrogen bonds and three hydrophobic interactions
with residues such as Tyr29, Gln80, Pro86, Lys103, Tyr113, Thr116, Gln117, and Thr121
(Figure 2b). These results highlight the potential of these compounds as effective TSLP-
targeting agents, as each demonstrates stable interactions, suggesting their promising
therapeutic utility.
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Figure 2. Bonding network analysis of NA_0018-TSLP and WA_0006-TSLP complexes. (a) shows
the stick representation of the bonding network of the NA_0018-TSLP complex. (b) shows the stick
representation of the bonding network of the WA_0006-TSLP complex.

3.3. Dissociation Constant (KD) Analysis of Shortlisted Compound-TSLP Complexes

KD analysis is essential in protein–drug interactions because it quantifies the binding
affinity between a drug and its target, guiding key aspects of drug development [41,42].
A low KD indicates high affinity, suggesting the drug binds strongly to its target, which
can improve therapeutic efficacy, specificity, and reduce off-target effects. This insight
is crucial for drug optimization, as it helps identify compounds with favorable binding
properties early on, supports dose determination, and aids in predicting biological activ-
ity [43,44]. Additionally, KD data help elucidate a drug’s mechanism of action and drive
structure–activity relationship (SAR) studies, enabling fine-tuning of molecular structures
for enhanced potency and safety in therapeutic applications. Consequently, to check the
binding affinity of the shortlisted compounds with the TSLP protein, we calculated the dis-
sociation constant by using the PRODIGY-LIGAND webservers [45]. The analysis revealed
a KD value of −5.36 kcal/mol for the SA_0090–TSLP complex, −5.34 kcal/mol for the
EA_0131-TSLP and NA_0018-TSLP complexes, and −5.32 kcal/mol for the WA_0006-TSLP
complex. A similar range of values has been previously reported for the strong binding
affinity of drugs with the target proteins [31,46]. This analysis further verifies the molecular
docking results.

3.4. Molecular Dynamics Simulation of Shortlisted Compound Complexes

Root Mean Square Deviation (RMSD) is a vital parameter in molecular dynamics
(MD) simulations, commonly used to analyze the structural stability and conformational
changes of biomolecules, such as protein-ligand complexes, over time. For drug–protein
interactions, RMSD values reflect how much the complex deviates from its initial structure
as the simulation progresses. A low and stable RMSD indicates a strong, stable interaction,
suggesting that the ligand fits well within the binding site of the protein without causing
significant structural perturbations [47]. Conversely, high or fluctuating RMSD values may
indicate an unstable interaction or flexibility within the complex, which could suggest a
weaker binding affinity or substantial conformational adjustments [48,49]. Consequently,
to check the stability of our shortlisted compounds with the TSLP protein, we calculated
the RMSD with respect to time. Figure 3 shows the RMSD plots, with the temporal
stability and dynamics of four different protein–ligand complexes, labeled as EA_0131-
TSLP, NA_0018-TSLP, SA_0090-TSLP, and WA_0006-TSLP. Each plot represents the RMSD
in angstroms (Å) over a 200-nanosecond (ns) simulation. In the case of the EA_0131-TSLP
complex, the RMSD initially stabilized around 4 Å within the first 20 ns and remained
stable until 100 ns with high convergence. After this point, the RMSD value suddenly
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increased to 6 Å, which was maintained until the end of the simulation with moderate
fluctuations. The average for this system was found to be 4.5 Å. The stability of the ligand
within the binding cavity was assessed by superimposing structures obtained from various
simulation time points (50 ns, 100 ns, 150 ns, and 200 ns). This comparison demonstrated
consistent alignment, indicating that the ligand maintained a stable position throughout the
simulation (Figure 3a). However, in the case of the NA_0018-TSLP system, higher stability
was observed initially with a 2.5 Å RMSD. The value of the RMSD increased to 5 Å after
80 ns and then remind stable until the end of the simulation, with an average RMSD of 3.7 Å.
The superimposed structures further verify the stability; however, fluctuation in the RMSD
value is due to the loop region around the ligand binding cavity (Figure 3b). Moreover, in
the case of SA_0090-TSLP, the RMSD initially fluctuated significantly for short period of
time and then stabilized at around 6 Å, and it remained relatively stable near this value with
a high convergence throughout the simulation. The average RMSD for this system was 6 Å
with the table interaction of the ligand in the binding cavity as shown by superimposing
the structures retrieved at different time points of the simulation (Figure 3c). This indicates
a stable interaction, albeit with a higher average deviation compared to the EA_0131-TSLP
and NA_0018-TSLP complexes. The consistency in RMSD suggests that the SA_0090 ligand
fits well into the binding pocket, maintaining a stable interaction without major structural
changes in the complex. In contrast, the WA_0006-TSLP complex showed the lowest RMSD
among the four, stabilizing at around 3.5 Å after an initial rise in the first few nanoseconds.
This stability is maintained with minimal fluctuations, indicating a very stable interaction.
The low and consistent RMSD suggests that the WA_0006 ligand forms a strong and stable
binding with TSLP, with minimal conformational adjustments required over the course of
the simulation. Furthermore, the superimposed structure retrieved at different time points
further verified that the ligand was stably attached to the cavity throughout the simulation
time period (Figure 3d). In summary, WA_0006-TSLP is the most stable complex with the
lowest average RMSD, suggesting a stronger and more stable interaction. NA_0018-TSLP
(b) is the least stable, showing considerable structural flexibility.

The radius of gyration (Rg) is a measure of the compactness of a protein or protein–
ligand complex during molecular dynamics (MD) simulations. It reflects the distribution
of the atoms around the center of mass of the system and is an important parameter to
assess the structural stability and folding behavior of the complex [50,51]. A stable Rg over
time suggests a compact and stable structure, while significant fluctuations can indicate
conformational changes, expansion, or potential unfolding of the protein or complex [52].
Consequently, to check the compactness of the shortlisted compound-TSLP complexes,
we calculated the Rg with respect to time. In the case of the EA_0131-TSLP complex in
the initial 80 ns, the Rg value remains relatively stable at around 14.0–14.5 Å, indicating a
compact and stable structure during this period. However, at approximately 100 ns, there
is a noticeable increase in Rg to around 17.0 Å, suggesting that the complex undergoes
a conformational expansion or loosening. After this peak, the Rg decreases but remains
above 14.5 Å, showing moderate fluctuations for the remainder of the simulation. This
indicates that the complex does not fully revert to its initial compact structure, suggesting
partial structural rearrangements that stabilize at a new level (Figure 4a). Furthermore, in
the case of the NA_0018-TSLP complex, a similar pattern of Rg was observed as found in
the RMSD plot. Initially, the plot shows a stable Rg value until 65 ns, and then a gradual
increase in Rg was recorded, starting from around 14.0 Å and reaching nearly 15.5 Å
towards the end. The consistent increase indicates a gradual expansion of the complex,
which may reflect a lack of compactness and stability. The fluctuations in the Rg values
towards the end of the simulation suggest some dynamic structural rearrangements that
prevent the complex from achieving a compact form (Figure 4b). Moreover, the Rg for the
SA_0090-TSLP complex quickly stabilizes at around 14.0 Å after an initial adjustment, and
it remains consistent with no fluctuations throughout the 200 ns simulation. This stable Rg
value suggests that the SA_0090-TSLP complex maintains a compact and stable structure
without significant conformational changes. The SA_0090-TSLP complex is highly stable,
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showing minimal fluctuations in Rg, indicating that the complex remains tightly packed
and structurally sound over the course of the simulation (Figure 4c). Furthermore, the Rg
of the WA_0006-TSLP complex is initially stable at around 14.5 Å and remains relatively
stable with no fluctuations throughout the simulation. There is a small increase in Rg
towards the end of the simulation, reaching around 15.0 Å, but the changes are minor and
do not indicate significant structural expansion. The WA_0006-TSLP complex demonstrates
overall stability with only minor fluctuations, suggesting that the complex is compact
and stable for most of the simulation, with a slight tendency towards expansion near the
end (Figure 4d). This analysis of the Rg plots complements the previous RMSD analysis,
confirming that SA_0090-TSLP and WA_0006-TSLP are the most stable complexes, while
NA_0018-TSLP is likely unstable and may not form a strong, compact interaction with the
TSLP protein.

Figure 3. Dynamic stability analysis of shortlisted drug-TSLP complexes. (a) The trajectories of the
RMSD for the EA_0131-TSLP complex over time. (b) The trajectories of the RMSD for the NA_0018-
TSLP complex over time. (c) The trajectories of the RMSD for the SA_0090-TSLP complex over time.
(d) The trajectories of the RMSD for the WA_0006-TSLP complex over time.
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Figure 4. Post-simulation trajectory analysis for residual compactness of shortlisted compound-
TSLP complexes. (a) represents the compactness of the EA_0131-TSLP complex. (b) represents the
compactness of the NA_0018-TSLP complex. (c) represents the compactness of the SA_0090-TSLP
complex. (d) represents the compactness of the WA_0006-TSLP complex.

The Root Mean Square Fluctuation (RMSF) provides insight into the flexibility of each
residue in a protein or protein–ligand complex over the course of a molecular dynamics
(MD) simulation [53]. High RMSF values for specific residues indicate regions with signifi-
cant movement or flexibility, whereas low RMSF values indicate rigid or stable regions [54].
Therefore, to check the residual fluctuation of TSLP after the binding of shortlisted com-
pounds, we calculated the RMSF value over the time. As shown in Figure 5, most residues
across all complexes exhibit low RMSF values (close to 0–2 Å), indicating overall structural
rigidity and stability in most parts of the protein-ligand complexes. A notable increase
in RMSF is observed around residues 110–130, indicating that these residues experience
greater flexibility or fluctuations, potentially due to loop regions, termini, or binding in-
teractions that are more dynamic (Figure 5a). Detailed examination of the 3D structures
obtained at different simulation time points (50 ns, 100 ns, 150 ns, and 200 ns) revealed
that the fluctuations primarily occurred in loop regions. By comparing the peaks 1, 2, and
3 with the 3D structure of TSLP, we found that these are loop regions (Figure 5b–e). This
finding indicates that the observed changes are likely a result of the natural flexibility in
these loop segments, which may play a role in the dynamic behavior of the shortlisted
compound-TSLP interaction.

The hydrogen bond (H-bond) analysis provides information on the stability and
interactions within a protein–ligand complex over the course of a molecular dynamics (MD)
simulation [55]. H-bonds play a crucial role in maintaining the structural integrity and
stability of protein–ligand complexes, and a higher number of stable H-bonds generally
suggests a more robust and tightly bound complex [56]. Consequently, to check the
binding stability of our shortlisted compounds with the TSLP target, we calculated the
post-simulation average hydrogen bonds for each complex. The H-bond count for EA_0131-
TSLP starts relatively high, around 60–70, indicating strong initial interactions within the
complex. Over time, the number of H-bonds gradually decreases, stabilizing between 40
and 50 H-bonds after about 50 ns and maintaining this range throughout the remainder of
the simulation (Figure 6a). The decrease in H-bonds over time suggests that EA_0131-TSLP
may undergo some structural adjustments, potentially impacting its stability. This aligns
with the observations from the RMSD and Rg analyses, which indicated moderate flexibility
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and expansion in certain regions. However, NA_0018-TSLP, SA_0090-TSLP, and WA_0006-
TSLP showed a relatively similar pattern with an average number of hydrogen bonds of
54, 56, and 53, respectively (Figure 6b–d). This analysis revealed the strong binding of the
shortlisted compounds with TSLP and also further verify the RMSD and Rg results.

Figure 5. (a) Post-simulation trajectory analysis for the RMSF of shortlisted compound-TSLP com-
plexes. Note: the different colors show the specific compounds. (b) Showing the fluctuating regions of
EA_0131-TSLP complex. (c) Showing the fluctuating regions of NA_0018-TSLP complex. (d) Showing
the fluctuating regions of SA_0090-TSLP complex. (e) Showing the fluctuating regions of WA_0006-
TSLP complex.

Figure 6. Post-simulation hydrogen bond analysis of shortlisted compound-TSLP complexes.
(a) represents the post-simulation trajectories of average hydrogen bonds in the EA_0131-TSLP
complex. (b) represents the post-simulation trajectories of average hydrogen bonds in the NA_0018-
TSLP complex. (c) represents the post-simulation trajectories of average hydrogen bonds in the
SA_0090-TSLP complex. (d) represents the post-simulation trajectories of average hydrogen bonds in
the WA_0006-TSLP complex.
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3.5. Binding Free Energies Calculation

The MMGBSA (molecular mechanics/generalized Born surface area) approach is
crucial in drug–protein studies for predicting binding affinities and understanding binding
mechanisms. By calculating binding free energies, MMGBSA helps quantify the strength of
interactions between a drug and its protein target, which is essential in assessing potential
drug efficacy [57,58]. It also offers a more accurate ranking of drug candidates than docking
scores by incorporating molecular mechanics and solvation effects. Additionally, MMG-
BSA decomposes binding energy into components, revealing detailed insights into the
forces driving interactions. This method balances accuracy and computational efficiency,
making it an effective tool in virtual screening and drug optimization. The binding free
energy calculations presented in Table 2 provide insights into the interaction stability be-
tween the TSLP protein and four compounds (EA_0131, NA_0018, SA_0090, and WA_0006)
using MM/GBSA and MM/PBSA methods. In MM/GBSA analysis, the contribution
of van der Waals energies for EA_0131, NA_0018, SA_0090, and WA_0006 complexes
were recorded to be −49.2608, −42.7944, −33.0569, and −56.1235 kcal/mol, respectively.
Similarly, the recorded electrostatic energies were −198.258, −203.6055, −174.1935, and
−191.6528 kcal/mol. However, the total binding free energies were −40.5602, −41.0967,
−27.3293, and −51.3496 kcal/mol, respectively (Table 2). Furthermore, in MM/PBSA
analysis, the total binding free energies for EA_0131, NA_0018, SA_0090, and WA_0006
complexes were −33.0122, −33.4086, −27.2503, −39.3363 kcal/mol (Table 2). The van der
Waals energy shows significant contributions across all compounds, with WA_0006 dis-
playing the strongest interaction at −56.1235 kcal/mol in MM/GBSA, indicating favorable
hydrophobic interactions. Electrostatic energy values are also notably high, with NA_0018
exhibiting the highest value at −203.6055 kcal/mol, suggesting strong electrostatic bind-
ing. Overall, the total free energy indicates WA_0006 as the most stable complex in both
MM/GBSA (−51.3496 kcal/mol) and MM/PBSA (−39.3363 kcal/mol) calculations, which
further validates the molecular simulation results.

Table 2. List of binding free energies calculated for shortlisted compounds by using MM/GBSA.

MM/GBSA

Parameters EA_0131-TSLP NA_0018-TSLP SA_0090-TSLP WA_0006-TSLP

∆Evdw −49.2608 −42.7944 −33.0569 −56.1235

∆Eele −198.258 −203.6055 −174.1935 −191.6528

EGB 212.2015 210.2378 184.1764 202.0759

ESURF −5.2429 −4.9346 −4.2553 −5.6492

Delta G Gas −247.5188 −246.3999 −207.2504 −247.7763

Delta G Solv 206.9586 205.3033 179.9211 196.4268

∆G total −40.5602 −41.0967 −27.3293 −51.3496

MM/PBSA

Parameters EA_0131–TSLP NA_0018–TSLP SA_0090–TSLP WA_0006–TSLP

vdW −49.2608 −42.7944 −33.0569 −56.1235

EEL −198.258 −203.6055 −174.1935 −191.6528

EPB 218.3227 216.6539 183.0231 212.3594

ENPOLAR −3.8162 −3.6625 −3.023 −3.9193

DELTA G gas −247.5188 −246.3999 −207.2504 −247.7763

DELTA G solv 214.5066 212.9913 180.0001 208.4401

DELTA TOTAL −33.0122 −33.4086 −27.2503 −39.3363
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3.6. Pharmacokinetics Analysis of Shortlisted Compounds

Pharmacokinetics (PK) analysis is crucial for understanding how drugs are absorbed,
distributed, metabolized, and excreted within the body, which directly impacts their efficacy
and safety [59]. By examining these processes, PK analysis helps optimize dosing, minimize
side effects, and prevent harmful drug interactions, making it essential for developing
safe, effective medications. It also supports personalized medicine by adjusting dosages
based on individual patient factors like genetics or organ function. PK insights are vital
for regulatory approval and guide drug formulation to improve bioavailability, ultimately
enhancing therapeutic outcomes and patient safety [60]. The pharmacokinetic analysis
of selected compounds provides insights into their potential as orally bioavailable drugs
and their behavior within the human body [61]. All compounds (EA_0131-TSLP, NA_0018-
TSLP, SA_0090-TSLP, and WA_0006-TSLP) comply with Lipinski’s rule of five, indicating
they are likely to be orally active, with no violations in molecular weight, hydrogen bond
donors and acceptors, or lipophilicity (Log P). Bioavailability scores vary, with EA_0131-
TSLP, NA_0018-TSLP, and WA_0006-TSLP displaying higher predicted bioavailability
(0.55) compared to SA_0090-TSLP (0.11) (Table 3). This score is an estimation of how much
of the drug enters the bloodstream when administered. High bioavailability suggests the
drug will reach systemic circulation effectively, an important factor in determining dosage
and efficacy.

Table 3. Lipinski’s rule of five analysis of shortlisted compounds.

Drug ID
Molecular

Weight
Hydrogen
Acceptors

Hydrogen
Donors

Consensus
Log P

Lipinski’s Rule
Bioavailability

Results Violation

EA_0131-TSLP 418.5 4 1 5.88 Yes 0 0.55

NA_0018-TSLP 448.42 10 5 0.13 Yes 0 0.55

SA_0090-TSLP 447.54 9 4 0.19 Yes 0 0.11

WA_0006-TSLP 424.49 6 4 4.71 Yes 0 0.55

Examining additional pharmacokinetic properties, EA_0131-TSLP exhibits low water
solubility (Log S = −6.543), whereas SA_0090-TSLP is more soluble (−2.886). While all
compounds but SA_0090-TSLP have high predicted human intestinal absorption, only
WA_0006-TSLP has the highest volume of distribution (VDss = 0.72), suggesting it may
achieve broader tissue distribution. Inhibiting enzymes like CYP450 1A2 indicates potential
for drug interactions, as these enzymes are involved in drug metabolism. Compounds that
inhibit CYP enzymes may alter the metabolism of co-administered drugs, which is a critical
consideration in multi-drug regimens to avoid adverse effects [62]. Our analysis revealed
that all of the shortlisted compounds have no inhibitory effect on CYP450 1A2. None of the
compounds show permeability across the blood–brain barrier, limiting potential central
nervous system effects. All compounds are predicted to be non-toxic with no AMES toxicity,
hepatotoxicity, or skin sensitization, presenting a favorable safety profile (Table 4). These
combined characteristics highlight each compound’s unique advantages and limitations
for further consideration in drug development.

Table 4. List of pharmacokinetic properties of shortlisted compounds.

Drug
ID

Water
Solubility

Log S

Human
Intestinal

Absorption
(%)

VDss
(Human)

BBB
Permeability

CYP450
1A2

Inhibitor

AMES
Toxicity

Skin
Sensitization Hepatotoxicity

EA_0131-TSLP −6.543 High 0.364 No No No No No

NA_0018-TSLP −3.349 High −0.388 No No No No No
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Table 4. Cont.

Drug
ID

Water
Solubility

Log S

Human
Intestinal

Absorption
(%)

VDss
(Human)

BBB
Permeability

CYP450
1A2

Inhibitor

AMES
Toxicity

Skin
Sensitization Hepatotoxicity

SA_0090-TSLP −2.886 Low −1.26 No No No No No

WA_0006-TSLP −3.477 High 0.72 No No No No No

4. Conclusions

Our study highlights the potential of natural compounds targeting thymic stromal
lymphopoietin (TSLP) as promising therapeutic agents for managing atopic dermatitis
(AD) and related inflammatory conditions. Using computational approaches, we identified
four compounds with strong binding affinity and stability with TSLP, underscoring the
importance of leveraging natural sources to discover accessible, low-toxicity treatments for
chronic inflammatory diseases. These compounds demonstrated the capacity to modulate
TSLP-driven inflammatory pathways, providing a solid rationale for their therapeutic
potential in relieving AD symptoms. The computational methodology employed in this
study, integrating molecular docking, molecular dynamics (MD) simulations, and pharma-
cokinetic evaluations (ADMET), is versatile and adaptable to diverse compound libraries,
including synthetic and geographically diverse natural products. This flexibility broadens
the model’s relevance to various populations and enables applications beyond TSLP to
other critical cytokines, such as IL-33 and IL-25, which are implicated in type 2 inflamma-
tory responses. By targeting multiple cytokine-driven pathways, this approach has the
potential to identify compounds with broad therapeutic effects. Importantly, the model
can incorporate genetic variability observed across populations, allowing for tailored drug
screening to address population-specific therapeutic needs. This customization supports the
development of precision medicine approaches for AD and other inflammatory disorders.
Moreover, the framework is adaptable for evaluating multi-target therapies, identifying
compounds capable of synergistically interacting with multiple biological pathways—a
significant advantage for managing complex diseases involving cytokine interplay, immune
cell activation, and epithelial barrier dysfunction. While the findings are promising, further
preclinical and clinical studies are essential to validate these computational predictions
and optimize the selected compounds’ structures for therapeutic use. Such studies will
address the potential regulatory requirements for translating these compounds into viable
therapies. Regulatory pathways must ensure that the safety, efficacy, and pharmacoki-
netics of these natural compounds meet international standards. Ethical considerations
include respecting biodiversity and traditional knowledge by adhering to fair bioprospect-
ing practices and ensuring equitable benefit-sharing with the communities from which
these compounds are derived. Ultimately, this study not only advances our understanding
of TSLP-driven pathogenesis but also demonstrates the broader applicability of the compu-
tational model to other inflammatory and allergic conditions. By expanding its scope to
include diverse biological targets and populations, this integrative approach provides a
robust platform for global drug discovery and precision medicine. It opens new avenues for
natural-compound-based interventions, offering sustainable and ethically sound solutions
for managing chronic diseases.
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