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Abstract: Due to their high biocompatibility, biodegradability, and facile surface functionalization,
phospholipid vesicles as carriers have garnered significant attention in the realm of disease diagnosis
and treatment. On the one hand, phospholipid vesicles can function as probes for the detection
of various diseases by encapsulating nanoparticles, thereby enabling the precise localization of
pathological changes and the monitoring of disease progression. On the other hand, phospholipid
vesicles possess the capability to selectively target and deliver therapeutic agents, including drug
molecules, genes and immune modulators, to affected sites, thereby enhancing the sustained release of
these agents and improving therapeutic efficacy. Recent advancements in nanotechnology have led to
an increased focus on the application of phospholipid vesicles in drug delivery, biological detection,
gene therapy, and cell mimics. This review aims to provide a concise overview of the structure,
characteristics, and preparation techniques of phospholipid vesicles of varying sizes. Furthermore,
we will summarize the latest research developments regarding their use as nanomedicines and gene
carriers in disease treatment. Additionally, we will elucidate the potential of phospholipid vesicles
in facilitating the internalization, controlled release, and targeted delivery of therapeutic substrates.
Through this review, we aspire to enhance the understanding of the evolution of phospholipid vesicles
within the biological field, outline prospective research, and address the forthcoming challenges
associated with phospholipid vesicles in disease diagnosis and treatment.

Keywords: phospholipid vesicles; drug delivery; cell mimics; gene therapy; biological detection;
vaccine development

1. Introduction

Nanomaterials exhibit significant promise in the realm of disease diagnosis and treat-
ment, attributable to their tunable dimensions and exceptionally high specific surface
area [1,2]. Nanomaterials that are conjugated with pharmaceutical agents or genetic
molecules can enhance the stability, solubility, and bioavailability of these substrates [3].
This is particularly advantageous in addressing the intrinsic limitations associated with
therapeutic drugs, which often include inadequate water solubility, non-specific distribu-
tion within biological systems, unintended effects, and cytotoxicity towards a majority of
normal cells.

Among the various nanocarriers, phospholipid vesicle carriers represent a significant
category. Since the 1960s, phospholipid vesicles have served as model biological membranes
for investigating the interactions between biological membranes and proteins, peptides,
bacteria, drug molecules, and surfactants [4–9]. Research on the interactions between phos-
pholipid vesicles and proteins is helpful for the purification and remodeling of membrane
proteins, modification of phospholipid membranes, and drug trafficking [6,10–14]. To
enhance the observation of phospholipid vesicle functionality within biological systems,
micron-scale giant phospholipid vesicles (GUVs) have been developed [15]. In contrast
to vesicles with sizes of several hundred nanometers, GUVs typically range from 1 to
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100 microns in diameter and have been extensively utilized as simplified artificial cell
models [16]. GUV models promote the investigation of the distribution kinetics and het-
erogeneity of membrane phospholipids, functionality of membrane proteins, and various
biological/chemical reactions pertinent to metabolic processes in living cells, thus con-
tributing to a deeper understanding of cellular mechanisms [8,17]. The real cell membrane
also exhibits considerable complexity and diversity, and the variations in phospholipid
types, cholesterol, membrane proteins, and carbohydrates will significantly influence the
functionality of simulated biological membranes in vitro [18,19]. Consequently, the devel-
opment of multi-component membrane systems that closely resemble real cell membranes
is crucial for the in vitro examination of the interactions between cell membranes and other
substances, alongside cellular processes and functions.

Cell membranes serve as a protective barrier for cells against the intrusion of foreign
substances, including peptides, proteins, oligonucleotides, pharmaceuticals, and imaging
agents [20–22]. To facilitate the transmembrane transport of therapeutic agents, such as
drug molecules, biocompatible phospholipid vesicles are employed as carriers. These
vesicles can encapsulate drugs, nucleic acids, and other therapeutic contents, enhancing
their ability to interact with target cells through a membrane fusion mechanism during
the drug loading process. This interaction promotes the effective release of the therapeutic
agents, while the phospholipids themselves can be metabolized into biological membrane
components without disrupting normal physiological functions [23,24]. In the medical area,
phospholipid vesicles are capable of transporting both hydrophilic and lipophilic drugs
due to the amphiphilic characteristics of phospholipids. Furthermore, the modification
of phospholipid vesicles with small molecules, peptides, and polymers can enhance the
targeting capabilities of phospholipid vesicle drug carriers [25,26]. This modification can
regulate the permeability of phospholipid membranes, improving the selective permeability
of the vesicles and thus facilitating the distribution of nanodrugs within diseased tissues,
optimize the pharmacokinetics of the drugs, and ultimately enhance their therapeutic
efficacy [27–29].

This review summarizes the use of phospholipid vesicles in various biomedical ap-
plications, including drug delivery, gene therapy, and disease detection. The first section
covers the structural features and fundamental properties of phospholipids, as well as
the methods for preparing phospholipid vesicles. The second section focuses on various
strategies to enhance the functionality of these vesicles for biomedical purposes, such
as modifying their permeability with targeted molecules for the precise release of their
contents and utilizing them in gene therapy and immune regulation for responsive treat-
ments. Based on their good biocompatibility and facile surface modifications, phospholipid
vesicles, through covalent or non-covalent interactions, are essential for advancing the
applications of nanocarriers in disease treatment.

2. Phospholipid Vesicles
2.1. Structural Characteristics of Phospholipids

Phospholipids represent the predominant and critical constituents of cellular mem-
branes [30,31]. Their amphiphilic molecular architecture facilitates the formation of a bilayer
structure, which effectively impedes the intrusion of external substances. Phospholipids
are synthesized through the covalent bonding of various hydrophilic head groups to one or
two hydrophobic fatty acid chains, mediated by phosphate group clusters [32] (Figure 1).
These molecules can be categorized into two primary classes: glycerophospholipids and
sphingomyelins [33]. Sphingomyelin is predominantly located in neural and cerebral
tissues [34,35]. It is composed of sphingosine, fatty acids, and phospholipid choline. Sphin-
gosine is characterized as an amino unsaturated diol with an extended carbon chain in its
aliphatic group. The hydroxyl group at carbon 1 is connected to phosphocholine via a phos-
phate bond, while the amino group at carbon 2 is linked to fatty acids through an amide
bond [36]. The predominant form of sphingosine in the human body contains 18 carbon
atoms [37]. However, the fatty acid constituents of sphingomyelin exhibit variability across
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different tissues and organs [38]. For instance, stearic acid, tetracosenic acid, and nervonic
acid are primarily found in neural tissues, whereas palmitic acid and eicosapentaenoic acid
are prevalent in spleen and lung tissues, respectively [37]. Glycerophospholipids, the most
abundant phospholipids in cellular membranes [39], are composed of one glycerol molecule,
one phospholipid molecule, two higher fatty acid molecules, and one organic molecule.
Based on the chemical structure of their polar head groups, glycerophospholipids can be
classified into several categories, including phosphatidic acid (PA), phosphatidylcholine
(PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG),
and phosphoinositide (PI) [33,40,41]. Furthermore, the two fatty acid chains in phospho-
lipids may be identical or distinct and can be either saturated or unsaturated. Natural
phospholipids typically contain unsaturated fatty acid chains. The fatty acid chains of glyc-
erophospholipids generally consist of an even number of carbon atoms, typically ranging
from 16 to 24 carbon atoms in length [42]. Consequently, the variation in the hydrophobic
chain length, the unsaturation nature, and the head group type can yield an extensive array
of phospholipid molecules with unique structural and chemical characteristics.
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Figure 1. Schematic representation of the classification of phospholipids, which are used to
prepare phospholipid vesicles. PA, phosphatidic acid; PC, phosphatidylcholine; PE, phos-
phatidylethanolamine; PS, phosphatidylserine; PG, phosphatidylglycerol; PI, phosphoinositide.

2.2. Basic Properties of Phospholipids

Despite the fact that phospholipid structures are not identical, they all possess a
fundamental property—self-assembly [43–45]. When dissolved in water, phospholipid
molecules spontaneously assemble into vesicles with the polar and hydrophilic head groups
extending into the water, while the non-polar and hydrophobic chains gather to form a
thermodynamically stable bilayer [46]. The variations in phospholipid structures also
influence the properties of the resulting bilayer. Different polar head groups lead to distinct
charges, which are determined by the sum of phosphate’s negative charges and the positive
charges of the polar substituents when dispersed in a water solution at pH 7.0. For instance,
when choline or ethanolamine are present as polar substituents, their positive charges are
neutralized by phosphate’s negative charge, resulting in zero net charge for PC and PE
phospholipids. On the other hand, serine simultaneously carries positive and negative
charges, causing PS phospholipids to carry one unit of negative charge [41,47]. Similarly,
glycerol, as a non-charged polar substituent, causes PG-type phospholipids to carry one
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unit of negative charge due to phosphate’s negative charge. Consequently, PS and PG-type
phospholipids are commonly referred to as anionic phospholipids [48–51].

The characteristics of phospholipids, such as the head group, the length of the hy-
drophobic chain, and the degree of unsaturation, significantly influence the molecular
arrangement and fluidity of phospholipid membranes. A key physical property in the
assembly of phospholipids is the phase transition temperature (Tc), which is the temper-
ature at which the fatty acid chains shift from a liquid crystal state to a gel state [52]. At
this temperature, the activity of the phospholipid alkyl chains increases, leading to greater
membrane permeability. Generally, longer hydrophobic alkyl chains result in a higher
Tc [53], while a higher unsaturation degree lowers the Tc [54]. The type of headgroup also
has a minor impact on the Tc [55]. For instance, phospholipids with PS and PG head groups
exhibit similar Tc values (Table 1), both of which are higher than those of phospholipids
with a PC head group. Additionally, the structure of the phospholipid backbone influences
the Tc, with sphingomyelin (ESM) having a relatively high Tc [34]. The Tc is crucial for
the stability of phospholipid vesicles. When creating vesicles, it is essential to consider
the storage conditions and practical applications for selecting phospholipids with suitable
phase transition temperatures.

Table 1. Phase transition temperatures of common phospholipids.

Phospholipid Tc (◦C) References

1,2-dilauroyl-sn-glycero-3-phosphocholine
(DLPC) −2 [56]

1,2-dimyristoyl-sn-glycero-3-
phosphocholine (DMPC) 23 [54,57–59]

1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC) 41 [54,55,59,60]

1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC) 55 [58,59]

1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) −21 [54]

1-palmitoyl-2-oleoyl-sn-glycero-3-
phosphocholine (POPC) 4 [54]

1,2-dimyristoyl-sn-glycero-3-
phosphoethanolamine (DMPE) 50 [61]

1,2-dipalmitoyl-sn-glycero-3-
phosphoethanolamine (DPPE) 66 [62]

1,2-dimyristoyl-sn-glycero-3-
phosphorylglycerol (DMPG) 23 [60]

1,2-dioleoyl-sn-glycero-3-
phosphorylglycerol (DOPG) −18 [60]

1,2-dimyristoyl-sn-glycero-3-phospho-L-
serine (DMPS) 35 [63]

1,2-dioleoyl-sn-glycero-3- phospho-L-serine
(DOPS) −11 [64]

egg sphingomyelin (ESM) 38 [34,65]

2.3. Preparation of Phospholipid Vesicles

The homogeneous, controllable shape and fluidity of phospholipid vesicles make them
an ideal model and carrier for studying biophysical, biochemical, biomedical, and cellular
processes. To better mimic the tissues, organelles, and cells of various sizes found in living
systems, phospholipid vesicles can be prepared as single and multilayer structures ranging
from tens of nanometers to tens of microns using various techniques. Currently, the prepa-
ration of phospholipid vesicles is primarily achieved through the methods of extrusion,
emulsion phase transfer, electrochemical techniques, microfluidics (Figure 2) [17,66,67],
and the Mozafari method [68]. The goal of these methods is to facilitate the self-assembly
of phospholipid molecules under controlled external conditions.
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2.3.1. Extrusion Method

Quantitative phospholipids are weighed and dissolved in an organic solvent, typically
chloroform or a chloroform-methanol mixture. The organic solvent is subsequently re-
moved using a rotary evaporator, resulting in a uniform phospholipid film adhering to the
inner wall of the flask. This phospholipid membrane is then subjected to a vacuum drying
oven for a minimum of two hours to ensure the complete removal of the organic solvent.
Following this, the phospholipid membrane is hydrated with a specified volume of aqueous
phase and subjected to vortex or ultrasonic treatment to achieve thorough hydration. The
initial product of the hydrated vesicles is then introduced into a phospholipid extruder. At
temperatures exceeding the phase transition temperature of the utilized phospholipid and
under applied external force, the mixture is extruded through a filter membrane with a
pore size smaller than the vesicle dimensions, which is repeated ten times. This procedure
facilitates the extrusion, deformation, rupture, and self-assembly of the phospholipids,
yielding monolamellar vesicles that are smaller and more uniform in size. The aqueous
solution containing the phospholipid vesicles can be subjected to repeated extrusion to
achieve vesicles of the desired size [69] (Figure 2a). For the preparation of smaller phos-
pholipid vesicles, the sequential extrusion through membranes with progressively smaller
pore sizes is recommended [9]. The extrusion method can produce monolamellar vesicles
ranging from 50 to 1000 nm in size, characterized by their small dimensions and avoidance
of organic solvents, which contribute to their high drug encapsulation and retention effi-
ciencies. Furthermore, phospholipid vesicles generated through this method are frequently
employed as model cell membranes for investigating the interactions between biological
membranes and various molecules, including proteins, peptides, and pharmaceuticals.

2.3.2. Electrochemical Formation Method

Phospholipids dissolved in an organic solvent are incrementally introduced to indium
tin oxide (ITO)-coated conductive glass, resulting in the formation of a thin phospholipid
film upon the evaporation of the organic solvent. The conductive glass is then secured
within a rectangular pool to create a closed system, into which an aqueous phase is sub-
sequently injected. A second piece of ITO-coated conductive glass is placed atop the first,
thereby establishing a parallel plate capacitor configuration. The application of an alter-
nating current electric field facilitates the formation of phospholipid vesicles (Figure 2b).
Through electrochemical processes, a solution of GUVs ranging from 1 to 100 µm can be
produced [70,71]. Initially, this technique is limited to the generation of partially ampho-
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teric phospholipid solutions yielding giant vesicles with low ionic strength. However,
advancements in electrochemical formation methodologies have emerged, enabling the
production of single-layer giant vesicles and negatively charged GUVs in buffer solutions
with high ionic strength [72].

2.3.3. Emulsion Phase Transfer

Phospholipids are initially solubilized in a minimal quantity of organic solvent, such
as chloroform or methanol, to which a stable organic solution, such as liquid paraffin or
mineral oil, is subsequently incorporated. The organic solvents, specifically chloroform or
methanol, are entirely evaporated through heating for at least two hours. Following this, a
small volume of pre-encapsulated inner phase solution is introduced into the phospholipid
oil phase, allowing for the formation of a water-in-oil emulsion through brief vortexing.
The resulting phospholipid emulsion is then gradually combined with glucose and other
external phase buffer solutions, facilitating the slow formation of a phospholipid bilayer at
the oil–water interface (Figure 2c). After high-speed centrifugation, the upper oil phase is
removed, yielding GUVs characterized by a favorable monodispersity ranging from 5 to
50 microns. These GUVs, produced via emulsion phase transfer, serve as models for artifi-
cial cells, enabling the investigation of intracellular enzymatic reactions and biosynthetic
processes [73].

2.3.4. Microfluidic Method

The microfluidic approach primarily relies on the emulsion phase transfer technique,
utilizing a microfluidic apparatus to facilitate precise and continuous phase transfer at
the oil–water interface, thereby enabling the synthesis of GUVs [74,75] (Figure 2d). By
manipulating the flow rate of the solution introduced into the microfluidic device and
altering the geometry of the device itself, GUVs with controllable structural characteristics
and dimensions can be effectively generated. The monolayer GUVs produced through this
microfluidic methodology demonstrate significant monodispersity and high encapsulation
efficiency.

2.3.5. Mozafari Method

The Mozafari method is an improved heating method for the preparation of phospho-
lipid vesicles that is characterized by the absence of organic solvents during the preparation
process [68]. Phospholipid vesicles produced by the Mozafari method are typically em-
ployed for the encapsulation of various substances, including drugs. In a heat-resistant
container, a combination of bioactive compounds that would be encapsulated within phos-
pholipid vesicles, along with polyols such as glycerol, propylene glycol, or sorbitol, is
subjected to heating at temperatures ranging from 40 to 60 ◦C. Following this initial heating,
phospholipids are introduced into the mixture. The mixture in the container is conducted
under an inert gas atmosphere, such as nitrogen or argon, at a temperature exceeding the
phase transition temperature of the phospholipids. This heating process is facilitated by
stirring at a rate of 1000 rpm using a hot plate stirrer. To achieve phospholipid vesicles with
a high encapsulation efficiency of bioactive compounds, the heating is maintained for a
duration of one hour. It is crucial to emphasize that the phospholipid vesicles should only
be stored after the temperature of the mixture has been appropriately reduced [76].

2.4. Characterization of Phospholipid Vesicles

Prior to the biological application of phospholipid vesicles, it is essential to thoroughly
characterize their physicochemical properties, including their size, size distribution, surface
charge, morphology, and physical stability [77]. Phospholipid vesicles with a size range of
50–200 nm exhibit a relatively prolonged circulation time in vivo [77], which hinders the
rapid metabolism of drugs and other molecules carried inside the phospholipid vesicles
from the bloodstream. Furthermore, the physical stability of phospholipid vesicles can be
evaluated by monitoring alterations in their size and size distribution over time. Therefore,
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characterizing the size and size distribution of phospholipid vesicles is paramount before
the application of phospholipid vesicles. Dynamic light scattering is the predominant
technique employed to characterize the size and size distribution of phospholipid vesicles.
Additionally, the morphology of phospholipid vesicles can be assessed through transmis-
sion electron microscopy and cryo-transmission electron microscopy [9]. For micron-sized
GUVs, the morphology and fluidity of phospholipid vesicles in their surrounding medium
are typically examined using confocal laser scanning microscopy [7]. The surface charge
of phospholipid vesicles serves as an indicator of their stability in the medium. A higher
surface charge enhances the electrostatic repulsion of phospholipid vesicles, thereby pre-
venting their natural aggregation. The zeta potential of phospholipid vesicles can be
quantified by electrophoretic light scattering, providing insights into their surface charge
and intensity.

3. Application of Phospholipid Vesicles in Biological Field

In recent years, phospholipid vesicles have gained significant attention in the field
of biomedicine due to their high biocompatibility, biodegradability, low toxicity, and ease
of modification. Phospholipid vesicles, which are the predominant components of cell
membranes, are frequently employed as biomimetic systems, demonstrating consider-
able potential in various applications [78] such as drug delivery, gene therapy, biological
detection, and cell mimics (Figure 3). In the selection of phospholipid vesicles for bio-
logical applications, it is essential to choose the appropriate vesicles based on specific
requirements. Neutral phospholipids, including phosphatidylcholine, sphingomyelin, and
phosphatidylethanolamine, which constitute the primary components of cellular mem-
branes, are frequently employed as models for biomembranes to investigate the interactions
between cell membranes and various substances [9]. The formation of vesicles from neg-
atively and positively charged phospholipids can enhance stability and charge through
electrostatic repulsion, thereby facilitating interactions with charged molecules or cells.
Small phospholipid vesicles, with diameters less than 0.1 µm, are particularly suitable for
drug delivery or biosensor applications, as they can effectively target specific cells or tissues.
Conversely, larger phospholipid vesicles, ranging from 0.1 to 1 µm in diameter, exhibit high
encapsulation efficiency for water-soluble drugs and are appropriate for encapsulating
larger molecular drugs. GUVs, exceeding 1 µm in diameter and resembling cell size, are
advantageous for constructing artificial cells. These vesicles are easily observable under
microscopy and can be utilized to study the mechanical properties of cell membranes, phase
separation, and lipid raft dynamics. Furthermore, when GUVs are combined with other
biomolecules, they can simulate intracellular metabolic reactions, gene expression-regulated
protein synthesis, and the self-replication of genetic material [73,79,80]. Consequently, it
is crucial to select the appropriate preparation method and phospholipid type to create
vesicles that align with the specific biological application.

3.1. Cell Mimics

The cell is the basic unit of life. Within living organisms, metabolic processes such
as protein synthesis, genetic material self-replication, and energy transfer are localized to
occur in the cell membrane. Thus, the development of complex organs, including muscle,
bone, and placenta in multicellular organisms [81], as well as essential cellular functions
such as protein transport, membrane trafficking, and exocytosis, necessitate the fusion of
biomembranes and the interaction between proteins and biomembranes. The intricate na-
ture of living systems presents challenges in quantifying intracellular biochemical reactions
and comprehending cellular processes in vivo. To enhance the understanding of cellular
mechanisms and the regulation of biochemical reactions, researchers have engineered artifi-
cial cells as simplified models to replicate specific functions and processes of authentic cells
in vitro [79]. Phospholipid vesicles are frequently employed as cell-sized reactors capable of
encapsulating biochemical reaction systems for the construction of in vitro cell models [73].
Han et al. [71] utilized a micro-contact exfoliation technique combined with electrochemical
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formation to create GUVs ranging from 20 to 100 µm in size, serving as a cell model to
investigate the interaction between the membrane protein bee toxin and phospholipid
membranes (Figure 4a). Their findings indicated that the transmembrane transport of
substances mediated by bee toxin was dependent on the concentration of the membrane
protein. Additionally, they employed a phospholipid vesicle array to simulate intracel-
lular enzymatic reactions, incorporating horseradish peroxidase into the array to model
cellular metabolic reactions. The substrate hydrogen peroxide and o-phenylenediamine
were successfully diffused into the GUVs, resulting in the production of the fluorescent
compound 2,3-diaminophenazine. Han et al. [82] also applied osmotic pressure to induce
the deformation of the GUVs, incorporating genetic material into the cell model, thereby
simulating the replication of genetic information and cell division within the nucleus of
eukaryotic cells through chain polymerization reactions (Figure 4b).
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Giant monolayer phospholipid vesicles, serving as artificial cell models, also exhibit
several limitations, including low membrane permeability, inadequate encapsulation rates,
and structural instability. To address these deficiencies, researchers have initiated the
development of artificial models that more closely resemble complex biological cells, char-
acterized by distinct regions and compartments with varying compositions and physical
properties. Liu et al. [83] employed nucleic acid/diethylaminoethyldextran to create a
pre-formed coacervate, onto which dipalmitoyl lecithin was self-assembled to establish
a phospholipid bilayer membrane, resulting in the formation of giant coacervate vesicles
(GCVs) (Figure 5a). In comparison to traditional monolayer GUVs, the diffusion coeffi-
cient of phospholipid molecules within the GCVs was diminished by approximately 83%.
Additionally, the fluorescence polarization value of the hydrophobic layer exhibited an
increase of around 111%, and the electrostatic interactions between the positively charged
polymer condensed phase and the negatively charged phosphate groups of the amphoteric
phospholipids enhanced the binding of the external phospholipid bilayer to the inner
condensed phase, thereby decreasing membrane fluidity (Figure 5b). The structural sup-
port provided by the internal aggregates enabled the phospholipid vesicles to maintain
stability under high ionic strength conditions. Furthermore, small molecules with varying
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charges within the GCVs were able to permeate the phospholipid bilayer into the con-
densed phase [83]. The influx rate of these small molecules diminished as the phospholipid
membrane content increased relative to non-membrane condensates. This phenomenon
creates a closed chamber environment for macromolecules, effectively preventing their
entry into the condensed phase. The substances with molecular weights below 4 kDa
were able to traverse the phospholipid membrane into the condensed phase [83], indicat-
ing that the phospholipid membrane is anchored to the surface of the condensed phase,
which enhances the membrane’s permeability and exhibits size-selective characteristics
(Figure 5d). The liquid–liquid phase separation within the coagulated group of the artificial
cell model provides a dense chamber environment conducive to biochemical reactions.
In contrast to conventional GUVs, glucose can facilitate the glucose-horseradish peroxi-
dase cascade within the condensed phase through the phospholipid membranes of highly
selective permeability GCVs (Figure 5c). The production of resorcinol from this cascade
reaction increases with enhanced glucose permeability, while the depletion of hydrogen
peroxide by catalase, necessary for this cascade, will halt the glucose-mediated production
of resorcinol within the artificial cell [83]. Resorcinol is primarily generated within the
agglomerate and is uniformly distributed throughout the co-aggregate, exhibiting mini-
mal permeability through the phospholipid membrane. As an artificial cell microreactor,
the magnesium-mediated cleavage of hammerhead ribozymes can also be accomplished
within a phospholipid vesicle-encapsulated condensed phase (Figure 5e). Compared to
a free buffer solution, the catalytic activity of ribozymes exhibited an enhancement of
approximately 42% in the GCVs with magnesium ion penetration, and thus, the efficiency
of ribozyme cleavage was observed to increase by approximately 114%.
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In addition to facilitating enzymatic reactions, the expression and transmission of
genetic material, the transport of substances, and various metabolic processes in eukary-
otic organisms, phospholipid vesicles can also serve as models for simulating biological
processes in prokaryotes, including bacterial infection and invasion. To elucidate the an-
timicrobial mechanisms of peptide surfactants, we investigated the interactions between
phospholipid vesicles and gemini peptide surfactants with distinct aggregation structures
utilizing isothermal titration microcalorimetry [9]. Furthermore, we synthesized GUVs dec-
orating gemini surfactants through the emulsion phase transfer method to model cellular
interactions with Escherichia coli [7]. The adhesion and endocytosis of bacteria on the surface
of these GUVs were effectively visualized using laser confocal microscopy. Our findings
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provide valuable insights for the rational design of antimicrobial agents and enhance the
understanding of pathogen invasion mechanisms. Han et al. [80] employed the emulsion
phase transfer method to create GUVs that encapsulate a bacterial DNA isolation system
(Figure 6a), thereby mimicking the isolation and inheritance of bacterial plasmids. Utilizing
laser irradiation and chlorin e6, the permeation of adenosine triphosphate (ATP) facilitated
the polymerization of actin-like proteins across phospholipid membranes, leading to the
gradual localization of plasmids towards the poles of the artificial cell (Figure 6b). Under
the combined influence of osmotic pressure and laser irradiation, the GUVs underwent
deformation and ultimately divided into two daughter vesicles, with the genetic material
evenly distributed between them (Figure 6c,d). At physiological temperatures, the daughter
vesicles inherited the genetic material from the mother GUVs, and the GUVs containing
the recombinant element system were capable of transcribing and translating the enhanced
green fluorescent protein (eGFP) gene, resulting in the expression of eGFP in the dividing
daughter vesicles (Figure 6e).

Biomolecules 2025, 15, x FOR PEER REVIEW 10 of 24 
 

microreactor, the magnesium-mediated cleavage of hammerhead ribozymes can also be 
accomplished within a phospholipid vesicle-encapsulated condensed phase (Figure 5e). 
Compared to a free buffer solution, the catalytic activity of ribozymes exhibited an en-
hancement of approximately 42% in the GCVs with magnesium ion penetration, and thus, 
the efficiency of ribozyme cleavage was observed to increase by approximately 114%. 

 
Figure 5. (a) Schematic representation illustrating the formation of giant coacervate vesicles (GCVs) 
through liquid−liquid phase separation. (b,d) Schematic illustration of the effect of the presence or 
absence of condensates in GUVs on (b) the membrane fluidity and (d) membrane permeability. (c) 
Schematic illustration of the enzyme cascade reactions induced by glucose in GCVs. (e) Schematic 
illustration of a Mg2+-triggered ribozyme cleavage reaction in GCVs. Reproduced with permission 
from [83]. Copyright 2021, American Chemical Society. 

In addition to facilitating enzymatic reactions, the expression and transmission of 
genetic material, the transport of substances, and various metabolic processes in eukary-
otic organisms, phospholipid vesicles can also serve as models for simulating biological 
processes in prokaryotes, including bacterial infection and invasion. To elucidate the an-
timicrobial mechanisms of peptide surfactants, we investigated the interactions between 
phospholipid vesicles and gemini peptide surfactants with distinct aggregation structures 
utilizing isothermal titration microcalorimetry [9]. Furthermore, we synthesized GUVs 
decorating gemini surfactants through the emulsion phase transfer method to model cel-
lular interactions with Escherichia coli [7]. The adhesion and endocytosis of bacteria on the 
surface of these GUVs were effectively visualized using laser confocal microscopy. Our 
findings provide valuable insights for the rational design of antimicrobial agents and en-
hance the understanding of pathogen invasion mechanisms. Han et al. [80] employed the 
emulsion phase transfer method to create GUVs that encapsulate a bacterial DNA isola-
tion system (Figure 6a), thereby mimicking the isolation and inheritance of bacterial plas-
mids. Utilizing laser irradiation and chlorin e6, the permeation of adenosine triphosphate 
(ATP) facilitated the polymerization of actin-like proteins across phospholipid 

Figure 5. (a) Schematic representation illustrating the formation of giant coacervate vesicles (GCVs)
through liquid−liquid phase separation. (b,d) Schematic illustration of the effect of the presence
or absence of condensates in GUVs on (b) the membrane fluidity and (d) membrane permeability.
(c) Schematic illustration of the enzyme cascade reactions induced by glucose in GCVs. (e) Schematic
illustration of a Mg2+-triggered ribozyme cleavage reaction in GCVs. Reproduced with permission
from [83]. Copyright 2021, American Chemical Society.



Biomolecules 2024, 14, 1628 11 of 24

Biomolecules 2025, 15, x FOR PEER REVIEW 11 of 24 
 

membranes, leading to the gradual localization of plasmids towards the poles of the arti-
ficial cell (Figure 6b). Under the combined influence of osmotic pressure and laser irradi-
ation, the GUVs underwent deformation and ultimately divided into two daughter vesi-
cles, with the genetic material evenly distributed between them (Figure 6c,d). At physio-
logical temperatures, the daughter vesicles inherited the genetic material from the mother 
GUVs, and the GUVs containing the recombinant element system were capable of tran-
scribing and translating the enhanced green fluorescent protein (eGFP) gene, resulting in 
the expression of eGFP in the dividing daughter vesicles (Figure 6e). 

 
Figure 6. Schematic illustration of (a) a GUV containing elements for bacterial DNA segregation, (b) 
DNA segregation induced by ATP under the influence of laser irradiation and chlorin e6, (c) a de-
formed GUV under osmotic pressure, (d) the separated two daughter vesicles containing DNA sim-
ilar to the original GUV, and (e) expressed eGFP inside the two daughter vesicles. Reproduced with 
permission from [80]. Copyright 2024, Jingjing Zhao, Xiaojun Han. 

3.2. Gene Therapy and Immunotherapy 
Gene therapy represents a therapeutic approach that involves the introduction of ex-

ogenous normal genes into target cells, aiming to modify or regulate gene expression for 
dealing with diseases resulting from genetic defects and abnormalities. The efficacy of 
gene therapy is significantly dependent on the development of safe and effective gene 
vector delivery systems, which remains a critical challenge in the field [84]. Presently, gene 
therapy vectors are categorized into viral and non-viral types. Non-viral vectors have 
gained considerable attention due to their superior biocompatibility, reduced immuno-
genicity, and enhanced safety profiles when compared to their viral counterparts. Among 
the various non-viral delivery systems, nanophospholipid vesicles have emerged as a 
promising area of research, attributed to their distinctive advantages such as surface mod-
ification capabilities, size controllability, tunable permeability, low toxicity, stability, and 
the capacity to transport both hydrophilic and hydrophobic substances [85,86]. In a 

Figure 6. Schematic illustration of (a) a GUV containing elements for bacterial DNA segregation,
(b) DNA segregation induced by ATP under the influence of laser irradiation and chlorin e6, (c) a
deformed GUV under osmotic pressure, (d) the separated two daughter vesicles containing DNA
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3.2. Gene Therapy and Immunotherapy

Gene therapy represents a therapeutic approach that involves the introduction of
exogenous normal genes into target cells, aiming to modify or regulate gene expression
for dealing with diseases resulting from genetic defects and abnormalities. The efficacy
of gene therapy is significantly dependent on the development of safe and effective gene
vector delivery systems, which remains a critical challenge in the field [84]. Presently, gene
therapy vectors are categorized into viral and non-viral types. Non-viral vectors have
gained considerable attention due to their superior biocompatibility, reduced immuno-
genicity, and enhanced safety profiles when compared to their viral counterparts. Among
the various non-viral delivery systems, nanophospholipid vesicles have emerged as a
promising area of research, attributed to their distinctive advantages such as surface modi-
fication capabilities, size controllability, tunable permeability, low toxicity, stability, and the
capacity to transport both hydrophilic and hydrophobic substances [85,86]. In a notable
study, Wang et al. [87] developed biomimetic hybrid phospholipid vesicles designed to
deliver dual nucleic acids for synergistic gene therapy targeting Alzheimer’s disease. These
vesicles, modified with angiopep-2 (Ang2), which encapsulated small interfering RNA
targeting β-site amyloid precursor protein cleavage-1 (BACE1) and myeloid cell 2 (TREM2)
plasmids, were prepared through hydration and subsequently fused with exosomes de-
rived from mesenchymal stem cells (MSCs) to create biomimetic hybrid nanovesicles via
extrusion (Figure 7a). The incorporation of exosomes and Ang2 peptides facilitates the



Biomolecules 2024, 14, 1628 12 of 24

ability of these hybrid phospholipid vesicles to traverse the blood–brain barrier, thereby
enhancing drug accumulation at the sites of Alzheimer’s disease lesions (Figure 7b). Within
microglial cells, the hybrid phospholipid vesicles release the TREM2 plasmid, leading to
an upregulation of TREM2 expression levels, which encourages a transition of microglia
from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype, thereby
restoring their phagocytic function towards amyloid beta (Aβ) (Figure 7c). In neuronal
cells, the hybrid phospholipid vesicles deliver BACE1 small interfering RNA, resulting
in the downregulation of the β-site amyloid precursor protein cleavage enzyme-1 gene,
which impedes the processing of Aβ precursor protein and diminishes the production
of Aβ plaques at their source, thereby further augmenting the efficacy of the synergistic
treatment for Alzheimer’s disease (Figure 7d).

and

cytokine release

Figure 7. (a) Schematic representation of the preparation of exosome–phospholipid heterozygous
vesicles that encapsulate dual genetic material. (b) Schematic diagram of heterozygous phospholipid
vesicle carriers entering cells through the blood–brain barrier. Schematic representations of the
mechanisms of (c) releasing the TREM2 gene in microglial cells to degrade Aβ and (d) delivering the
BACE1 gene into neuronal cells to reduce the production of Aβ by the hybrid phospholipid vesicle
transport vector. Reproduced with permission from [87]. Copyright 2024, American Chemical Society.
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Immunotherapy aims to achieve anti-tumor effects by regulating the body’s immune
system. Immune checkpoint blockade therapy occupies an important position in the field
of immunotherapy and has great potential for cancer treatment [88]. Lu et al. [89] cova-
lently linked neurosphingomyelin to camptothecin (CPT) through small molecule linkers
and synthesized four sphingomyelin-derived CPT molecules with different structures to
construct CPT nanovesicles (Figure 8a). Compared with free CPT, sphingomyelin-derived
CPT nanovesicles increased the maximum tolerated dose of CPT by 5- to 23-fold in healthy
mice without causing systemic toxicity. The CPT nanovesicles have an extended circulating
half-life in the body, allowing them to penetrate deep into the tumor and quickly release
approximately 23-fold more drugs at the tumor site. It was found that the level of immune
checkpoints within tumors was upregulated after the action of CPT nanovesicles. The
covalent linkage of the indoleamine 2,3-dioxygenase (IDO1) inhibitor indoximod (IND)
with doxorubicin (Dox) can promote the encapsulation efficiency by 4-fold of IND in
CPT nanovesicles. When targeted with folic acid, the uptake efficiency of Dox-IND/CPT
nanovesicles in tumors was improved, the IDO1 pathway was significantly inhibited, and
the tumor suppression effect was enhanced. In contrast, co-delivery of immune checkpoint
inhibitors enhanced the anti-colorectal cancer efficacy of CPT nanovesicles (Figure 8b).
Lu et al. [90] used the same method to covalently link the IDO1 inhibitor epacadostat
(EPA) to sphingomyelin through a hydrazone-ester bond to construct phospholipid vesi-
cles (Figure 8c). Compared with phospholipid vesicles that physically encapsulate EPA,
sphingomyelin-derived EPA nanovesicles have significantly improved stability and drug
loading capacity by approximately 16-fold. Compared with free EPA, EPA nanovesicles
maintain higher stability in the circulatory system, accumulate and release at tumor sites
through clathrin-mediated endocytosis, and enhance IDO1 inhibition and T cell prolifera-
tion. As a potent immunostimulant, EPA nanovesicles reverse tumor immunosuppression
by enhancing IDO1 inhibition, resulting in better anti-tumor cytotoxic T lymphocyte ef-
fects. When co-encapsulated with immunogenic dacarbazine, the synergistic combination
of EPA nanovesicles and programmed death protein 1 blockade can enhance the anti-
melanoma immune effect and anti-tumor effect (Figure 8d) and can effectively prevent
tumor recurrence.

Figure 8. (a) Schematic illustration of the formation of a camptothesome. (b) Comparison of anti-
tumor efficiency under different drug treatments. Reproduced with permission from [89]. Copyright
2021, Zhiren Wang et al. Under exclusive license to Springer Nature limited. (c) Schematic illustration
of the formation of an epacasome. (d) Average tumor growth size after different drug administrations.
Reproduced with permission from [90]. Copyright 2023, Zhiren Wang et al.
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3.3. Vaccine Development and Administration

With the authorization of two mRNA vaccines for immunization against the novel
coronavirus, complex phospholipid vesicles have emerged as the most advanced and effec-
tive technology for mRNA delivery [86,91]. Ionizable cationic phospholipids play a crucial
role in enhancing the efficiency of mRNA delivery and transfection. These phospholipids
facilitate the formation of stable complexes through electrostatic interactions with nega-
tively charged nucleic acids, such as mRNA or siRNA. Furthermore, in the acidic medium
of endosomes, ionizable cationic lipids can become protonated, acquiring a positive charge
that facilitates the escape of phospholipid vesicles from endosomes and the subsequent
release of nucleic acids into the cytoplasm [92]. Phospholipid vesicles not only enhance
the stability of mRNA, thereby protecting it from enzymatic degradation in vivo, but also
facilitate the intracellular expression of mRNA. By encapsulating mRNA within phospho-
lipid vesicles, it is possible to modify the biological distribution, cell targeting, and uptake
mechanisms of mRNA, thereby promoting effective mRNA delivery and vaccine adminis-
tration [93]. Among the liposomal vaccines currently available, GlaxoSmithKline Shingrix,
which is designed to prevent varicella-zoster virus infection, is the most recognized. It
is noteworthy that commercial vaccine products typically incorporate phospholipid com-
ponents to varying degrees, and numerous liposomal vaccines are presently undergoing
clinical trials [92,94].

3.4. Drug Delivery

Phospholipid vesicles are recognized as optimal carriers for drug delivery applica-
tions. Their bilayer structures facilitate the transport of both hydrophilic and hydrophobic
pharmaceuticals to the designated sites, thereby minimizing the non-specific distribution
of drugs within biological systems. Additionally, these vesicles enhance the solubility
of hydrophobic drugs within tumor cells, ultimately improving the bioavailability and
therapeutic efficacy of the administered drugs [95].

Notably, paclitaxel liposome represents the pioneer liposomal formulation approved
by the China Food and Drug Administration, as well as the first injectable paclitaxel lipo-
some product globally [96]. The encapsulation of paclitaxel, a compound with poor water
solubility, within the phospholipid bilayer of a nanomedical carrier effectively addresses
the solubility challenge and significantly enhances the therapeutic outcomes associated
with paclitaxel treatment. Table 2 lists some drug products on the market based on the
delivery of phospholipid vesicles. From the standpoint of the formulation, functionality,
characteristics, and adverse effects of currently available commercial phospholipid phar-
maceuticals, addressing the clinical translation of phospholipid formulations hinges on
technical challenges, including size regulation, stability enhancement, safety performance
optimization, and predictive modeling of phospholipid vesicles. Successful clinical trans-
lation necessitates the availability of consistent and reproducible products. However, the
majority of phospholipid vesicles utilized in clinical trials are predominantly produced in
small batches, making the large-scale preparation of phospholipid vesicles with uniform
size a significant challenge. Given the intricate nature of human diseases, it is imperative to
develop formulations that are both size-controllable and highly reproducible for effective
clinical application. In recent years, there has been a notable increase in research focused
on enhancing the performance of phospholipid vesicles. The research indicates that the
surface modification of phospholipid vesicles with polypeptides, polymers, and other
molecules can enhance the targeting capabilities of drug carriers, mitigate the toxic side
effects of pharmaceuticals on healthy tissues, and facilitate the localization of nanomaterials
within pathological sites [25,97,98]. For instance, Wang et al. [99] successfully developed a
low-toxicity nanomedicine carrier utilizing phospholipids derived from natural egg yolk,
which demonstrated effective delivery of the anticancer agent doxorubicin and achieved
significant inhibition of breast and liver cancer in murine models. Furthermore, the targeted
modification with folic acid improved the distribution of carrier-mediated drugs within tu-
mors, thereby enhancing the tumor-targeting efficacy of yolk phospholipid vesicle vectors.
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In another study, Yu et al. [100] synthesized choline phosphate lipid molecules based on
the phospholipid choline and established a targeted drug delivery system using specific
targeting peptides. This approach resulted in increased drug accumulation at tumor sites,
thereby significantly enhancing drug utilization efficiency and the overall therapeutic effect
against cancer.

Table 2. Drug products on the market based on delivery of phospholipid vesicles. HSPC, 1,2-diacyl-
sn-glycero-3-phosphocholine (SOY); DSPE, 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine;
DSPG, 1,2-distearoyl-sn-glycero-3-phosphatidylglycerol; EPG, 1,2-diacyl-sn-glycero-3-phospho-[1-
rac-glycerol]; DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol; DSPG, 1,2-distearoyl-sn-
glycero-3-phospho-(1′-rac-glycerol); DEPC, 1,2-dierucoyl-sn-glycero-3-phosphocholine.

Durg Product Name Active Ingredient Formulation Indication

Doxil Caelyx Doxorubicin HSPC, Cholesterol,
PEG 2000-DSPE

Ovarian cancer and
Kaposi’s sarcoma

(KS)

Ambisome Amphotericin B HSPC, DSPG,
Cholesterol Fungal infection

Marqibo Vincristine ESM, Cholesterol

Non-Hodgkin’s
lymphoma and acute

lymphocytic
leukemia

Onivyde Irinotecan
DSPC, PEG
2000-DSPE,
Cholesterol

Colon cancer

Visudyne Verteporfin DMPC, EPG Choroidal
neovascularization

Arikyne Acamicin sulfate DPPC, Cholesterol Bacterial infection

Depocyt Cytarabine DOPC, DPPG,
Cholesterol, Triolein Neoplastic meningitis

Depodur Morphium DOPC, DPPG,
Choles-terol, Triolein Pain management

Vyxeos Daunorubicin and
Cytarabine

DSPC, DSPG,
Cholesterol

Acute myelocytic
leukemia

Exparel Bupivacaine
DEPC, DPPG,
Cholesterol,
Tricaprylin

Pain management

Lipusu Paclitaxel Lecithin, Cholesterol,
Threonine, Glucose Ovarian cancer

In the context of targeted drug delivery utilizing phospholipid vesicles, the incorpora-
tion of rigid components such as cholesterol and polymers is essential for enhancing the
stability of the drug carrier [101]. This modification serves to prevent drug leakage within
the circulatory system, as well as in normal tissues or cells. Therefore, it facilitates controlled
drug release at the intended site, extends the circulation time of the drug within the body,
and ultimately improves therapeutic efficacy. For instance, Fang et al. [102] demonstrated
that embedding rigid polymer nanobowls within the aqueous core of phospholipid vesicles
significantly enhanced the stability of doxorubicin-loaded phospholipid vesicles, thereby
minimizing drug leakage during blood circulation and augmenting the anti-tumor effective-
ness. Similarly, Kohane et al. [103] synthesized aromatic phospholipid vesicles through the
covalent attachment of hemolysin lecithin to aromatic fatty acids. This chemical modifica-
tion resulted in an increase of 19–60% in the drug loading capacity for the hydrophilic local
anesthetic tetrodotoxin while also markedly reducing the drug release rate by 30–60% and
associated toxicity, thus prolonging the duration of local anesthesia. Furthermore, the use of
methyl-branched phospholipids has been shown to promote tighter bilayer packing, which
in turn decreases the permeability of the phospholipid vesicles. Kohane et al. [104] found
that methyl-branched phospholipid vesicles coated with tetrodotoxin could extend the
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duration of local anesthesia in vivo and enhance the sustained drug delivery capabilities of
the phospholipid vesicle system.

To further advance the clinical applicability of phospholipid vesicles, surface func-
tionalization has been employed to create external stimulus-responsive phospholipid
vesicles, which can respond to various stimuli such as light, temperature, ultrasound, or
pH [105–109]. These phospholipid vesicle carriers can be activated under specific internal
and external stimuli at the target site, thereby improving their permeability and enabling
controlled drug release for precision treatment. Li et al. [110] developed targeted heat-
sensitive phospholipid vesicles for drug delivery by covalently linking an aptamer that
can target tumor cells to a phospholipid molecule modified with polyethylene glycol, in
conjunction with a heat-sensitive phospholipid. The experimental results indicated that
the hydrophilic polymer polyethylene glycol enhanced the stability of the phospholipid
vesicles and reduced the propensity for drug leakage during circulation. The aptamer mod-
ification of phospholipid vesicles further increased the active targeting and internalization
capabilities of the drug delivery system. Additionally, the temperature-responsive nature
of the heat-sensitive phospholipid improved the water solubility of the hydrophobic drug
quercetin, enabling precise temperature-controlled release of the drug within tumor cells.

3.5. Biological Detection

Phospholipid vesicles have also attracted significant interest in the fields of biosensing
and disease diagnosis, primarily due to their robust encapsulation capabilities and the
potential for surface modification with various active groups. Kamat et al. [111] developed
large phospholipid vesicles composed of a mixture of cholesterol and 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine that encapsulated a GFP reporter gene and Escherichia coli
cell lysate through an emulsion phase transfer technique. This led to the creation of a
specific and sensitive fluoride riboswitch-based biosensor (Figure 9a). The encapsulation
process did not impede gene expression or fluoride detection. When the riboswitch was co-
encapsulated with 3 mM sodium fluoride within the GUVs, GFP expression was observed,
and the riboswitch was activated in the “ON” state. Conversely, when only fluoride or
nucleic acid was encapsulated, GFP expression remained minimal, and the riboswitch was
in the “OFF” state (Figure 9b). The phospholipid membrane exhibits selective permeability
to fluoride ions, enabling the riboswitches contained within the vesicles to monitor the
fluoride ion concentration in the external environment. Furthermore, the phospholipid
membrane serves to shield the internal gene expression from potential interference by
external ribose-degrading enzymes (Figure 9a). In contrast to the protective properties
of phospholipid membranes, Ren et al. [112] fabricated 100 nm phospholipid vesicles by
1,2-dioleoyl-sn-glycero-3-phosphocholine using an extrusion method and incorporated
silica nanoparticles loaded with fluorescein isothiocyanate (FITC) and 1,1′-dioctadecyl-
3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Dil) into these vesicles. Upon excitation
at 488 nm, two distinct fluorescence peaks at 522 nm (FITC) and 568 nm (Dil) were simulta-
neously detectable. The fluorescence signal of FITC diminished while that of Dil increased,
attributed to the resonance energy transfer phenomenon. Phospholipase A2 (PLA2) can
specifically disrupt the phospholipid bilayer, resulting in an increased distance between
the two fluorochromes that exceeds the critical distance for fluorescence resonance energy
transfer (FRET). This disruption leads to an increase in the fluorescence intensity of FITC,
acting as the energy donor, and a decrease in the fluorescence intensity of Dil, serving as
the receptor in the FRET system. Consequently, the detection of PLA2 can be achieved with
high sensitivity and specificity by monitoring the fluorescence signals at 522 and 568 nm.

Metal ion-based nanomaterials exhibit distinctive catalytic activities that mimic bi-
ological enzymes, leading to diverse applications in biosensing, disease treatment, and
pollutant remediation [113]. Li et al. [114] synthesized highly biocompatible phospholipid
membrane-encapsulated hydrophobic perovskite nanocrystals (CsPbBr3 NCs) utilizing
a thin film hydration technique (Figure 10a). The experimental results indicated that the
phospholipid coating creates a robust protective layer around CsPbBr3 NCs, thereby sig-
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nificantly enhancing their stability within biological environments. Upon the gradual
addition of hydrogen peroxide (H2O2), a notable decrease in the fluorescence intensity of
CsPbBr3 NCs embedded in the phospholipid film was observed, leading to fluorescence
quenching and the subsequent decomposition of the perovskite crystals. However, upon
the removal of excess H2O2, the elements that had dissolved within the phospholipid
membrane can recrystallize and reattach to the surface of CsPbBr3 NCs, resulting in the
restoration of fluorescence (Figure 10b). Given that glucose can be oxidized by glucose oxi-
dase to generate H2O2, the authors leveraged the fluorescence variations exhibited by the
phospholipid-encapsulated perovskite nanozymes to quantify the glucose concentrations
in blood, thereby highlighting the significant potential of this nanozyme in the domain of
bioanalytical applications.
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Extracellular vesicles (EVs) are composed of a phospholipid bilayer and are released
into various bodily fluids, including serum, plasma, urine, and saliva, by both normal and
pathological cells [115]. Due to their capacity to carry specific molecular constituents such
as nucleic acids, proteins, and lipids derived from their parent cells [116], EVs are frequently
utilized as biomarkers for various diseases, as they can provide an accurate representation
of the physiological state of the cell from which they originated [117,118]. In a study from
Liu et al. [119], choline phosphate-grafted platinum nanozymes were employed for the
immunoassay of urinary extracellular vesicles released by bladder cancer cells. The non-
specific interaction between the choline phosphate moiety on the platinum nanozymes
and phosphatidylcholine present on the membrane of the extracellular vesicles facilitates
the rapid adsorption of the nanozymes onto the vesicle surface. This interaction enhances
the signal strength, thereby enabling a precise quantification of the urinary extracellular
vesicles secreted by bladder cancer cells.

The integration of diagnostic and therapeutic approaches, which synergistically com-
bines disease diagnosis or monitoring with treatment, presents significant advantages over
a single method of disease management. The advancement of a comprehensive strategy
that merges a precision drug delivery nanoplatform with real-time high-resolution imaging
techniques is crucial for achieving the integration of diagnosis and treatment in cancer and
other diseases [120,121].



Biomolecules 2024, 14, 1628 18 of 24

Figure 10. (a) Schematic representation of the preparation of phospholipid vesicles that encapsulated
hydrophobic CsPbBr3 NCs. (b) Schematic diagram of the reversible transformation process of
phospholipid membrane-coated CsPbBr3 NCs before and after H2O2 treatment. Reproduced with
permission from [114]. Copyright 2021, Wiley-VCH GmbH.

Huang et al. [122] have developed an intelligent all-in-one therapeutic nanoprobe
characterized by glutathione (GSH) sensitivity. This nanoprobe facilitates the precise
delivery of the chemotherapy drug temozolomide with micron resolution through fluo-
rescence imaging, enabling localized chemotherapy and the orthotopic tracking of highly
immunosuppressive regulatory T lymphocytes. Phospholipid vesicles modified by the
polymer PEG effectively prolong the circulation time of nanoprobes in the bloodstream,
enhance their accumulation within the tumor microenvironment, and allow for the GSH-
sensitive release of temozolomide, thereby promoting precise localized chemotherapy
through improved permeability and retention effects. Additionally, the fluorescent dye
cyanine7 encapsulated within the phospholipid vesicles generates a robust photoacoustic
fluorescence signal, which enables the real-time tracking of the release and accumulation
of temozolomide in the tumor microenvironment and facilitates the monitoring of tumor
growth. Furthermore, CD25-targeting antibodies incorporated within the vesicles can
identify the highly expressed CD25 on T lymphocytes, allowing for the targeting and
visualization of changes in T lymphocytes to evaluate immune responses within the tumor
microenvironment, thus serving as a tool for the prognostic monitoring of cancer. Yang
et al. [123] have developed a novel nanoplatform for phototherapy that is specifically
targeted to lysosomes and responsive to pH changes, aimed at facilitating near-infrared II
(NIR-II) fluorescence imaging-guided combination therapy involving photothermal ther-
apy (PTT) and photodynamic therapy (PDT) for nasopharyngeal carcinoma. The authors
synthesized the NIR-II photothermal agent IRFEM, which incorporates four morpholino
groups, demonstrating precise targeting capabilities to lysosomes in nasopharyngeal carci-
noma cells. Polymer PEG-modified phospholipid vesicles enhance the permeability and
retention of the nanoprobes within the cancer cells, leading to their accumulation in the
acidic environment of lysosomes. Upon light irradiation, these vesicles facilitate the release
of IRFEM, resulting in the generation of significant amounts of heat and reactive oxygen
species. This process engenders specific photophysical interactions whereby PTT and PDT
operate synergistically, ultimately inducing cell death through lysosomal mechanisms.

Furthermore, the incorporation of phospholipid vesicles and their surface modifia-
bility allows for the precise delivery of chemotherapeutic agents while simultaneously
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enabling the real-time monitoring of the tumor microenvironment. This innovative ap-
proach represents a promising advancement in the diagnosis and treatment of cancer.

4. Summary and Prospect

Leveraging the surface modifiability and amphiphilic characteristics of phospholipids,
researchers can engineer functional phospholipid vesicles that exhibit responsiveness to
temperature, pH, and light stimuli through the surface modification of small molecules,
specific peptides, and polymers. Currently, phospholipid vesicles represent a promising
modality for the delivery of therapeutic agents, including drugs and genes. In the contexts
of drug administration, gene therapy and biological detection, phospholipid vesicles
modified with polymers or proteins enhance the stability of drug carriers, safeguard
therapeutic agents from degradation by hydrolase enzymes within lysosomes, facilitate
the internalization of drugs and genes, prolong their circulation time, and improve their
targeted distribution within the body. Furthermore, these vesicles enable controlled release
mechanisms and can synergize with photothermal, photodynamic, and other therapeutic
strategies to effectively diagnose and treat cancer.

Despite the notable advancements in biomedical research pertaining to drug delivery,
gene therapy, biological detection, and cell mimics, the practical clinical application of
phospholipid vesicles for the delivery of drugs, genes, and vaccines remains fraught with
challenges. First, phospholipid vesicles are susceptible to hydrolysis by phospholipase in
biological systems, necessitating the development of more stable phospholipids to enhance
the physical and chemical stability of these vesicles as drug carriers. Second, extracellular
barriers, such as the intricate reticuloendothelial system, along with intracellular barriers
such as lysosomes, impede the diffusion and biological distribution of phospholipid vesicles
that are loaded with therapeutic agents, making it difficult to achieve targeted delivery.
By modifying the composition of phospholipids within these vesicles and enhancing the
surface modification with proteins, peptides, and polymers, it is possible to improve the
targeting and controllability of phospholipid vesicles, thereby facilitating the effective
delivery of drugs and gene vectors, thus achieving desired therapeutic outcomes. As
research progresses, it is anticipated that the challenges outlined in this discussion will be
addressed, ultimately realizing the practical clinical application of phospholipid vesicles in
the treatment and diagnosis of various diseases.
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