Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions
Abstract
:1. The Discovery of PLCζ as a Factor Inducing Oocyte Activation
1.1. Essential Events of Mammalian Fertilization
1.2. Ca2+ Oscillations
1.3. The Sperm Factor Theory and the Discovery of PLCζ
2. The Functions of PLCζ
2.1. The Molecular Structure of PLCs
2.2. Features of PLCζ
2.3. Mutations and Manipulations of PLCζ
2.4. Human PLCζ
Mutation (Protein) | Mutation (PLCZ1 Coding Sequence) | Gene Location | Protein Location | Type of Mutation | Phenotype | Authors | Date |
---|---|---|---|---|---|---|---|
p.I120M | c.360 C>G | Exon 4 | EF-hand | Missense | OAF | Torra-Massana et al. | 2019 [115] |
p.C196 * | c.588 C>A | Exon 6 | X | Missense | OAF | Dai et al. | 2020 [118] |
p.R197H | c.590 G>A | Exon 6 | X | Missense | OAF | Torra-Massana et al. | 2019 [115] |
p.L224P | c.671 T>C | Exon 6 | X | Missense | OAF | Torra-Massana et al. | 2019 [115] |
p.H233L | c.698 A>T | Exon 6 | X | Missense | OAF | Kashir et al. | 2011 [110] |
p.L246F | c.736 C>T | Exon 7 | X | Missense | OAF | Dai et al. | 2020 [118] |
p.V326K fs | c.972-973 (AG) deletion | Exon 6 | X-Y linker | Frameshift | OAF | Torra-Massana et al. | 2019 [115] |
p.S350P | c.1048 T>C | Exon 10 | Y | Missense | OAF | Dai et al. | 2020 [118] |
p.H398P | c.1193 C>A | Exon 11 | Y | Missense | OAF, protein instability | Heytens et al. | 2009 [108] |
p.R412fs | c.1234 (A) del | Exon 11 | Y | Frameshift | OAF | Mu et al. | 2020 [119] |
p.I489P | c.1465 A>T | Exon 13 | C2 | Missense | OAF | Escoffier et al. | 2016 [111] |
p.S500L | c.1499 C>T | Exon13 | C2 | Missense | OAF | Torra-Massana et al. | 2019 [115] |
p.R553P | c.1658 G>C | Exon 14 | C2 | Missense | OAF, protein instability | Yuan et al. | 2020 [120] |
p.P420L | c.1259 C>T (compound) | Exon 12 | Y | Missense | OAF | Yuan et al. | 2020 [112] |
p.M578T | c.1733 T>C (compound) | Exon 14 | C2 | Missense | OAF | Yuan et al. | 2020 [112] |
3. Future Directions for a Better Understanding of Oocyte Activation
3.1. Another Candidate Factor(s) Inducing Oocyte Activation
3.2. Another Divalent Ion for Oocyte Activation
3.3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zafar, M.I.; Lu, S.; Li, H. Sperm-Oocyte Interplay: An Overview of Spermatozoon’s Role in Oocyte Activation and Current Perspectives in Diagnosis and Fertility Treatment. Cell Biosci. 2021, 11, 4. [Google Scholar] [CrossRef]
- Satouh, Y.; Ikawa, M. New Insights into the Molecular Events of Mammalian Fertilization. Trends Biochem. Sci. 2018, 43, 818–828. [Google Scholar] [CrossRef]
- Evans, J.P. Preventing Polyspermy in Mammalian Eggs—Contributions of the Membrane Block and Other Mechanisms. Mol. Reprod. Dev. 2020, 87, 341–349. [Google Scholar] [CrossRef]
- Jones, K.T. Mammalian Egg Activation: From Ca2+ Spiking to Cell Cycle Progression. Reproduction 2005, 130, 813–823. [Google Scholar] [CrossRef]
- Madgwick, S.; Jones, K.T. How Eggs Arrest at Metaphase II: MPF Stabilisation plus APC/C Inhibition Equals Cytostatic Factor. Cell Div. 2007, 2, 4. [Google Scholar] [CrossRef]
- Tosti, E.; Ménézo, Y. Gamete Activation: Basic Knowledge and Clinical Applications. Hum. Reprod. Update 2016, 22, 420–439. [Google Scholar] [CrossRef] [PubMed]
- Schultz, R.M.; Kopf, G.S. Molecular Basis of Mammalian Egg Activation. Curr. Top. Dev. Biol. 1995, 30, 21–62. [Google Scholar] [CrossRef] [PubMed]
- Ducibella, T.; Fissore, R. The Roles of Ca2+, Downstream Protein Kinases, and Oscillatory Signaling in Regulating Fertilization and the Activation of Development. Dev. Biol. 2008, 315, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Parrington, J.; Fissore, R.A. PLCζ and Its Role as a Trigger of Development in Vertebrates. Mol. Reprod. Dev. 2011, 78, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.T. Intracellular Calcium in the Fertilization and Development of Mammalian Eggs. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1084–1089. [Google Scholar] [CrossRef]
- Kang, I.; Koo, M.; Yoon, H.; Park, B.S.; Jun, J.H.; Lee, J. Ovastacin: An Oolemma Protein That Cleaves the Zona Pellucida to Prevent Polyspermy. Clin. Exp. Reprod. Med. 2023, 50, 154–159. [Google Scholar] [CrossRef]
- Liu, M. The Biology and Dynamics of Mammalian Cortical Granules. Reprod. Biol. Endocrinol. 2011, 9, 149. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.; Wang, Z.; Yang, Z.; Tan, J.; Qin, P. Ultrastructural Study of Polyspermy during Early Embryo Development in Pigs, Observed by Scanning Electron Microscope and Transmission Electron Microscope. Cell Tissue Res. 2001, 303, 271–275. [Google Scholar] [CrossRef]
- Horii, T.; Yamamoto, M.; Morita, S.; Kimura, M.; Nagao, Y.; Hatada, I. P53 Suppresses Tetraploid Development in Mice. Sci. Rep. 2015, 5, 8907. [Google Scholar] [CrossRef]
- Zhou, C.; Homer, H.A. The Oocyte Spindle Midzone Pauses Cdk1 Inactivation during Fertilization to Enable Male Pronuclear Formation and Embryo Development. Cell. Rep. 2022, 39, 110789. [Google Scholar] [CrossRef] [PubMed]
- Backs, J.; Stein, P.; Backs, T.; Duncan, F.E.; Grueter, C.E.; McAnally, J.; Qi, X.; Schultz, R.M.; Olson, E.N. The γ Isoform of CaM Kinase II Controls Mouse Egg Activation by Regulating Cell Cycle Resumption. Proc. Natl. Acad. Sci. USA 2010, 107, 81–86. [Google Scholar] [CrossRef]
- Stricker, S.A. Comparative Biology of Calcium Signaling during Fertilization and Egg Activation in Animals. Dev. Biol. 1999, 211, 157–176. [Google Scholar] [CrossRef]
- Steinhardt, R.A.; Alderton, J.M. Calmodulin Confers Calcium Sensitivity on Secretory Exocytosis. Nature 1982, 295, 154–155. [Google Scholar] [CrossRef]
- Jaffe, L.F. Sources of Calcium in Egg Activation: A Review and Hypothesis. Dev. Biol. 1983, 99, 265–276. [Google Scholar] [CrossRef]
- Nuccitelli, R. How Do Sperm Activate Eggs? Curr. Top. Dev. Biol. 1991, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Whitaker, M.; Swann, K. Lighting the Fuse at Fertilization. Development 1993, 117, 1–12. [Google Scholar] [CrossRef]
- Miyazaki, S.; Shirakawa, H.; Nakada, K.; Honda, Y. Essential Role of the Inositol 1,4,5-Trisphosphate Receptor/Ca2+ Release Channel in Ca2+ Waves and Ca2+ oscillations at Fertilization of Mammalian Eggs. Dev. Biol. 1993, 158, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Swann, K.; Ozil, J.P. Dynamics of the Calcium Signal That Triggers Mammalian Egg Activation. Int. Rev. Cytol. 1994, 152, 183–222. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.T. Ca2+ oscillations in the Activation of the Egg and Development of the Embryo in Mammals. Int. J. Dev. Biol. 1998, 42, 1–10. [Google Scholar] [PubMed]
- Kline, D.; Kline, J.T. Repetitive Calcium Transients and the Role of Calcium in Exocytosis and Cell Cycle Activation in the Mouse Egg. Dev. Biol. 1992, 149, 80–89. [Google Scholar] [CrossRef]
- Sanders, J.R.; Swann, K. Molecular Triggers of Egg Activation at Fertilization in Mammals. Reproduction 2016, 152, R41–R50. [Google Scholar] [CrossRef]
- Swann, K.; Lai, F.A. Egg Activation at Fertilization by a Soluble Sperm Protein. Physiol. Rev. 2016, 96, 127–149. [Google Scholar] [CrossRef]
- Raffaello, A.; Mammucari, C.; Gherardi, G.; Rizzuto, R. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem. Sci. 2016, 41, 1035–1049. [Google Scholar] [CrossRef]
- Jones, K.T.; Carroll, J.; Merriman, J.A.; Whittingham, D.G.; Kono, T. Repetitive Sperm-Induced Ca2+ Transients in Mouse Oocytes Are Cell Cycle Dependent. Development 1995, 121, 3259–3266. [Google Scholar] [CrossRef]
- Swann, K.; Saunders, C.M.; Rogers, N.T.; Lai, F.A. PLCζ(Zeta): A Sperm Protein That Triggers Ca2+ oscillations and Egg Activation in Mammals. Semin. Cell Dev. Biol. 2006, 17, 264–273. [Google Scholar] [CrossRef]
- Lee, B.; Vermassen, E.; Yoon, S.Y.; Vanderheyden, V.; Ito, J.; Alfandari, D.; De Smedt, H.; Parys, J.B.; Fissore, R.A. Phosphorylation of IP3R1 and the Regulation of [Ca2+]i Responses at Fertilization: A Role for the MAP Kinase Pathway. Development 2006, 133, 4355–4365. [Google Scholar] [CrossRef]
- Hachem, A.; Godwin, J.; Ruas, M.; Lee, H.C.; Buitrago, M.F.; Ardestani, G.; Bassett, A.; Fox, S.; Navarrete, F.; De Sutter, P.; et al. Plcζ Is the Physiological Trigger of the Ca2+ oscillations That Induce Embryogenesis in Mammals but Conception Can Occur in Its Absence. Development 2017, 144, 2914–2924. [Google Scholar] [CrossRef]
- Nozawa, K.; Satouh, Y.; Fujimoto, T.; Oji, A.; Ikawa, M. Sperm-Borne Phospholipase C Zeta-1 Ensures Monospermic Fertilization in Mice. Sci. Rep. 2018, 8, 1315. [Google Scholar] [CrossRef]
- Ozil, J.P.; Banrezes, B.; Tóth, S.; Pan, H.; Schultz, R.M. Ca2+ Oscillatory Pattern in Fertilized Mouse Eggs Affects Gene Expression and Development to Term. Dev. Biol. 2006, 300, 534–544. [Google Scholar] [CrossRef]
- Nikiforaki, D.; Vanden Meerschaut, F.; De Roo, C.; Lu, Y.; Ferrer-Buitrago, M.; De Sutter, P.; Heindryckx, B. Effect of Two Assisted Oocyte Activation Protocols Used to Overcome Fertilization Failure on the Activation Potential and Calcium Releasing Pattern. Fertil. Steril. 2016, 105, 798–806.e2. [Google Scholar] [CrossRef]
- Rickords, L.F.; White, K.L. Electroporation of Inositol 1,4,5-triphosphate Induces Repetitive Calcium oscillations in Murine Oocytes. J. Exp. Zool. 1993, 265, 178–184. [Google Scholar] [CrossRef]
- Ducibella, T.; Huneau, D.; Angelichio, E.; Xu, Z.; Schultz, R.M.; Kopf, G.S.; Fissore, R.; Madoux, S.; Ozil, J.-P. Egg-to-Embryo Transition Is Driven by Differential Responses to Ca2+ oscillations Number. Dev. Biol. 2002, 250, 280–291. [Google Scholar] [CrossRef]
- Ozil, J.P.; Swann, K. Stimulation of Repetitive Calcium Transients in Mouse Eggs. J. Physiol. 1995, 483, 331–346. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, W.M.; Kashir, J.; Jones, C.; Coward, K. Oocyte Activation and Phospholipase C Zeta (PLCζ): Diagnostic and Therapeutic Implications for Assisted Reproductive Technology. Cell Commun. Signal. 2012, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Swann, K.; Parrington, J. Mechanism of Ca2+ Release at Fertilization in Mammals. J. Exp. Zool. 1999, 285, 267–275. [Google Scholar] [CrossRef]
- Dale, B.; Santella, L. Sperm-Oocyte Interaction in the Sea-Urchin. J. Cell Sci. 1985, 74, 153–167. [Google Scholar] [CrossRef]
- Swann, K. A Cytosolic Sperm Factor Stimulates Repetitive Calcium Increases and Mimics Fertilization in Hamster Eggs. Development 1990, 110, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Fissore, R.A.; Gordo, A.C.; Wu, H. Activation of Development in Mammals: Is There a Role for a Sperm Cytosolic Factor? Theriogenology 1998, 49, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Homa, S.T.; Swann, K. Fertilization and Early Embryology: A Cytosolic Sperm Factor Triggers Calcium oscillations and Membrane Hyperpolarizations in Human Oocytes. Hum. Reprod. 1994, 9, 2356–2361. [Google Scholar] [CrossRef] [PubMed]
- Dale, B.; DeFelice, L.J.; Ehrenstein, G. Injection of a Soluble Sperm Fraction into Sea-Urchin Eggs Triggers the Cortical Reaction. Experientia 1985, 41, 1068–1070. [Google Scholar] [CrossRef]
- Stice, S.L.; Robl, J.M. Activation of Mammalian Oocytes by a Factor Obtained from Rabbit Sperm. Mol. Reprod. Dev. 1990, 25, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Parrington, J.; Anthony Lai, F.; Swann, K. The Soluble Mammalian Sperm Factor Protein That Triggers Ca2+ oscillations in Eggs: Evidence for Expression of MRNA(s) Coding for Sperm Factor Protein(s) in Spermatogenic Cells. Biol. Cell 2000, 92, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Sette, C.; Bevilacqua, A.; Bianchini, A.; Mangia, F.; Geremia, R.; Rossi, P. Parthenogenetic Activation of Mouse Eggs by Microinjection of a Truncated C-Kit Tyrosine Kinase Present in Spermatozoa. Development 1997, 124, 2267–2274. [Google Scholar] [CrossRef] [PubMed]
- Rice, A.; Parrington, J.; Jones, K.T.; Swann, K. Mammalian Sperm Contain a Ca2+-Sensitive Phospholipase C Activity That Can Generate InsP3 from PIP2 Associated with Intracellular Organelles. Dev. Biol. 2000, 228, 125–135. [Google Scholar] [CrossRef]
- Wu, H.; Smyth, J.; Luzzi, V.; Fukami, K.; Takenawa, T.; Black, S.L.; Allbritton, N.L.; Fissore, R.A. Sperm Factor Induces Intracellular Free Calcium oscillations by Stimulating the Phosphoinositide Pathway. Biol. Reprod. 2001, 64, 1338–1349. [Google Scholar] [CrossRef]
- Saunders, C.M.; Larman, M.G.; Parrington, J.; Cox, L.J.; Royse, J.; Blayney, L.M.; Swann, K.; Lai, F.A. PLCζ: A Sperm-Specific Trigger of Ca2+ oscillations in Eggs and Embryo Development. Development 2002, 129, 3533–3544. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Shikano, T.; Kuroda, K.; Miyazaki, S. Relationship between Nuclear Sequestration of PLCζ and Termination of PLCζ-Induced Ca2+ oscillations in Mouse Eggs. Cell Calcium 2008, 44, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Shikano, T.; Oda, S.; Horiguchi, T.; Tanimoto, S.; Awaji, T.; Mitani, H.; Miyazaki, S. Difference in Ca2+ oscillations-Inducing Activity and Nuclear Translocation Ability of PLCZ1, an Egg-Activating Sperm Factor Candidate, between Mouse, Rat, Human, and Medaka Fish. Biol. Reprod. 2008, 78, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Cox, L. Sperm Phospholipase Czeta from Humans and Cynomolgus Monkeys Triggers Ca2+ oscillations, Activation and Development of Mouse Oocytes. Reproduction 2002, 124, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Cooney, M.A.; Malcuit, C.; Cheon, B.; Holland, M.K.; Fissore, R.A.; D’Cruz, N.T. Species-Specific Differences in the Activity and Nuclear Localization of Murine and Bovine Phospholipase C Zeta 1. Biol. Reprod. 2010, 83, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Yoneda, A.; Kashima, M.; Yoshida, S.; Terada, K.; Nakagawa, S.; Sakamoto, A.; Hayakawa, K.; Suzuki, K.; Ueda, J.; Watanabe, T. Molecular Cloning, Testicular Postnatal Expression, and Oocyte-Activating Potential of Porcine Phospholipase Cζ. Reproduction 2006, 132, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Suzuki, S.I.; Ito, J.; Fuchimoto, D.I.; Sembon, S.; Noguchi, J.; Onishi, A.; Kashiwazaki, N.; Kikuchi, K. Efficient Pig ICSI Using Percoll-Selected Spermatozoa; Evidence for the Essential Role of Phospholipase C-ζ in ICSI Success. J. Reprod. Dev. 2016, 62, 639–643. [Google Scholar] [CrossRef]
- Bedford-Guaus, S.J.; McPartlin, L.A.; Xie, J.; Westmiller, S.L.; Buffone, M.G.; Roberson, M.S. Molecular Cloning and Characterization of Phospholipase C Zeta in Equine Sperm and Testis Reveals Species-Specific Differences in Expression of Catalytically Active Protein. Biol. Reprod. 2011, 85, 78–88. [Google Scholar] [CrossRef]
- Sato, K.; Wakai, T.; Seita, Y.; Takizawa, A.; Fissore, R.A.; Ito, J.; Kashiwazaki, N. Molecular Characteristics of Horse Phospholipase C Zeta (PLCζ). Anim. Sci. J. 2013, 84, 359–368. [Google Scholar] [CrossRef]
- Mizushima, S.; Takagi, S.; Ono, T.; Atsumi, Y.; Tsukada, A.; Saito, N.; Shimada, K. Phospholipase Cζ MRNA Expression and Its Potency during Spermatogenesis for Activation of Quail Oocyte as a Sperm Factor. Mol. Reprod. Dev. 2009, 76, 1200–1207. [Google Scholar] [CrossRef]
- Rebecchi, M.J.; Pentyala, S.N. Structure, Function, and Control of Phosphoinositide-Specific Phospholipase C. Physiol. Rev. 2000, 80, 1291–1335. [Google Scholar] [CrossRef]
- Ito, J.; Yoon, S.Y.; Lee, B.; Vanderheyden, V.; Vermassen, E.; Wojcikiewicz, R.; Alfandari, D.; De Smedt, H.; Parys, J.B.; Fissore, R.A. Inositol 1,4,5-Trisphosphate Receptor 1, a Widespread Ca2+ Channel, Is a Novel Substrate of Polo-like Kinase 1 in Eggs. Dev. Biol. 2008, 320, 402–413. [Google Scholar] [CrossRef]
- Miyazaki, S.; Yuzaki, M.; Nakada, K.; Shirakawa, H.; Nakanishi, S.; Nakade, S.; Mikoshiba, K. Block of Ca2+ Wave and Ca2+ oscillations by Antibody to the Inositol 1,4,5-Trisphosphate Receptor in Fertilized Hamster Eggs. Science 1992, 257, 251–255. [Google Scholar] [CrossRef]
- Knott, J.G.; Kurokawa, M.; Fissore, R.A.; Schultz, R.M.; Williams, C.J. Transgenic RNA Interference Reveals Role for Mouse Sperm Phospholipase Cζ in Triggering Ca2+ oscillations during Fertilization. Biol. Reprod. 2005, 72, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.Y.; Fissore, R.A. Release of Phospholipase C ζ and [Ca2+]i oscillations-Inducing Activity during Mammalian Fertilization. Reproduction 2007, 134, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Nakai, M.; Ito, J.; Sato, K.I.; Noguchi, J.; Kaneko, H.; Kashiwazaki, N.; Kikuchi, K. Pre-Treatment of Sperm Reduces Success of ICSI in the Pig. Reproduction 2011, 142, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Aldana, A.; Carneiro, J.; Martínez-Mekler, G.; Darszon, A. Discrete Dynamic Model of the Mammalian Sperm Acrosome Reaction: The Influence of Acrosomal PH and Physiological Heterogeneity. Front. Physiol. 2021, 12, 682790. [Google Scholar] [CrossRef] [PubMed]
- Grasa, P.; Coward, K.; Young, C.; Parrington, J. The Pattern of Localization of the Putative Oocyte Activation Factor, Phospholipase Cζ, in Uncapacitated, Capacitated, and Ionophore-Treated Human Spermatozoa. Hum. Reprod. 2008, 23, 2513–2522. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.L. Mammalian Phosphoinositide-Specific Phospholipase C. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 1999, 1441, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Fukami, K.; Inanobe, S.; Kanemaru, K.; Nakamura, Y. Phospholipase C Is a Key Enzyme Regulating Intracellular Calcium and Modulating the Phosphoinositide Balance. Prog. Lipid Res. 2010, 49, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Ni, T.; Kalli, A.C.; Naughton, F.B.; Yates, L.A.; Naneh, O.; Kozorog, M.; Anderluh, G.; Sansom, M.S.P.; Gilbert, R.J.C. Structure and Lipid-Binding Properties of the Kindlin-3 Pleckstrin Homology Domain. Biochem. J. 2017, 474, 539–556. [Google Scholar] [CrossRef]
- Essen, L.O.; Perisic, O.; Cheung, R.; Katan, M.; Williams, R.L. Crystal Structure of a Mammalian Phosphoinositide-Specific Phospholipase Cδ. Nature 1996, 380, 595–602. [Google Scholar] [CrossRef]
- Fujii, M.; Ohtsubo, M.; Ogawa, T.; Kamata, H.; Hirata, H.; Yagisawa, H. Real-Time Visualization of PH Domain-Dependent Translocation of Phospholipase C-δ1 in Renal Epithelial Cells (MDCK): Response to Hypo-Osmotic Stress. Biochem. Biophys. Res. Commun. 1999, 254, 284–291. [Google Scholar] [CrossRef]
- George, S.E.; Su, Z.; Fan, D.; Wang, S.; David Johnson, J. The Fourth EF-Hand of Calmodulin and Its Helix-Loop-Helix Components: Impact on Calcium Binding and Enzyme Activation. Biochemistry 1996, 35, 8307–8313. [Google Scholar] [CrossRef]
- Rhee, S.G.; Choi, K.D. Regulation of Inositol Phospholipid-Specific Phospholipase C Isozymes. J. Biol. Chem. 1992, 267, 12393–12396. [Google Scholar] [CrossRef] [PubMed]
- Otterhag, L.; Sommarin, M.; Pical, C. N-Terminal EF-Hand-like Domain Is Required for Phosphoinositide-Specific Phospholipase C Activity in Arabidopsis Thaliana. FEBS Lett. 2001, 497, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Bunney, T.D.; Katan, M. PLC Regulation: Emerging Pictures for Molecular Mechanisms. Trends Biochem. Sci. 2011, 36, 88–96. [Google Scholar] [CrossRef]
- Ellis, M.V.; Katan, S.U.; Katan, M. Mutations within a Highly Conserved Sequence Present in the X Region of Phosphoinositide-Specific Phospholipase C-δ1. Biochem. J. 1995, 307, 69–75. [Google Scholar] [CrossRef]
- Nagano, N.; Orengo, C.A.; Thornton, J.M. One Fold with Many Functions: The Evolutionary Relationships between TIM Barrel Families Based on Their Sequences, Structures and Functions. J. Mol. Biol. 2002, 321, 741–765. [Google Scholar] [CrossRef]
- Hicks, S.N.; Jezyk, M.R.; Gershburg, S.; Seifert, J.P.; Harden, T.K.; Sondek, J. General and Versatile Autoinhibition of PLC Isozymes. Mol. Cell 2008, 31, 383–394. [Google Scholar] [CrossRef]
- Van Huizen, R.; Miller, K.; Chen, D.M.; Li, Y.; Lai, Z.C.; Raab, R.W.; Stark, W.S.; Shortridge, R.D.; Li, M. Two Distantly Positioned PDZ Domains Mediate Multivalent INAD-Phospholipase C Interactions Essential for G Protein-Coupled Signaling. EMBO J. 1998, 17, 2285–2297. [Google Scholar] [CrossRef]
- Essen, L.O.; Perisic, O.; Lynch, D.E.; Katan, M.; Williams, R.L. A Ternary Metal Binding Site in the C2 Domain of Phosphoinositide- Specific Phospholipase C-δ1. Biochemistry 1997, 36, 2753–2762. [Google Scholar] [CrossRef]
- Kawasaki, H.; Nakayama, S.; Kretsinger, R.H. Classification and Evolution of EF-Hand Proteins. BioMetals 1998, 11, 277–295. [Google Scholar] [CrossRef]
- Kim, Y.; Welch, J.T.; Lindstrom, K.M.; Franklin, S.J. Chimeric HTH Motifs Based on EF-Hands. J. Biol. Inorg. Chem. 2001, 6, 173–181. [Google Scholar] [CrossRef]
- Bill, C.A.; Vines, C.M. Phospholipase C. Adv. Exp. Med. Biol. 2020, 1131, 215–242. [Google Scholar] [CrossRef]
- Yu, A.; Nomikos, M.; Theodoridou, M.; Nounesis, G.; Lai, F.A.; Swann, K. PLCζ Causes Ca2+ oscillations in Mouse Eggs by Targeting Intracellular and Not Plasma Membrane PI(4,5)P2. Mol. Biol. Cell 2012, 23, 371–380. [Google Scholar] [CrossRef]
- Nomikos, M.; Sanders, J.R.; Parthimos, D.; Buntwal, L.; Calver, B.L.; Stamatiadis, P.; Smith, A.; Clue, M.; Sideratou, Z.; Swann, K.; et al. Essential Role of the EF-Hand Domain in Targeting Sperm Phospholipase Cζ to Membrane Phosphatidylinositol 4,5-Bisphosphate (PIP2). J. Biol. Chem. 2005, 290, 29519–29530. [Google Scholar] [CrossRef]
- Kouchi, Z.; Fukami, K.; Shikano, T.; Oda, S.; Nakamura, Y.; Takenawa, T.; Miyazaki, S. Recombinant Phospholipase Cζ Has High Ca2+ Sensitivity and Induces Ca2+ oscillations in Mouse Eggs. J. Biol. Chem. 2004, 279, 10408–10412. [Google Scholar] [CrossRef] [PubMed]
- Nomikos, M.; Blayney, L.M.; Larman, M.G.; Campbell, K.; Rossbach, A.; Saunders, C.M.; Swann, K.; Lai, F.A. Role of Phospholipase C-ζ Domains in Ca2+-Dependent Phosphatidylinositol 4,5-Bisphosphate Hydrolysis and Cytoplasmic Ca2+ oscillations. J. Biol. Chem. 2005, 280, 31011–31018. [Google Scholar] [CrossRef]
- Kouchi, Z.; Shikano, T.; Nakamura, Y.; Shirakawa, H.; Fukami, K.; Miyazaki, S. The Role of EF-Hand Domains and C2 Domain in Regulation of Enzymatic Activity of Phospholipase Cζ. J. Biol. Chem. 2005, 280, 21015–21021. [Google Scholar] [CrossRef]
- Nakanishi, T.; Ishibashi, N.; Kubota, H.; Inoue, K.; Ogonuki, N.; Ogura, A.; Kashiwabara, S.I.; Baba, T. Birth of Normal Offspring from Mouse Eggs Activated by a Phospholipase Cζ Protein Lacking Three EF-Hand Domains. J. Reprod. Dev. 2008, 54, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.V.; Carne, A.; Katan, M. Structural Requirements of Phosphatidylinositol-specific Phospholipase C δ1 for Enzyme Activity. Eur. J. Biochem. 1993, 213, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Katan, M. Families of Phosphoinositide-Specific Phospholipase C: Structure and Function. Biochim. Biophys. Acta—Mol. Cell Biol. Lipids 1998, 1436, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.V.; James, S.R.; Perisic, O.; Downes, C.P.; Williams, R.L.; Katan, M. Catalytic Domain of Phosphoinositide-Specific Phospholipase C (PLC). J. Biol. Chem. 1998, 273, 11650–11659. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, K.; Ito, M.; Shikano, T.; Awaji, T.; Yoda, A.; Takeuchi, H.; Kinoshita, K.; Miyazaki, S. The Role of X/Y Linker Region and N-Terminal EF-Hand Domain in Nuclear Translocation and Ca2+ oscillations-Inducing Activities of Phospholipase Cζ, a Mammalian Egg-Activating Factor. J. Biol. Chem. 2006, 281, 27794–27805. [Google Scholar] [CrossRef]
- Dingwall, C.; Laskey, R.A. Nuclear Targeting Sequences—A Consensus? Trends Biochem. Sci. 1991, 16, 478–481. [Google Scholar] [CrossRef]
- Okada, M.; Fujii, M.; Yamaga, M.; Sugimoto, H.; Sadano, H.; Osumi, T.; Kamata, H.; Hirata, H.; Yagisawa, H. Carboxyl-Terminal Basic Amino Acids in the X Domain Are Essential for the Nuclear Import of Phospholipase C δ1. Genes Cells 2002, 7, 985–996. [Google Scholar] [CrossRef]
- Yoda, A.; Oda, S.; Shikano, T.; Kouchi, Z.; Awaji, T.; Shirakawa, H.; Kinoshita, K.; Miyazaki, S. Ca2+ oscillations-Inducing Phospholipase C Zeta Expressed in Mouse Eggs Is Accumulated to the Pronucleus during Egg Activation. Dev. Biol. 2004, 268, 245–257. [Google Scholar] [CrossRef]
- Nomikos, M.; Elgmati, K.; Theodoridou, M.; Calver, B.L.; Nounesis, G.; Swann, K.; Lai, F.A. Phospholipase Cζ Binding to PtdIns(4,5)P2 Requires the XY-Linker Region. J. Cell Sci. 2011, 124, 2582–2590. [Google Scholar] [CrossRef]
- Kurokawa, M.; Yoon, S.Y.; Alfandari, D.; Fukami, K.; Sato, K.-i.; Fissore, R.A. Proteolytic Processing of Phospholipase Cζ and [Ca2+]i oscillations during Mammalian Fertilization. Dev. Biol. 2007, 312, 407–418. [Google Scholar] [CrossRef]
- Rizo, J.; Sudhof, T.C. C2-Domains, Structure and Function of a Universal Ca2+-Binding Domain. J. Biol. Chem. 1998, 273, 15879–15882. [Google Scholar] [CrossRef]
- Theodoridou, M.; Nomikos, M.; Parthimos, D.; Gonzalez-Garcia, J.R.; Elgmati, K.; Calver, B.L.; Sideratou, Z.; Nounesis, G.; Swann, K.; Lai, F.A. Chimeras of Sperm PLCζ Reveal Disparate Protein Domain Functions in the Generation of Intracellular Ca2+ oscillations in Mammalian Eggs at Fertilization. Mol. Hum. Reprod. 2013, 19, 852–864. [Google Scholar] [CrossRef]
- Yoshida, N.; Amanai, M.; Fukui, T.; Kajikawa, E.; Brahmajosyula, M.; Iwahori, A.; Nakano, Y.; Shoji, S.; Diebold, J.; Hessel, H.; et al. Broad, Ectopic Expression of the Sperm Protein PLCZ1 Induces Parthenogenesis and Ovarian Tumours in Mice. Development 2007, 134, 3941–3952. [Google Scholar] [CrossRef]
- Bianchi, E.; Doe, B.; Goulding, D.; Wright, G.J. Juno Is the Egg Izumo Receptor and Is Essential for Mammalian Fertilization. Nature 2014, 508, 483–487. [Google Scholar] [CrossRef]
- Meng, X.; Melo, P.; Jones, C.; Ross, C.; Mounce, G.; Turner, K.; Child, T.; Coward, K. Use of Phospholipase C Zeta Analysis to Identify Candidates for Artificial Oocyte Activation: A Case Series of Clinical Pregnancies and a Proposed Algorithm for Patient Management. Fertil. Steril. 2020, 114, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Allahveisi, A.; Yousefian, E. Assessment of Expression Levels and Localization Patterns of Phospholipase C Zeta in Different Grades of HOST in Human Sperm. Int. J. Fertil. Steril. 2023, 18, 26. [Google Scholar] [CrossRef]
- Jones, C.; Meng, X.; Coward, K. SPERM FACTORS AND EGG ACTIVATION Phospholipase C Zeta (PLCZ1) and the Clinical Diagnosis of Oocyte Activation Deficiency. Reproduction 2022, 164, F53–F66. [Google Scholar] [CrossRef]
- Heytens, E.; Parrington, J.; Coward, K.; Young, C.; Lambrecht, S.; Yoon, S.Y.; Fissore, R.A.; Hamer, R.; Deane, C.M.; Ruas, M.; et al. Reduced Amounts and Abnormal Forms of Phospholipase C Zeta (PLCζ) in Spermatozoa from Infertile Men. Hum. Reprod. 2009, 24, 2417–2428. [Google Scholar] [CrossRef]
- Kashir, J.; Konstantinidis, M.; Jones, C.; Lemmon, B.; Chang Lee, H.; Hamer, R.; Heindryckx, B.; Deane, C.M.; De Sutter, P.; Fissore, R.A.; et al. Maternally Inherited Autosomal Point Mutation in Human Phospholipase C Zeta (PLCζ) Leads to Male Infertility. Hum. Reprod. 2012, 27, 222–231. [Google Scholar] [CrossRef]
- Kashir, J.; Jones, C.; Lee, H.C.; Rietdorf, K.; Nikiforaki, D.; Durrans, C.; Ruas, M.; Tee, S.T.; Heindryckx, B.; Galione, A.; et al. Loss of Activity Mutations in Phospholipase C Zeta (PLCζ) Abolishes Calcium Oscillatory Ability of Human Recombinant Protein in Mouse Oocytes. Hum. Reprod. 2011, 26, 3372–3387. [Google Scholar] [CrossRef]
- Escoffier, J.; Lee, H.C.; Yassine, S.; Zouari, R.; Martinez, G.; Karaouzène, T.; Coutton, C.; Kherraf, Z.E.; Halouani, L.; Triki, C.; et al. Homozygous Mutation of PLCZ1 Leads to Defective Human Oocyte Activation and Infertility That Is Not Rescued by the WW-Binding Protein PAWP. Hum. Mol. Genet. 2016, 25, 878–891. [Google Scholar] [CrossRef]
- Yuan, P.; Zheng, L.; Liang, H.; Lin, Q.; Ou, S.; Zhu, Y.; Lai, L.; Zhang, Q.; He, Z.; Wang, W. Novel Mutations in the PLCZ1 Gene Associated with Human Low or Failed Fertilization. Mol. Genet. Genomic Med. 2020, 8, e1470. [Google Scholar] [CrossRef]
- Ruan, J.L.; Liang, S.S.; Pan, J.P.; Chen, Z.Q.; Teng, X.M. Artificial Oocyte Activation with Ca2+ Ionophore Improves Reproductive Outcomes in Patients with Fertilization Failure and Poor Embryo Development in Previous ICSI Cycles. Front. Endocrinol. 2023, 14, 1244507. [Google Scholar] [CrossRef]
- Fawzy, M.; Emad, M.; Mahran, A.; Sabry, M.; Fetih, A.N.; Abdelghafar, H.; Rasheed, S. Artificial Oocyte Activation with SrCl2 or Calcimycin after ICSI Improves Clinical and Embryological Outcomes Compared with ICSI Alone: Results of a Randomized Clinical Trial. Hum. Reprod. 2018, 33, 1636–1644. [Google Scholar] [CrossRef]
- Torra-Massana, M.; Cornet-Bartolomé, D.; Barragán, M.; Durban, M.; Ferrer-Vaquer, A.; Zambelli, F.; Rodriguez, A.; Oliva, R.; Vassena, R. Novel Phospholipase C Zeta 1 Mutations Associated with Fertilization Failures after ICSI. Hum. Reprod. 2019, 34, 1494–1504. [Google Scholar] [CrossRef]
- Campos, G.; Sciorio, R.; Esteves, S.C. Total Fertilization Failure after ICSI: Insights into Pathophysiology, Diagnosis, and Management through Artificial Oocyte Activation. Hum. Reprod. Update 2023, 29, 369–394. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, J.; Qu, R.; Zhang, W.; Tan, Y.; Sha, Y.; Li, L.; Yin, T. Genetic mechanisms of fertilization failure and early embryonic arrest: A comprehensive review. Hum. Reprod. Update 2024, 30, 48–80. [Google Scholar] [CrossRef]
- Dai, J.; Dai, C.; Guo, J.; Zheng, W.; Zhang, T.; Li, Y.; Lu, C.; Gong, F.; Lu, G.; Lin, G. Novel Homozygous Variations in PLCZ1. Lead to Poor or Failed Fertilization Characterized by Abnormal Localization Patterns of PLCζ in Sperm. Clin. Genet. 2020, 97, 347–351. [Google Scholar] [CrossRef]
- Mu, J.; Zhang, Z.; Wu, L.; Fu, J.; Chen, B.; Yan, Z.; Li, B.; Zhou, Z.; Wang, W.; Zhao, L.; et al. The Identification of Novel Mutations in PLCZ1 Responsible for Human Fertilization Failure and a Therapeutic Intervention by Artificial Oocyte Activation. Mol. Hum. Reprod. 2020, 26, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Yang, C.; Ren, Y.; Yan, J.; Nie, Y.; Yan, L.; Qiao, J. A Novel Homozygous Mutation of Phospholipase C Zeta Leading. to Defective Human Oocyte Activation and Fertilization Failure. Hum. Reprod. 2021, 35, 977–985. [Google Scholar] [CrossRef]
- Wu, A.T.H.; Sutovsky, P.; Manandhar, G.; Xu, W.; Katayama, M.; Day, B.N.; Park, K.W.; Yi, Y.J.; Yan, W.X.; Prather, R.S.; et al. PAWP, a Sperm-Specific WW Domain-Binding Protein, Promotes Meiotic Resumption and Pronuclear Development during Fertilization. J. Biol. Chem. 2007, 282, 12164–12175. [Google Scholar] [CrossRef]
- Aarabi, M.; Qin, Z.; Xu, W.; Mewburn, J.; Oko, R. Sperm-Borne Protein, PAWP, Initiates Zygotic Development in Xenopus laevis by Eliciting Intracellular Calcium Release. Mol. Reprod. Dev. 2010, 77, 249–256. [Google Scholar] [CrossRef]
- Aarabi, M.; Balakier, H.; Bashar, S.; Moskovtsev, S.I.; Sutovsky, P.; Librach, C.L.; Oko, R. Sperm-Derived WW Domain-Binding Protein, PAWP, Elicits Calcium oscillations and Oocyte Activation in Humans and Mice. FASEB J. 2014, 28, 4434–4440. [Google Scholar] [CrossRef]
- Harada, Y.; Matsumoto, T.; Hirahara, S.; Nakashima, A.; Ueno, S.; Oda, S.; Miyazaki, S.; Iwao, Y. Characterization of a Sperm Factor for Egg Activation at Fertilization of the Newt Cynops Pyrrhogaster. Dev. Biol. 2007, 306, 797–808. [Google Scholar] [CrossRef]
- Kang, W.; Harada, Y.; Yamatoya, K.; Kawano, N.; Kanai, S.; Miyamoto, Y.; Nakamura, A.; Miyado, M.; Hayashi, Y.; Kuroki, Y.; et al. Extra-Mitochondrial Citrate Synthase Initiates Calcium oscillations and Suppresses Age-Dependent Sperm Dysfunction. Lab. Investig. 2020, 100, 583–595. [Google Scholar] [CrossRef]
- Satouh, Y.; Nozawa, K.; Ikawa, M. Sperm Postacrosomal WW Domain-Binding Protein Is Not Required for Mouse Egg Activation. Biol. Reprod. 2015, 93, 94. [Google Scholar] [CrossRef]
- Sanders, J.R.; Ashley, B.; Moon, A.; Woolley, T.E.; Swann, K. PLCζ Induced Ca2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca2+ Induced InsP3 Formation from Cytoplasmic PIP2. Front. Cell Dev. Biol. 2018, 6, 36. [Google Scholar] [CrossRef]
- Phillips, S.V.; Yu, Y.; Rossbach, A.; Nomikos, M.; Vassilakopoulou, V.; Livaniou, E.; Cumbes, B.; Lai, F.A.; George, C.H.; Swann, K. Divergent Effect of Mammalian PLCζ in Generating Ca2+ Oscillations in Somatic Cells Compared with Eggs. Biochem. J. 2011, 438, 545–553. [Google Scholar] [CrossRef]
- Tadano, M.; Edamatsu, H.; Minamisawa, S.; Yokoyama, U.; Ishikawa, Y.; Suzuki, N.; Saito, H.; Wu, D.; Masago-Toda, M.; Yamawaki-Kataoka, Y.; et al. Congenital Semilunar Valvulogenesis Defect in Mice Deficient in Phospholipase Cε. Mol. Cell Biol. 2005, 25, 2191–2199. [Google Scholar] [CrossRef]
- Bai, Y.; Edamatsu, H.; Maeda, S.; Saito, H.; Suzuki, N.; Satoh, T.; Kataoka, T. Crucial Role of Phospholipase Cε in Chemical Carcinogen-Induced Skin Tumor Development. Cancer Res. 2004, 64, 8808–8810. [Google Scholar] [CrossRef]
- Fukami, K.; Nakao, K.; Inoue, T.; Kataoka, Y.; Kurokawa, M.; Fissore, R.A.; Nakamura, K.; Katsuki, M.; Mikoshiba, K.; Yoshida, N.; et al. Requirement of Phospholipase Cδ4 for the Zona Pellucida-Induced Acrosome Reaction. Science 2001, 292, 920–923. [Google Scholar] [CrossRef]
- Bernhardt, M.L.; Kong, B.Y.; Kim, A.M.; O’Halloran, T.V.; Woodruff, T.K. A Zinc-Dependent Mechanism Regulates Meiotic Progression in Mammalian Oocytes. Biol. Reprod. 2012, 86, 114. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Yoshida, N.; Suzuki, E.; Okuda, E.; Perry, A.C.F. Full-Term Mouse Development by Abolishing Zn2+-Dependent Metaphase II Arrest without Ca2+ Release. Development 2010, 137, 2659–2669. [Google Scholar] [CrossRef]
- Lee, K.; Davis, A.; Zhang, L.; Ryu, J.; Spate, L.D.; Park, K.W.; Samuel, M.S.; Walters, E.M.; Murphy, C.N.; Machaty, Z.; et al. Pig Oocyte Activation Using a Zn2+ Chelator, TPEN. Theriogenology 2015, 84, 1024–1032. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.M.; Bernhardt, M.L.; Kong, B.Y.; Ahn, R.W.; Vogt, S.; Woodruff, T.K.; O’Halloran, T.V. Zinc Sparks Are Triggered by Fertilization and Facilitate Cell Cycle Resumption in Mammalian Eggs. ACS Chem. Biol. 2011, 6, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Que, E.L.; Bleher, R.; Duncan, F.E.; Kong, B.Y.; Gleber, S.C.; Vogt, S.; Chen, S.; Garwin, S.A.; Bayer, A.R.; Dravid, V.P.; et al. Quantitative Mapping of Zinc Fluxes in the Mammalian Egg Reveals the Origin of Fertilization-Induced Zinc Sparks. Nat. Chem. 2015, 7, 130–139. [Google Scholar] [CrossRef]
- Duncan, F.E.; Que, E.L.; Zhang, N.; Feinberg, E.C.; O’Halloran, T.V.; Woodruff, T.K. The Zinc Spark Is an Inorganic Signature of Human Egg Activation. Sci. Rep. 2016, 6, 24737. [Google Scholar] [CrossRef]
- Lee, H.C.; Edmonds, M.E.; Duncan, F.E.; O’Halloran, T.V.; Woodruff, T.K. Zinc Exocytosis Is Sensitive to Myosin Light Chain Kinase Inhibition in Mouse and Human Eggs. Mol. Hum. Reprod. 2020, 26, 228–239. [Google Scholar] [CrossRef]
- Que, E.L.; Duncan, F.E.; Lee, H.C.; Hornick, J.E.; Vogt, S.; Fissore, R.A.; O’Halloran, T.V.; Woodruff, T.K. Bovine Eggs Release Zinc in Response to Parthenogenetic and Sperm-Induced Egg Activation. Theriogenology 2019, 127, 41–48. [Google Scholar] [CrossRef]
- Seeler, J.F.; Sharma, A.; Zaluzec, N.J.; Bleher, R.; Lai, B.; Schultz, E.G.; Hoffman, B.M.; LaBonne, C.; Woodruff, T.K.; O’Halloran, T.V. Metal Ion Fluxes Controlling Amphibian Fertilization. Nat. Chem. 2021, 13, 683–691. [Google Scholar] [CrossRef]
- Hansen, D.V.; Tung, J.J.; Jackson, P.K. CaMKII and Polo-like Kinase 1 Sequentially Phosphorylate the Cytostatic Factor Emi2/XErp1 to Trigger Its Destruction and Meiotic Exit. Proc. Natl. Acad. Sci. USA 2006, 103, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Tokuhiro, K.; Dean, J. Glycan-Independent Gamete Recognition Triggers Egg Zinc Sparks and ZP2 Cleavage to Prevent Polyspermy. Dev. Cell 2018, 46, 627–640.e5. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.M.; Vogt, S.; O’Halloran, T.V.; Woodruff, T.K. Zinc Availability Regulates Exit from Meiosis in Maturing Mammalian Oocytes. Nat. Chem. Biol. 2010, 6, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Lisle, R.S.; Anthony, K.; Randall, M.A.; Diaz, F.J. Oocyte-Cumulus Cell Interactions Regulate Free Intracellular Zinc in Mouse Oocytes. Reproduction 2013, 145, 381–390. [Google Scholar] [CrossRef]
- Kong, B.Y.; Duncan, F.E.; Que, E.L.; Kim, A.M.; O’Halloran, T.V.; Woodruff, T.K. Maternally-Derived Zinc Transporters ZIP6 and ZIP10 Drive the Mammalian Oocyte-to-Egg Transition. Mol. Hum. Reprod. 2014, 20, 1077–1089. [Google Scholar] [CrossRef]
- Zhang, N.; Duncan, F.E.; Que, E.L.; O’Halloran, T.V.; Woodruff, T.K. The Fertilization-Induced Zinc Spark Is a Novel Biomarker of Mouse Embryo Quality and Early Development. Sci. Rep. 2016, 6, 22772. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sugita, H.; Takarabe, S.; Kageyama, A.; Kawata, Y.; Ito, J. Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions. Biomolecules 2024, 14, 359. https://doi.org/10.3390/biom14030359
Sugita H, Takarabe S, Kageyama A, Kawata Y, Ito J. Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions. Biomolecules. 2024; 14(3):359. https://doi.org/10.3390/biom14030359
Chicago/Turabian StyleSugita, Hibiki, Shunsuke Takarabe, Atsuko Kageyama, Yui Kawata, and Junya Ito. 2024. "Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions" Biomolecules 14, no. 3: 359. https://doi.org/10.3390/biom14030359
APA StyleSugita, H., Takarabe, S., Kageyama, A., Kawata, Y., & Ito, J. (2024). Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions. Biomolecules, 14(3), 359. https://doi.org/10.3390/biom14030359