Lipid Rafts: The Maestros of Normal Brain Development
Abstract
:1. Introduction
2. Structure and Function of Lipid Rafts
3. Lipid Rafts Evolution
4. Role of Lipid Rafts in Brain Development
4.1. Neuronal Differentiation and Synaptogenesis
4.2. Myelination
4.3. Environmental Influences
4.3.1. Maternal Nutrition
4.3.2. Pathogens
4.3.3. Drugs
- Statins: These drugs are used to lower cholesterol levels by inhibiting β-hydroxy β-methylglutaryl-CoA (HMG-CoA) reductase, an enzyme involved in cholesterol synthesis. Some studies suggest that statins interfere with lipid rafts due to the hydrophobicity of the drugs. In addition, statins modulate the expression of the ACE2 receptor, which is located in the lipid rafts. It has been shown that cerivastatin increases the homogeneity of lipid rafts, making the raft aggregates smaller [207,208].
- Antiviral drugs: Some antiviral drugs, such as entry inhibitors [211], target lipid rafts as part of their mechanism of action. Some of those drugs aim to prevent viral entry into host cells by interfering with ACE2 receptors located in lipid rafts [212,213]. 25-hydroxycholesterol has been shown to interfere with cholesterol in the membrane, making the bilayer less rigid and affecting the composition of lipid rafts [214].
- Steroids: Steroid hormones, such as glucocorticoids and sex hormones, are known to interact with cell membranes, including lipid rafts [215]. Glucocorticoids remove the acyl-bound adaptor proteins and phosphoprotein required for T cell activation from lipid rafts by inhibiting their palmitoylation [216]. In a small portion of estrogen receptors (ERs), ER-α is located in the lipid rafts, exerting the effects of estrogens on lipid rafts directly through their receptors [164].
- Antipsychotics and antidepressants: Many antidepressants have been shown to colocalise with 5-HT3 receptors in lipid rafts [217]. Trazodone, an antidepressant, and aripiprazole, an antipsychotic, have been shown to alter cholesterol metabolism and, therefore, likely affect lipid raft composition and stability [218,219].
4.3.4. Hormones
5. In Vitro Neural Cell Culture—Model to Study Role of Lipid Rafts in Neurodevelopment
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ackerman, S. The Development and Shaping of the Brain. In Discovering the Brain; National Academies Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Kolb, B.; Gibb, R. Brain Plasticity and Behaviour in the Developing Brain. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 265–276. [Google Scholar] [PubMed]
- Urbán, N.; Guillemot, F. Neurogenesis in the Embryonic and Adult Brain: Same Regulators, Different Roles. Front. Cell. Neurosci. 2014, 8, 396. [Google Scholar] [CrossRef] [PubMed]
- Mauch, D.H.; Nägler, K.; Schumacher, S.; Göritz, C.; Müller, E.-C.; Otto, A.; Pfrieger, F.W. CNS Synaptogenesis Promoted by Glia-Derived Cholesterol. Science 2001, 294, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- National Research Council; Institute of Medicine; Shonkoff, J.P.; Phillips, D.A. The Developing Brain. In From Neurons to Neighborhoods: The Science of Early Childhood Development; National Academies Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Aggarwal, S.; Yurlova, L.; Simons, M. Central Nervous System Myelin: Structure, Synthesis and Assembly. Trends Cell Biol. 2011, 21, 585–593. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Albornoz, M.C.; García-Guáqueta, D.P.; Velez-van-Meerbeke, A.; Talero-Gutiérrez, C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021, 13, 3530. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Ikonen, E. Functional Rafts in Cell Membranes. Nature 1997, 387, 569–572. [Google Scholar] [CrossRef]
- Simons, K.; Toomre, D. Lipid Rafts and Signal Transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef]
- Gielen, E.; Baron, W.; Vandeven, M.; Steels, P.; Hoekstra, D.; Ameloot, M. Rafts in Oligodendrocytes: Evidence and Structure–Function Relationship. Glia 2006, 54, 499–512. [Google Scholar] [CrossRef]
- Madwar, C.; Gopalakrishnan, G.; Lennox, R.B. Lipid Microdomains in Synapse Formation. ACS Chem. Neurosci. 2016, 7, 833–841. [Google Scholar] [CrossRef]
- Kamiguchi, H. The Region-Specific Activities of Lipid Rafts during Axon Growth and Guidance. J. Neurochem. 2006, 98, 330–335. [Google Scholar] [CrossRef]
- Roy, A.; Patra, S.K. Lipid Raft Facilitated Receptor Organization and Signaling: A Functional Rheostat in Embryonic Development, Stem Cell Biology and Cancer. Stem Cell Rev. Rep. 2023, 19, 2–25. [Google Scholar] [CrossRef] [PubMed]
- Visualization of Brain Gangliosides Using MALDI Imaging Mass Spectrometry|Springer Nature Experiments. Available online: https://experiments.springernature.com/articles/10.1007/978-1-4939-8552-4_10 (accessed on 30 January 2024).
- Mlinac-Jerkovic, K.; Ilic, K.; Zjalić, M.; Mandić, D.; Debeljak, Ž.; Balog, M.; Damjanović, V.; Hrvat, N.M.; Habek, N.; Kalanj-Bognar, S.; et al. Who’s in, Who’s out? Re-Evaluation of Lipid Raft Residents. J. Neurochem. 2021, 158, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Millet, L.J.; Gillette, M.U. Over a Century of Neuron Culture: From the Hanging Drop to Microfluidic Devices. Yale J. Biol. Med. 2012, 85, 501–521. [Google Scholar] [PubMed]
- Shou, Y.; Liang, F.; Xu, S.; Li, X. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front. Cell Dev. Biol. 2020, 8, 1092. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Ehehalt, R. Cholesterol, Lipid Rafts, and Disease. J. Clin. Investig. 2002, 110, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.H.; Insel, P.A. Lipid Rafts and Caveolae and Their Role in Compartmentation of Redox Signaling. Antioxid. Redox Signal 2009, 11, 1357–1372. [Google Scholar] [CrossRef] [PubMed]
- van Deventer, S.; Arp, A.B.; van Spriel, A.B. Dynamic Plasma Membrane Organization: A Complex Symphony. Trends Cell Biol. 2021, 31, 119–129. [Google Scholar] [CrossRef]
- Codini, M.; Garcia-Gil, M.; Albi, E. Cholesterol and Sphingolipid Enriched Lipid Rafts as Therapeutic Targets in Cancer. Int. J. Mol. Sci. 2021, 22, 726. [Google Scholar] [CrossRef]
- Hussain, G.; Wang, J.; Rasul, A.; Anwar, H.; Imran, A.; Qasim, M.; Zafar, S.; Kamran, S.K.S.; Razzaq, A.; Aziz, N.; et al. Role of Cholesterol and Sphingolipids in Brain Development and Neurological Diseases. Lipids Health Dis. 2019, 18, 26. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Q. Cholesterol Metabolism and Homeostasis in the Brain. Protein Cell 2015, 6, 254–264. [Google Scholar] [CrossRef]
- Goritz, C.; Mauch, D.H.; Pfrieger, F.W. Multiple Mechanisms Mediate Cholesterol-Induced Synaptogenesis in a CNS Neuron. Mol. Cell. Neurosci. 2005, 29, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Analysis of Hedgehog Signaling in Cerebellar Granule Cell Precursors in a Conditional Nsdhl Allele Demonstrates an Essential Role for Cholesterol in Postnatal CNS Development|Human Molecular Genetics|Oxford Academic. Available online: https://academic.oup.com/hmg/article/24/10/2808/623190 (accessed on 28 January 2024).
- Bandet, C.L.; Tan-Chen, S.; Bourron, O.; Le Stunff, H.; Hajduch, E. Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int. J. Mol. Sci. 2019, 20, 479. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.S.B.; Færgeman, N.J. Sphingolipids: Membrane Microdomains in Brain Development, Function and Neurological Diseases. Open Biol. 2017, 7, 170069. [Google Scholar] [CrossRef]
- Pant, D.C.; Aguilera-Albesa, S.; Pujol, A. Ceramide Signalling in Inherited and Multifactorial Brain Metabolic Diseases. Neurobiol. Dis. 2020, 143, 105014. [Google Scholar] [CrossRef] [PubMed]
- Vasques, J.F.; de Jesus Gonçalves, R.G.; da Silva-Junior, A.J.; Martins, R.S.; Gubert, F.; Mendez-Otero, R. Gangliosides in Nervous System Development, Regeneration, and Pathologies. Neural Regen. Res. 2023, 18, 81. [Google Scholar] [CrossRef]
- Schneider, N.; Hauser, J.; Oliveira, M.; Cazaubon, E.; Mottaz, S.C.; O’Neill, B.V.; Steiner, P.; Deoni, S.C.L. Sphingomyelin in Brain and Cognitive Development: Preliminary Data. eNeuro 2019, 6, ENEURO.0421-18.2019. [Google Scholar] [CrossRef]
- van Echten-Deckert, G.; Hagen-Euteneuer, N.; Karaca, I.; Walter, J. Sphingosine-1-Phosphate: Boon and Bane for the Brain. Cell. Physiol. Biochem. 2014, 34, 148–157. [Google Scholar] [CrossRef]
- Horn, A.; Jaiswal, J.K. Structural and Signaling Role of Lipids in Plasma Membrane Repair. Curr. Top. Membr. 2019, 84, 67–98. [Google Scholar] [CrossRef]
- Varshney, P.; Yadav, V.; Saini, N. Lipid Rafts in Immune Signalling: Current Progress and Future Perspective. Immunology 2016, 149, 13–24. [Google Scholar] [CrossRef]
- Grassi, S.; Giussani, P.; Mauri, L.; Prioni, S.; Sonnino, S.; Prinetti, A. Lipid Rafts and Neurodegeneration: Structural and Functional Roles in Physiologic Aging and Neurodegenerative Diseases. J. Lipid Res. 2020, 61, 636–654. [Google Scholar] [CrossRef]
- Nourbakhsh, K.; Yadav, S. Kinase Signaling in Dendritic Development and Disease. Front. Cell Neurosci. 2021, 15, 624648. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, P.G.; Ramos, M.L.S.; Amaro, A.J.; Dias, R.A.; Vieira, S.I. Gi/o-Protein Coupled Receptors in the Aging Brain. Front. Aging Neurosci. 2019, 11, 89. [Google Scholar] [CrossRef] [PubMed]
- Kakio, A.; Nishimoto, S.; Yanagisawa, K.; Kozutsumi, Y.; Matsuzaki, K. Interactions of Amyloid β-Protein with Various Gangliosides in Raft-Like Membranes: Importance of GM1 Ganglioside-Bound Form as an Endogenous Seed for Alzheimer Amyloid. Biochemistry 2002, 41, 7385–7390. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Vetrivel, K.S.; Gong, P.; Meckler, X.; Parent, A.; Thinakaran, G. Mechanisms of Disease: New Therapeutic Strategies for Alzheimer’s Disease—Targeting APP Processing in Lipid Rafts. Nat. Rev. Neurol. 2007, 3, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Nehr-Majoros, A.K.; Király, Á.; Helyes, Z.; Szőke, É. Lipid Raft Disruption as an Opportunity for Peripheral Analgesia. Curr. Opin. Pharmacol. 2024, 75, 102432. [Google Scholar] [CrossRef] [PubMed]
- Van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane Lipids: Where They Are and How They Behave. Nat. Rev. Mol. Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Veatch, S.L.; Keller, S.L. Seeing Spots: Complex Phase Behavior in Simple Membranes. Biochim. Biophys. Acta 2005, 1746, 172–185. [Google Scholar] [CrossRef]
- Summons, R.E.; Bradley, A.S.; Jahnke, L.L.; Waldbauer, J.R. Steroids, Triterpenoids and Molecular Oxygen. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2006, 361, 951–968. [Google Scholar] [CrossRef]
- Galea, A.M.; Brown, A.J. Special Relationship between Sterols and Oxygen: Were Sterols an Adaptation to Aerobic Life? Free Radic. Biol. Med. 2009, 47, 880–889. [Google Scholar] [CrossRef]
- Dufourc, E.J. Sterols and Membrane Dynamics. J. Chem. Biol. 2008, 1, 63–77. [Google Scholar] [CrossRef]
- He, W.-S.; Cui, D.; Li, L.; Rui, J.; Tong, L.-T. Plasma Triacylglycerol-Reducing Activity of Ergosterol Linolenate Is Associated with Inhibition of Intestinal Lipid Absorption. J. Funct. Foods 2020, 64, 103686. [Google Scholar] [CrossRef]
- Li, X.; Xin, Y.; Mo, Y.; Marozik, P.; He, T.; Guo, H. The Bioavailability and Biological Activities of Phytosterols as Modulators of Cholesterol Metabolism. Molecules 2022, 27, 523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yuan, D.; Xie, J.; Lei, Y.; Li, J.; Fang, G.; Tian, L.; Liu, J.; Cui, Y.; Zhang, M.; et al. Evolution of the Cholesterol Biosynthesis Pathway in Animals. Mol. Biol. Evol. 2019, 36, 2548–2556. [Google Scholar] [CrossRef] [PubMed]
- Shamsuzzama; Lebedev, R.; Trabelcy, B.; Langier Goncalves, I.; Gerchman, Y.; Sapir, A. Metabolic Reconfiguration in C. Elegans Suggests a Pathway for Widespread Sterol Auxotrophy in the Animal Kingdom. Curr. Biol. 2020, 30, 3031–3038.e7. [Google Scholar] [CrossRef] [PubMed]
- Mas, A.; Jamshidi, S.; Lagadeuc, Y.; Eveillard, D.; Vandenkoornhuyse, P. Beyond the Black Queen Hypothesis. ISME J. 2016, 10, 2085–2091. [Google Scholar] [CrossRef]
- Lu, F.; Ferriero, D.M.; Jiang, X. Cholesterol in Brain Development and Perinatal Brain Injury: More than a Building Block. Curr. Neuropharmacol. 2022, 20, 1400–1412. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.K.; Wassif, C.A.; Krakowiak, P.A.; Taipale, J.; Gong, R.; Kelley, R.I.; Porter, F.D.; Beachy, P.A. A Defective Response to Hedgehog Signaling in Disorders of Cholesterol Biosynthesis. Nat. Genet. 2003, 33, 508–513. [Google Scholar] [CrossRef]
- Porter, J.A.; Young, K.E.; Beachy, P.A. Cholesterol Modification of Hedgehog Signaling Proteins in Animal Development. Science 1996, 274, 255–259. [Google Scholar] [CrossRef]
- Xiao, X.; Tang, J.-J.; Peng, C.; Wang, Y.; Fu, L.; Qiu, Z.-P.; Xiong, Y.; Yang, L.-F.; Cui, H.-W.; He, X.-L.; et al. Cholesterol Modification of Smoothened Is Required for Hedgehog Signaling. Mol. Cell 2017, 66, 154–162.e10. [Google Scholar] [CrossRef]
- Radhakrishnan, A.; Rohatgi, R.; Siebold, C. Cholesterol Access in Cellular Membranes Controls Hedgehog Signaling. Nat. Chem. Biol. 2020, 16, 1303–1313. [Google Scholar] [CrossRef]
- Kopecka, J.; Godel, M.; Riganti, C. Cholesterol Metabolism: At the Cross Road between Cancer Cells and Immune Environment. Int. J. Biochem. Cell Biol. 2020, 129, 105876. [Google Scholar] [CrossRef] [PubMed]
- Tint, G.S.; Yu, H.; Shang, Q.; Xu, G.; Patel, S.B. The Use of the Dhcr7 Knockout Mouse to Accurately Determine the Origin of Fetal Sterols. J. Lipid Res. 2006, 47, 1535–1541. [Google Scholar] [CrossRef] [PubMed]
- Baardman, M.E.; Erwich, J.J.H.M.; Berger, R.M.F.; Hofstra, R.M.W.; Kerstjens-Frederikse, W.S.; Lütjohann, D.; Plösch, T. The Origin of Fetal Sterols in Second-Trimester Amniotic Fluid: Endogenous Synthesis or Maternal-Fetal Transport? Am. J. Obstet. Gynecol. 2012, 207, e19–e25. [Google Scholar] [CrossRef] [PubMed]
- Woollett, L.A. Maternal Cholesterol in Fetal Development: Transport of Cholesterol from the Maternal to the Fetal Circulation. Am. J. Clin. Nutr. 2005, 82, 1155–1161. [Google Scholar] [CrossRef] [PubMed]
- Petrov, A.M.; Kasimov, M.R.; Zefirov, A.L. Brain Cholesterol Metabolism and Its Defects: Linkage to Neurodegenerative Diseases and Synaptic Dysfunction. Acta Naturae 2016, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Barenholz, Y.; Thompson, T.E. Sphingomyelins in Bilayers and Biological Membranes. Biochim. Biophys. Acta (BBA) Biomembr. 1980, 604, 129–158. [Google Scholar] [CrossRef]
- Garrett, T.A.; Schmeitzel, J.L.; Klein, J.A.; Hwang, J.J.; Schwarz, J.A. Comparative Lipid Profiling of the Cnidarian Aiptasia Pallida and Its Dinoflagellate Symbiont. PLoS ONE 2013, 8, e57975. [Google Scholar] [CrossRef]
- Hori, T.; Sugita, M. Sphingolipids in Lower Animals. Prog. Lipid Res. 1993, 32, 25–45. [Google Scholar] [CrossRef]
- Peter Slotte, J. Molecular Properties of Various Structurally Defined Sphingomyelins—Correlation of Structure with Function. Prog. Lipid Res. 2013, 52, 206–219. [Google Scholar] [CrossRef]
- Brown, D.A.; London, E. Structure and Function of Sphingolipid- and Cholesterol-Rich Membrane Rafts. J. Biol. Chem. 2000, 275, 17221–17224. [Google Scholar] [CrossRef]
- Contreras, F.-X.; Ernst, A.M.; Haberkant, P.; Björkholm, P.; Lindahl, E.; Gönen, B.; Tischer, C.; Elofsson, A.; von Heijne, G.; Thiele, C.; et al. Molecular Recognition of a Single Sphingolipid Species by a Protein’s Transmembrane Domain. Nature 2012, 481, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Makino, A.; Hullin-Matsuda, F.; Kamijo, K.; Ohno-Iwashita, Y.; Hanada, K.; Mizuno, H.; Miyawaki, A.; Kobayashi, T. A Role for Sphingomyelin-Rich Lipid Domains in the Accumulation of Phosphatidylinositol-4,5-Bisphosphate to the Cleavage Furrow during Cytokinesis. Mol. Cell Biol. 2012, 32, 1396–1407. [Google Scholar] [CrossRef] [PubMed]
- Huitema, K.; van den Dikkenberg, J.; Brouwers, J.F.H.M.; Holthuis, J.C.M. Identification of a Family of Animal Sphingomyelin Synthases. EMBO J. 2004, 23, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, S.; Hirabayashi, Y. Glucosylceramide Synthase and Glycosphingolipid Synthesis. Trends Cell Biol. 1998, 8, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Nemoto-Sasaki, Y.; Matsumoto, N.; Hama, K.; Tanikawa, T.; Oka, S.; Saeki, T.; Kumasaka, T.; Koizumi, T.; Arai, S.; et al. Complex Formation of Sphingomyelin Synthase 1 with Glucosylceramide Synthase Increases Sphingomyelin and Decreases Glucosylceramide Levels. J. Biol. Chem. 2018, 293, 17505–17522. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fan, Y.; Liu, J.; Li, Y.; Huan, C.; Bui, H.H.; Kuo, M.-S.; Park, T.-S.; Cao, G.; Jiang, X.-C. Impact of Sphingomyelin Synthase 1 Deficiency on Sphingolipid Metabolism and Atherosclerosis in Mice. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1577–1584. [Google Scholar] [CrossRef]
- Hanada, K. Co-Evolution of Sphingomyelin and the Ceramide Transport Protein CERT. Biochim. Biophys. Acta 2014, 1841, 704–719. [Google Scholar] [CrossRef]
- Yu, R.K.; Tsai, Y.-T.; Ariga, T.; Yanagisawa, M. Structures, Biosynthesis, and Functions of Gangliosides—An Overview. J. Oleo Sci. 2011, 60, 537–544. [Google Scholar] [CrossRef]
- Schnaar, R.L. Gangliosides of the Vertebrate Nervous System. J. Mol. Biol. 2016, 428, 3325–3336. [Google Scholar] [CrossRef]
- Seybold, V.; Rahmann, H. Changes in Developmental Profiles of Brain Gangliosides during Ontogeny of a Teleost Fish (Sarotherodon mossambicus, Cichlidae). Wilhelm Roux’s Arch. Dev. Biol. 1985, 194, 166–172. [Google Scholar] [CrossRef]
- Rösner, H. Changes in the Contents of Gangliosides and Glycoproteins and in the Ganglioside Pattern of the Chicken Brain. J. Neurochem. 1975, 24, 815–816. [Google Scholar] [CrossRef] [PubMed]
- Svennerholm, L.; Rynmark, B.-M.; Vilbergsson, G.; Fredman, P.; Gottfries, J.; Månsson, J.-E.; Percy, A. Gangliosides in Human Fetal Brain. J. Neurochem. 1991, 56, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Kracun, I.; Rosner, H.; Drnovsek, V.; Vukelic, Z.; Cosovic, C.; Trbojevic-Cepe, M.; Kubat, M. Gangliosides in the Human Brain Development and Aging. Neurochem. Int. 1992, 20, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Ngamukote, S.; Yanagisawa, M.; Ariga, T.; Ando, S.; Yu, R.K. Developmental Changes of Glycosphingolipids and Expression of Glycogenes in Mouse Brains. J. Neurochem. 2007, 103, 2327–2341. [Google Scholar] [CrossRef] [PubMed]
- Hilbig, R.; Rösner, H.; Merz, G.; Segler-Stahl, K.; Rahmann, H. Developmental Profiles of Gangliosides in Mouse and Rat Cerebral Cortex. Wilhelm Roux’s Arch. Dev. Biol. 1982, 191, 281–284. [Google Scholar] [CrossRef] [PubMed]
- Kracun, I.; Rosner, H.; Drnovsek, V.; Heffer-Lauc, M.; Cosović, C.; Lauc, G. Human Brain Gangliosides in Development, Aging and Disease. Int. J. Dev. Biol. 1991, 35, 289–295. [Google Scholar] [PubMed]
- Svennerholm, L.; Boström, K.; Fredman, P.; Månsson, J.E.; Rosengren, B.; Rynmark, B.M. Human Brain Gangliosides: Developmental Changes from Early Fetal Stage to Advanced Age. Biochim. Biophys. Acta 1989, 1005, 109–117. [Google Scholar] [CrossRef]
- Mlinac, K.; Bognar, S.K. Role of Gangliosides in Brain Aging and Neurodegeneration. Translat. Neurosci. 2010, 1, 300–307. [Google Scholar] [CrossRef]
- Kolter, T. Ganglioside Biochemistry. ISRN Biochem. 2012, 2012, 506160. [Google Scholar] [CrossRef]
- Freischütz, B.; Saito, M.; Rahmann, H.; Yu, R.K. Activities of Five Different Sialyltransferases in Fish and Rat Brains. J. Neurochem. 1994, 62, 1965–1973. [Google Scholar] [CrossRef]
- Yu, R.K.; Macala, L.J.; Taki, T.; Weinfield, H.M.; Yu, F.S. Developmental Changes in Ganglioside Composition and Synthesis in Embryonic Rat Brain. J. Neurochem. 1988, 50, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.K.; Tsai, Y.-T.; Ariga, T. Functional Roles of Gangliosides in Neurodevelopment—An Overview of Recent Advances. Neurochem. Res. 2012, 37, 1230–1244. [Google Scholar] [CrossRef] [PubMed]
- Kotani, M.; Terashima, T.; Tai, T. Developmental Changes of Ganglioside Expressions in Postnatal Rat Cerebellar Cortex. Brain Res. 1995, 700, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Vajn, K.; Viljetić, B.; Degmečić, I.V.; Schnaar, R.L.; Heffer, M. Differential Distribution of Major Brain Gangliosides in the Adult Mouse Central Nervous System. PLoS ONE 2013, 8, e75720. [Google Scholar] [CrossRef] [PubMed]
- Kotani, M.; Kawashima, I.; Ozawa, H.; Terashima, T.; Tai, T. Differential Distribution of Major Gangliosides in Rat Central Nervous System Detected by Specific Monoclonal Antibodies. Glycobiology 1993, 3, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Kotani, M.; Kawashima, I.; Ozawa, H.; Ogura, K.; Ishizuka, I.; Terashima, T.; Tai, T. Immunohistochemical Localization of Minor Gangliosides in the Rat Central Nervous System. Glycobiology 1994, 4, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, S.N.; Chan, K.H.N.; Gangaraju, S.; Slinn, J.; Li, J.; Hou, S.T. Imaging Mass Spectrometry Detection of Gangliosides Species in the Mouse Brain Following Transient Focal Cerebral Ischemia and Long-Term Recovery. PLoS ONE 2011, 6, e20808. [Google Scholar] [CrossRef]
- Colsch, B.; Woods, A.S. Localization and Imaging of Sialylated Glycosphingolipids in Brain Tissue Sections by MALDI Mass Spectrometry. Glycobiology 2010, 20, 661–667. [Google Scholar] [CrossRef]
- Santos, T.C.B.; Dingjan, T.; Futerman, A.H. The Sphingolipid Anteome: Implications for Evolution of the Sphingolipid Metabolic Pathway. FEBS Lett. 2022, 596, 2345–2363. [Google Scholar] [CrossRef]
- Chiavegatto, S.; Sun, J.; Nelson, R.J.; Schnaar, R.L. A Functional Role for Complex Gangliosides: Motor Deficits in GM2/GD2 Synthase Knockout Mice. Exp. Neurol. 2000, 166, 227–234. [Google Scholar] [CrossRef]
- Furukawa, K.; Aixinjueluo, W.; Kasama, T.; Ohkawa, Y.; Yoshihara, M.; Ohmi, Y.; Tajima, O.; Suzumura, A.; Kittaka, D.; Furukawa, K. Disruption of GM2/GD2 Synthase Gene Resulted in Overt Expression of 9-O-Acetyl GD3 Irrespective of Tis21. J. Neurochem. 2008, 105, 1057–1066. [Google Scholar] [CrossRef]
- Takamiya, K.; Yamamoto, A.; Furukawa, K.; Yamashiro, S.; Shin, M.; Okada, M.; Fukumoto, S.; Haraguchi, M.; Takeda, N.; Fujimura, K.; et al. Mice with Disrupted GM2/GD2 Synthase Gene Lack Complex Gangliosides but Exhibit Only Subtle Defects in Their Nervous System. Proc. Natl. Acad. Sci. USA 1996, 93, 10662–10667. [Google Scholar] [CrossRef] [PubMed]
- Saito, M.; Wu, G.; Hui, M.; Masiello, K.; Dobrenis, K.; Ledeen, R.W.; Saito, M. Ganglioside Accumulation in Activated Glia in the Developing Brain: Comparison between WT and GalNAcT KO Mice. J. Lipid Res. 2015, 56, 1434–1448. [Google Scholar] [CrossRef] [PubMed]
- Li, T.A.; Schnaar, R.L. Chapter Two—Congenital Disorders of Ganglioside Biosynthesis. In Progress in Molecular Biology and Translational Science; Schnaar, R.L., Lopez, P.H.H., Eds.; Gangliosides in Health and Disease; Academic Press: Cambridge, MA, USA, 2018; Volume 156, pp. 63–82. [Google Scholar]
- Vieira, F.S.; Corrêa, G.; Einicker-Lamas, M.; Coutinho-Silva, R. Host-Cell Lipid Rafts: A Safe Door for Micro-Organisms? Biol. Cell 2010, 102, 391–407. [Google Scholar] [CrossRef]
- Campos, L.S.; Decker, L.; Taylor, V.; Skarnes, W. Notch, Epidermal Growth Factor Receptor, and Β1-Integrin Pathways Are Coordinated in Neural Stem Cells*. J. Biol. Chem. 2006, 281, 5300–5309. [Google Scholar] [CrossRef] [PubMed]
- Haack, F.; Lemcke, H.; Ewald, R.; Rharass, T.; Uhrmacher, A.M. Spatio-Temporal Model of Endogenous ROS and Raft-Dependent WNT/Beta-Catenin Signaling Driving Cell Fate Commitment in Human Neural Progenitor Cells. PLoS Comput. Biol. 2015, 11, e1004106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhu, N.; Li, H.F.; Gu, J.; Zhang, C.J.; Liao, D.F.; Qin, L. The Lipid Rafts in Cancer Stem Cell: A Target to Eradicate Cancer. Stem Cell Res. Ther. 2022, 13, 432. [Google Scholar] [CrossRef]
- Igarashi, M.; Honda, A.; Kawasaki, A.; Nozumi, M. Neuronal Signaling Involved in Neuronal Polarization and Growth: Lipid Rafts and Phosphorylation. Front. Mol. Neurosci. 2020, 13, 150. [Google Scholar] [CrossRef]
- Landreth, G.E. Classes of Growth Factors Acting in the Nervous System. In Basic Neurochemistry: Molecular, Cellular and Medical Aspects, 6th ed.; Lippincott-Raven: Philadelphia, PA, USA, 1999. [Google Scholar]
- Tsui, C.C.; Gabreski, N.A.; Hein, S.J.; Pierchala, B.A. Lipid Rafts Are Physiologic Membrane Microdomains Necessary for the Morphogenic and Developmental Functions of Glial Cell Line-Derived Neurotrophic Factor In Vivo. J. Neurosci. 2015, 35, 13233–13243. [Google Scholar] [CrossRef]
- Gumbiner, B.M. Cell Adhesion: The Molecular Basis of Tissue Architecture and Morphogenesis. Cell 1996, 84, 345–357. [Google Scholar] [CrossRef]
- Jia, X.; Song, J.; Lv, W.; Hill, J.P.; Nakanishi, J.; Ariga, K. Adaptive Liquid Interfaces Induce Neuronal Differentiation of Mesenchymal Stem Cells through Lipid Raft Assembly. Nat. Commun. 2022, 13, 3110. [Google Scholar] [CrossRef]
- Head, B.P.; Patel, H.H.; Insel, P.A. Interaction of Membrane/Lipid Rafts with the Cytoskeleton: Impact on Signaling and Function. Biochim. Biophys. Acta 2014, 1838. [Google Scholar] [CrossRef] [PubMed]
- Martellucci, S.; Manganelli, V.; Santacroce, C.; Santilli, F.; Piccoli, L.; Sorice, M.; Mattei, V. Role of Prion Protein-EGFR Multimolecular Complex during Neuronal Differentiation of Human Dental Pulp-Derived Stem Cells. Prion 2018, 12, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Martellucci, S.; Santacroce, C.; Santilli, F.; Manganelli, V.; Sorice, M.; Mattei, V. Prion Protein in Stem Cells: A Lipid Raft Component Involved in the Cellular Differentiation Process. Int. J. Mol. Sci. 2020, 21, 4168. [Google Scholar] [CrossRef] [PubMed]
- Hanafusa, K.; Hayashi, N. The Flot2 Component of the Lipid Raft Changes Localization during Neural Differentiation of P19C6 Cells. BMC Mol. Cell Biol. 2019, 20, 38. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.; Ye, M.; Jin, X. The Roles of FLOT1 in Human Diseases (Review). Mol. Med. Rep. 2023, 28, 212. [Google Scholar] [CrossRef] [PubMed]
- Faust, T.; Gunner, G.; Schafer, D.P. Mechanisms Governing Activity-Dependent Synaptic Pruning in the Mammalian CNS. Nat. Rev. Neurosci. 2021, 22, 657–673. [Google Scholar] [CrossRef]
- Igarashi, M. Molecular Basis of the Functions of the Mammalian Neuronal Growth Cone Revealed Using New Methods. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 358–377. [Google Scholar] [CrossRef]
- Xu, N.-J.; Henkemeyer, M. Ephrin Reverse Signaling in Axon Guidance and Synaptogenesis. Semin. Cell Dev. Biol. 2012, 23, 58–64. [Google Scholar] [CrossRef]
- Formoso, K.; Billi, S.C.; Frasch, A.C.; Scorticati, C. Tyrosine 251 at the C-Terminus of Neuronal Glycoprotein M6a Is Critical for Neurite Outgrowth. J. Neurosci. Res. 2015, 93, 215–229. [Google Scholar] [CrossRef]
- Hérincs, Z.; Corset, V.; Cahuzac, N.; Furne, C.; Castellani, V.; Hueber, A.-O.; Mehlen, P. DCC Association with Lipid Rafts Is Required for Netrin-1-Mediated Axon Guidance. J. Cell Sci. 2005, 118, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kiyosue, K.; Hazama, S.; Ogura, A.; Kashihara, M.; Hara, T.; Koshimizu, H.; Kojima, M. Brain-Derived Neurotrophic Factor Regulates Cholesterol Metabolism for Synapse Development. J. Neurosci. 2007, 27, 6417–6427. [Google Scholar] [CrossRef] [PubMed]
- Pfrieger, F.W. Role of Cholesterol in Synapse Formation and Function. Biochim. Biophys. Acta 2003, 1610, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Edelmann, E.; Leßmann, V.; Brigadski, T. Pre- and Postsynaptic Twists in BDNF Secretion and Action in Synaptic Plasticity. Neuropharmacology 2014, 76, 610–627. [Google Scholar] [CrossRef] [PubMed]
- Zonta, B.; Minichiello, L. Synaptic Membrane Rafts: Traffic Lights for Local Neurotrophin Signaling? Front. Synaptic Neurosci. 2013, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Hering, H.; Lin, C.-C.; Sheng, M. Lipid Rafts in the Maintenance of Synapses, Dendritic Spines, and Surface AMPA Receptor Stability. J. Neurosci. 2003, 23, 3262–3271. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol and Lipid Microdomains Stabilize the Postsynapse at the Neuromuscular Junction|The EMBO Journal. Available online: https://www.embopress.org/doi/full/10.1038/sj.emboj.7601288?pubCode=cgi (accessed on 31 January 2024).
- Díaz, M.; Marin, R.; Díaz, M.; Marin, R. Lipid Rafts and Development of Alzheimer’s Disease. In Cerebral and Cerebellar Cortex—Interaction and Dynamics in Health and Disease; IntechOpen: London, UK, 2021; ISBN 978-1-83968-094-6. [Google Scholar]
- Hayashi, T. Membrane Lipid Rafts Are Required for AMPA Receptor Tyrosine Phosphorylation. Front. Synaptic Neurosci. 2022, 14, 921772. [Google Scholar] [CrossRef]
- Cheon, S.Y. Impaired Cholesterol Metabolism, Neurons, and Neuropsychiatric Disorders. Exp. Neurobiol. 2023, 32, 57–67. [Google Scholar] [CrossRef]
- Snaidero, N.; Simons, M. Myelination at a Glance. J. Cell Sci. 2014, 127, 2999–3004. [Google Scholar] [CrossRef]
- Nave, K.-A.; Trapp, B.D. Axon-Glial Signaling and the Glial Support of Axon Function. Annu. Rev. Neurosci. 2008, 31, 535–561. [Google Scholar] [CrossRef]
- Simons, M.; Trotter, J. Wrapping It up: The Cell Biology of Myelination. Curr. Opin. Neurobiol. 2007, 17, 533–540. [Google Scholar] [CrossRef] [PubMed]
- Jackman, N.; Ishii, A.; Bansal, R. Oligodendrocyte Development and Myelin Biogenesis: Parsing Out the Roles of Glycosphingolipids. Physiology 2009, 24, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Characteristic Composition of Myelin—Basic Neurochemistry—NCBI Bookshelf. Available online: https://www.ncbi.nlm.nih.gov/books/NBK28221/ (accessed on 31 January 2024).
- Ozgen, H.; Baron, W.; Hoekstra, D.; Kahya, N. Oligodendroglial Membrane Dynamics in Relation to Myelin Biogenesis. Cell. Mol. Life Sci. 2016, 73, 3291–3310. [Google Scholar] [CrossRef] [PubMed]
- Bosio, A.; Binczek, E.; Haupt, W.F.; Stoffel, W. Composition and Biophysical Properties of Myelin Lipid Define the Neurological Defects in Galactocerebroside- and Sulfatide-Deficient Mice. J. Neurochem. 1998, 70, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Marcus, J.; Honigbaum, S.; Shroff, S.; Honke, K.; Rosenbluth, J.; Dupree, J.L. Sulfatide Is Essential for the Maintenance of CNS Myelin and Axon Structure. Glia 2006, 53, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.; Sampaio, J.L. Membrane Organization and Lipid Rafts. Cold Spring Harb. Perspect. Biol. 2011, 3, a004697. [Google Scholar] [CrossRef] [PubMed]
- Meza, U.; Romero-Méndez, C.; Sánchez-Armáss, S.; Rodríguez-Menchaca, A.A. Role of Rafts in Neurological Disorders. Neurol. (Engl. Ed.) 2023, 38, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Li, L.; Qiu, F.; Yang, Y. Atomic Force Microscopy Study of Ganglioside GM1 Concentration Effect on Lateral Phase Separation of Sphingomyelin/Dioleoylphosphatidylcholine/Cholesterol Bilayers. J. Phys. Chem. B 2011, 115, 5923–5929. [Google Scholar] [CrossRef]
- Galimzyanov, T.R.; Lyushnyak, A.S.; Aleksandrova, V.V.; Shilova, L.A.; Mikhalyov, I.I.; Molotkovskaya, I.M.; Akimov, S.A.; Batishchev, O.V. Line Activity of Ganglioside GM1 Regulates the Raft Size Distribution in a Cholesterol-Dependent Manner. Langmuir 2017, 33, 3517–3524. [Google Scholar] [CrossRef]
- Yang, L.J.; Zeller, C.B.; Shaper, N.L.; Kiso, M.; Hasegawa, A.; Shapiro, R.E.; Schnaar, R.L. Gangliosides Are Neuronal Ligands for Myelin-Associated Glycoprotein. Proc. Natl. Acad. Sci. USA 1996, 93, 814–818. [Google Scholar] [CrossRef]
- Collins, B.E.; Yang, L.J.; Mukhopadhyay, G.; Filbin, M.T.; Kiso, M.; Hasegawa, A.; Schnaar, R.L. Sialic Acid Specificity of Myelin-Associated Glycoprotein Binding. J. Biol. Chem. 1997, 272, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Vyas, A.A.; Schnaar, R.L. Brain Gangliosides: Functional Ligands for Myelin Stability and the Control of Nerve Regeneration. Biochimie 2001, 83, 677–682. [Google Scholar] [CrossRef]
- Brain Gangliosides in Axon–Myelin Stability and Axon Regeneration—Schnaar—2010—FEBS Letters—Wiley Online Library. Available online: https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.febslet.2009.10.011 (accessed on 31 January 2024).
- Sheikh, K.A.; Sun, J.; Liu, Y.; Kawai, H.; Crawford, T.O.; Proia, R.L.; Griffin, J.W.; Schnaar, R.L. Mice Lacking Complex Gangliosides Develop Wallerian Degeneration and Myelination Defects. Proc. Natl. Acad. Sci. USA 1999, 96, 7532–7537. [Google Scholar] [CrossRef]
- Pan, B.; Fromholt, S.E.; Hess, E.J.; Crawford, T.O.; Griffin, J.W.; Sheikh, K.A.; Schnaar, R.L. Myelin-Associated Glycoprotein and Complementary Axonal Ligands, Gangliosides, Mediate Axon Stability in the CNS and PNS: Neuropathology and Behavioral Deficits in Single- and Double-Null Mice. Exp. Neurol. 2005, 195, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Kawai, H.; Allende, M.L.; Wada, R.; Kono, M.; Sango, K.; Deng, C.; Miyakawa, T.; Crawley, J.N.; Werth, N.; Bierfreund, U.; et al. Mice Expressing Only Monosialoganglioside GM3 Exhibit Lethal Audiogenic Seizures. J. Biol. Chem. 2001, 276, 6885–6888. [Google Scholar] [CrossRef]
- Interruption of Ganglioside Synthesis Produces Central Nervous System Degeneration and Altered Axon–Glial Interactions|PNAS. Available online: https://www.pnas.org/doi/full/10.1073/pnas.0407785102 (accessed on 31 January 2024).
- Baron, W.; Hoekstra, D. On the Biogenesis of Myelin Membranes: Sorting, Trafficking and Cell Polarity. FEBS Lett. 2010, 584, 1760–1770. [Google Scholar] [CrossRef]
- Greer, J.M.; Lees, M.B. Myelin Proteolipid Protein—The First 50 Years. Int. J. Biochem. Cell Biol. 2002, 34, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Werner, H.B.; Krämer-Albers, E.-M.; Strenzke, N.; Saher, G.; Tenzer, S.; Ohno-Iwashita, Y.; De Monasterio-Schrader, P.; Möbius, W.; Moser, T.; Griffiths, I.R.; et al. A Critical Role for the Cholesterol-Associated Proteolipids PLP and M6B in Myelination of the Central Nervous System. Glia 2013, 61, 567–586. [Google Scholar] [CrossRef]
- Assembly of Myelin by Association of Proteolipid Protein with Cholesterol- and Galactosylceramide-Rich Membrane Domains |Journal of Cell Biology|Rockefeller University Press. Available online: https://rupress.org/jcb/article/151/1/143/54254/Assembly-of-Myelin-by-Association-of-Proteolipid (accessed on 31 January 2024).
- Klugmann, M.; Schwab, M.H.; Pühlhofer, A.; Schneider, A.; Zimmermann, F.; Griffiths, I.R.; Nave, K.-A. Assembly of CNS Myelin in the Absence of Proteolipid Protein. Neuron 1997, 18, 59–70. [Google Scholar] [CrossRef]
- Boggs, J.M. Myelin Basic Protein: A Multifunctional Protein. Cell Mol. Life Sci. 2006, 63, 1945–1961. [Google Scholar] [CrossRef]
- Readhead, C.; Hood, L. The Dysmyelinating Mouse Mutations Shiverer (Shi) and Myelin Deficient (Shimld). Behav. Genet. 1990, 20, 213–234. [Google Scholar] [CrossRef] [PubMed]
- Participation of Galactosylceramide and Sulfatide in Glycosynapses between Oligodendrocyte or Myelin Membranes—Boggs—2010—FEBS Letters—Wiley Online Library. Available online: https://febs.onlinelibrary.wiley.com/doi/10.1016/j.febslet.2009.11.074 (accessed on 31 January 2024).
- Martinsen, V.; Kursula, P. Multiple Sclerosis and Myelin Basic Protein: Insights into Protein Disorder and Disease. Amino Acids 2022, 54, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Quarles, R.H. Myelin-Associated Glycoprotein (MAG): Past, Present and Beyond. J. Neurochem. 2007, 100, 1431–1448. [Google Scholar] [CrossRef] [PubMed]
- Montag, D.; Giese, K.P.; Bartsch, U.; Martini, R.; Lang, Y.; Blüthmann, H.; Karthigasan, J.; Kirschner, D.A.; Wintergerst, E.S.; Nave, K.-A.; et al. Mice Deficient for the Glycoprotein Show Subtle Abnormalities in Myelin. Neuron 1994, 13, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.H.; Zacchetti, D.; Schneeberger, E.E.; Simons, K. VIP17/MAL, a Lipid Raft-Associated Protein, Is Involved in Apical Transport in MDCK Cells. Proc. Natl. Acad. Sci. USA 1999, 96, 6241–6248. [Google Scholar] [CrossRef] [PubMed]
- Schaeren-Wiemers, N.; Bonnet, A.; Erb, M.; Erne, B.; Bartsch, U.; Kern, F.; Mantei, N.; Sherman, D.; Suter, U. The Raft-Associated Protein MAL Is Required for Maintenance of Proper Axon–Glia Interactions in the Central Nervous System. J. Cell Biol. 2004, 166, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Schafer, D.P.; Bansal, R.; Hedstrom, K.L.; Pfeiffer, S.E.; Rasband, M.N. Does Paranode Formation and Maintenance Require Partitioning of Neurofascin 155 into Lipid Rafts? J. Neurosci. 2004, 24, 3176–3185. [Google Scholar] [CrossRef]
- Yaqoob, P. The Nutritional Significance of Lipid Rafts. Annu. Rev. Nutr. 2009, 29, 257–282. [Google Scholar] [CrossRef]
- Hermetet, F.; Buffière, A.; Aznague, A.; Pais de Barros, J.-P.; Bastie, J.-N.; Delva, L.; Quéré, R. High-Fat Diet Disturbs Lipid Raft/TGF-β Signaling-Mediated Maintenance of Hematopoietic Stem Cells in Mouse Bone Marrow. Nat. Commun. 2019, 10, 523. [Google Scholar] [CrossRef]
- Fivaz, M.; Abrami, L.; van der Goot, F.G. Pathogens, Toxins, and Lipid Rafts. Protoplasma 2000, 212, 8–14. [Google Scholar] [CrossRef]
- Frontiers|Estrogen Interactions with Lipid Rafts Related to Neuroprotection. Impact of Brain Ageing and Menopause. Available online: https://www.frontiersin.org/articles/10.3389/fnins.2018.00128/full (accessed on 31 January 2024).
- Balog, M.; Blažetić, S.; Ivić, V.; Labak, I.; Krajnik, B.; Marin, R.; Canerina-Amaro, A.; de Pablo, D.P.; Bardak, A.; Gaspar, R.; et al. Disarranged Neuroplastin Environment upon Aging and Chronic Stress Recovery in Female Sprague Dawley Rats. Eur. J. Neurosci. 2022, 55, 2474–2490. [Google Scholar] [CrossRef] [PubMed]
- Prenatal Exposure to Common Environmental Factors Affects Brain Lipids and Increases Risk of Developing Autism Spectrum Disorders—Wong—2015—European Journal of Neuroscience—Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/ejn.13028 (accessed on 31 January 2024).
- Balashova, O.A.; Visina, O.; Borodinsky, L.N. Folate Action in Nervous System Development and Disease. Dev. Neurobiol. 2018, 78, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Wurtman, R.J. A Nutrient Combination That Can Affect Synapse Formation. Nutrients 2014, 6, 1701–1710. [Google Scholar] [CrossRef] [PubMed]
- Soliman, G.A. Dietary Cholesterol and the Lack of Evidence in Cardiovascular Disease. Nutrients 2018, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Korade, Z.; Kenworthy, A.K. Lipid Rafts, Cholesterol, and the Brain. Neuropharmacology 2008, 55, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Svoboda, M.D.; Christie, J.M.; Eroglu, Y.; Freeman, K.A.; Steiner, R.D. Treatment of Smith–Lemli–Opitz Syndrome and Other Sterol Disorders. Am. J. Med. Genet. Part. C Semin. Med. Genet. 2012, 160C, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Staneva, G.; Chachaty, C.; Wolf, C.; Quinn, P.J. Comparison of the Liquid-Ordered Bilayer Phases Containing Cholesterol or 7-Dehydrocholesterol in Modeling Smith-Lemli-Opitz Syndrome. J. Lipid Res. 2010, 51, 1810–1822. [Google Scholar] [CrossRef] [PubMed]
- Staneva, G.; Osipenko, D.S.; Galimzyanov, T.R.; Pavlov, K.V.; Akimov, S.A. Metabolic Precursor of Cholesterol Causes Formation of Chained Aggregates of Liquid-Ordered Domains. Langmuir 2016, 32, 1591–1600. [Google Scholar] [CrossRef]
- Stellaard, F. From Dietary Cholesterol to Blood Cholesterol, Physiological Lipid Fluxes, and Cholesterol Homeostasis. Nutrients 2022, 14, 1643. [Google Scholar] [CrossRef]
- Serini, S.; Calviello, G. Omega-3 PUFA Responders and Non-Responders and the Prevention of Lipid Dysmetabolism and Related Diseases. Nutrients 2020, 12, 1363. [Google Scholar] [CrossRef]
- Williams, J.A.; Batten, S.E.; Harris, M.; Rockett, B.D.; Shaikh, S.R.; Stillwell, W.; Wassall, S.R. Docosahexaenoic and Eicosapentaenoic Acids Segregate Differently between Raft and Nonraft Domains. Biophys. J. 2012, 103, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Wassall, S.R.; Stillwell, W. Polyunsaturated Fatty Acid–Cholesterol Interactions: Domain Formation in Membranes. Biochim. Biophys. Acta (BBA) Biomembr. 2009, 1788, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Hou, T.Y.; McMurray, D.N.; Chapkin, R.S. Omega-3 Fatty Acids, Lipid Rafts, and T Cell Signaling. Eur. J. Pharmacol. 2016, 785, 2–9. [Google Scholar] [CrossRef]
- Zimmer, L.; Delion-Vancassel, S.; Durand, G.; Guilloteau, D.; Bodard, S.; Besnard, J.-C.; Chalon, S. Modification of Dopamine Neurotransmission in the Nucleus Accumbens of Rats Deficient in n–3 Polyunsaturated Fatty Acids. J. Lipid Res. 2000, 41, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Akbar, M.; Kim, H.-Y. Protective Effects of Docosahexaenoic Acid in Staurosporine-induced Apoptosis: Involvement of Phosphatidylinositol-3 Kinase Pathway. J. Neurochem. 2002, 82, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Auestad, N.; Innis, S.M. Dietary N−3 Fatty Acid Restriction during Gestation in Rats: Neuronal Cell Body and Growth-Cone Fatty Acids123. Am. J. Clin. Nutr. 2000, 71, 312S–314S. [Google Scholar] [CrossRef]
- Ikemoto, A.; Nitta, A.; Furukawa, S.; Ohishi, M.; Nakamura, A.; Fujii, Y.; Okuyama, H. Dietary N-3 Fatty Acid Deficiency Decreases Nerve Growth Factor Content in Rat Hippocampus. Neurosci. Lett. 2000, 285, 99–102. [Google Scholar] [CrossRef]
- McJarrow, P.; Schnell, N.; Jumpsen, J.; Clandinin, T. Influence of Dietary Gangliosides on Neonatal Brain Development. Nutr. Rev. 2009, 67, 451–463. [Google Scholar] [CrossRef]
- Okuda, T. Dietary Control of Ganglioside Expression in Mammalian Tissues. Int. J. Mol. Sci. 2020, 21, 177. [Google Scholar] [CrossRef]
- Wang, B.; Brand-Miller, J. The Role and Potential of Sialic Acid in Human Nutrition. Eur. J. Clin. Nutr. 2003, 57, 1351–1369. [Google Scholar] [CrossRef]
- Chiricozzi, E.; Lunghi, G.; Di Biase, E.; Fazzari, M.; Sonnino, S.; Mauri, L. GM1 Ganglioside Is A Key Factor in Maintaining the Mammalian Neuronal Functions Avoiding Neurodegeneration. Int. J. Mol. Sci. 2020, 21, 868. [Google Scholar] [CrossRef] [PubMed]
- Stojiljkovic, M.; Blagojevic, T.; Vukosavic, S.; Zvezdina, N.D.; Pekovic, S.; Nikezic, G.; Rakic, L. Ganglioside GM1 and GM3 in Early Human Brain Development: An Immunocytochemical Study. Int. J. Dev. Neurosci. 1996, 14, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Sturgill, E.R.; Aoki, K.; Lopez, P.H.H.; Colacurcio, D.; Vajn, K.; Lorenzini, I.; Majić, S.; Yang, W.H.; Heffer, M.; Tiemeyer, M.; et al. Biosynthesis of the Major Brain Gangliosides GD1a and GT1b. Glycobiology 2012, 22, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
- DiPasquale, M.; Nguyen, M.H.L.; Rickeard, B.W.; Cesca, N.; Tannous, C.; Castillo, S.R.; Katsaras, J.; Kelley, E.G.; Heberle, F.A.; Marquardt, D. The Antioxidant Vitamin E as a Membrane Raft Modulator: Tocopherols Do Not Abolish Lipid Domains. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183189. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.Q.; Bilodeau-Bertrand, M.; Liu, S.; Auger, N. The Impact of COVID-19 on Pregnancy Outcomes: A Systematic Review and Meta-Analysis. CMAJ 2021, 193, E540–E548. [Google Scholar] [CrossRef] [PubMed]
- Kerkering, K.W. Abnormal Cry and Intracranial Calcifications: Clues to the Diagnosis of Fetal Varicella-Zoster Syndrome. J. Perinatol. 2001, 21, 131–135. [Google Scholar] [CrossRef] [PubMed]
- Kohli-Lynch, M.; Russell, N.J.; Seale, A.C.; Dangor, Z.; Tann, C.J.; Baker, C.J.; Bartlett, L.; Cutland, C.; Gravett, M.G.; Heath, P.T.; et al. Neurodevelopmental Impairment in Children After Group B Streptococcal Disease Worldwide: Systematic Review and Meta-Analyses. Clin. Infect. Dis. 2017, 65, S190–S199. [Google Scholar] [CrossRef]
- Charlier, C.; Barrault, Z.; Rousseau, J.; Kermorvant-Duchemin, E.; Meyzer, C.; Semeraro, M.; Fall, M.; Coulpier, G.; Leclercq, A.; Charles, M.-A.; et al. Long-Term Neurological and Neurodevelopmental Outcome of Neonatal Listeriosis in France: A Prospective, Matched, Observational Cohort Study. Lancet Child. Adolesc. Health 2023, 7, 875–885. [Google Scholar] [CrossRef]
- Kulkarni, R.; Wiemer, E.A.C.; Chang, W. Role of Lipid Rafts in Pathogen-Host Interaction—A Mini Review. Front. Immunol. 2022, 12, 815020. [Google Scholar] [CrossRef]
- Bukrinsky, M.I.; Mukhamedova, N.; Sviridov, D. Lipid Rafts and Pathogens: The Art of Deception and Exploitation. J. Lipid Res. 2020, 61, 601–610. [Google Scholar] [CrossRef]
- Fenrich, M.; Mrdenovic, S.; Balog, M.; Tomic, S.; Zjalic, M.; Roncevic, A.; Mandic, D.; Debeljak, Z.; Heffer, M. SARS-CoV-2 Dissemination Through Peripheral Nerves Explains Multiple Organ Injury. Front. Cell. Neurosci. 2020, 14, 229. [Google Scholar] [CrossRef] [PubMed]
- Roncato, R.; Angelini, J.; Pani, A.; Talotta, R. Lipid Rafts as Viral Entry Routes and Immune Platforms: A Double-Edged Sword in SARS-CoV-2 Infection? Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022, 1867, 159140. [Google Scholar] [CrossRef] [PubMed]
- Low, H.; Mukhamedova, N.; Cui, H.L.; McSharry, B.P.; Avdic, S.; Hoang, A.; Ditiatkovski, M.; Liu, Y.; Fu, Y.; Meikle, P.J.; et al. Cytomegalovirus Restructures Lipid Rafts via a US28/CDC42-Mediated Pathway, Enhancing Cholesterol Efflux from Host Cells. Cell Rep. 2016, 16, 186–200. [Google Scholar] [CrossRef] [PubMed]
- Cholesterol Dependence of Varicella-Zoster Virion Entry into Target Cells|Journal of Virology. Available online: https://journals.asm.org/doi/10.1128/jvi.00486-07 (accessed on 31 January 2024).
- Dirlikov, E.; Major, C.G.; Medina, N.A.; Lugo-Robles, R.; Matos, D.; Muñoz-Jordan, J.L.; Colon-Sanchez, C.; Garcia, M.; Olivero-Segarra, M.; Malave, G.; et al. Clinical Features of Guillain-Barré Syndrome With vs Without Zika Virus Infection, Puerto Rico, 2016. JAMA Neurol. 2018, 75, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Peruzzu, D.; Amendola, A.; Venturi, G.; de Turris, V.; Marsili, G.; Fortuna, C.; Fecchi, K.; Gagliardi, M.C. Zika Virus Exploits Lipid Rafts to Infect Host Cells. Viruses 2022, 14, 2059. [Google Scholar] [CrossRef] [PubMed]
- Use of Streptolysin O (SLO) to Study the Function of Lipid Rafts|Springer Nature Experiments. Available online: https://experiments.springernature.com/articles/10.1007/978-1-0716-0467-0_29 (accessed on 31 January 2024).
- Goluszko, P.; Popov, V.; Wen, J.; Jones, A.; Yallampalli, C. Group B Streptococcus Exploits Lipid Rafts and Phosphoinositide 3-Kinase/Akt Signaling Pathway to Invade Human Endometrial Cells. Am. J. Obstet. Gynecol. 2008, 199, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.H.; Kiupel, M.; Woods, T.; Pingle, P.; Hardy, J. Infection of the Murine Placenta by Listeria Monocytogenes Induces Sex-Specific Responses in the Fetal Brain. Pediatr. Res. 2023, 93, 1566–1573. [Google Scholar] [CrossRef]
- Tsai, Y.-H.; Chen, W.-L. Host Lipid Rafts as the Gates for Listeria Monocytogenes Infection: A Mini-Review. Front. Immunol. 2020, 11, 555605. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Mizogami, M. Interaction of Drugs with Lipid Raft Membrane Domains as a Possible Target. Drug Target Insights 2020, 14, 34. [Google Scholar] [CrossRef]
- Zaborowska, M.; Dziubak, D.; Matyszewska, D.; Bilewicz, R. Surface and Electrochemical Properties of Lipid Raft Model Membranes and How They Are Affected by Incorporation of Statin. Electrochim. Acta 2021, 386, 138514. [Google Scholar] [CrossRef]
- Zaborowska, M.; Broniatowski, M.; Fontaine, P.; Bilewicz, R.; Matyszewska, D. Statin Action Targets Lipid Rafts of Cell Membranes: GIXD/PM-IRRAS Investigation of Langmuir Monolayers. J. Phys. Chem. B 2023, 127, 7135–7147. [Google Scholar] [CrossRef] [PubMed]
- Studies on the Mechanism of General Anesthesia|PNAS. Available online: https://www.pnas.org/doi/10.1073/pnas.2004259117 (accessed on 31 January 2024).
- Regen, S.L. Taking a Deep Dive into Lipid-Based Mechanisms of General Anesthetics. Biochemistry 2023, 62, 1219–1220. [Google Scholar] [CrossRef] [PubMed]
- Melby, T.; Westby, M. Inhibitors of Viral Entry. In Antiviral Strategies; Kräusslich, H.-G., Bartenschlager, R., Eds.; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 177–202. ISBN 978-3-540-79086-0. [Google Scholar]
- Gee, Y.J.; Sea, Y.L.; Lal, S.K. Viral Modulation of Lipid Rafts and Their Potential as Putative Antiviral Targets. Rev. Med. Virol. 2023, 33, e2413. [Google Scholar] [CrossRef]
- Korade, Z.; Tallman, K.A.; Kim, H.-Y.H.; Balog, M.; Genaro-Mattos, T.C.; Pattnaik, A.; Mirnics, K.; Pattnaik, A.K.; Porter, N.A. Dose–Response Effects of 7-Dehydrocholesterol Reductase Inhibitors on Sterol Profiles and Vesicular Stomatitis Virus Replication. ACS Pharmacol. Transl. Sci. 2022, 5, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Domingues, M.M.; Gomes, B.; Hollmann, A.; Santos, N.C. 25-Hydroxycholesterol Effect on Membrane Structure and Mechanical Properties. Int. J. Mol. Sci. 2021, 22, 2574. [Google Scholar] [CrossRef]
- Yamagata, S.; Tomita, K.; Sano, H.; Itoh, Y.; Fukai, Y.; Okimoto, N.; Watatani, N.; Inbe, S.; Miyajima, H.; Tsukamoto, K.; et al. Non-Genomic Inhibitory Effect of Glucocorticoids on Activated Peripheral Blood Basophils through Suppression of Lipid Raft Formation. Clin. Exp. Immunol. 2012, 170, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Van Laethem, F.; Liang, X.; Andris, F.; Urbain, J.; Vandenbranden, M.; Ruysschaert, J.-M.; Resh, M.D.; Stulnig, T.M.; Leo, O. Glucocorticoids Alter the Lipid and Protein Composition of Membrane Rafts of a Murine T Cell Hybridoma. J. Immunol. 2003, 170, 2932–2939. [Google Scholar] [CrossRef]
- Eisensamer, B.; Uhr, M.; Meyr, S.; Gimpl, G.; Deiml, T.; Rammes, G.; Lambert, J.J.; Zieglgänsberger, W.; Holsboer, F.; Rupprecht, R. Antidepressants and Antipsychotic Drugs Colocalize with 5-HT3 Receptors in Raft-like Domains. J. Neurosci. 2005, 25, 10198–10206. [Google Scholar] [CrossRef]
- Korade, Z.; Anderson, A.; Balog, M.; Tallman, K.A.; Porter, N.A.; Mirnics, K. Chronic Aripiprazole and Trazodone Polypharmacy Effects on Systemic and Brain Cholesterol Biosynthesis. Biomolecules 2023, 13, 1321. [Google Scholar] [CrossRef]
- Balog, M.; Anderson, A.; Genaro-Mattos, T.C.; Korade, Z.; Mirnics, K. Individual and Simultaneous Treatment with Antipsychotic Aripiprazole and Antidepressant Trazodone Inhibit Sterol Biosynthesis in the Adult Brain. J. Lipid Res. 2022, 63, 100249. [Google Scholar] [CrossRef]
- Miranda, A.; Sousa, N. Maternal Hormonal Milieu Influence on Fetal Brain Development. Brain Behav. 2018, 8, e00920. [Google Scholar] [CrossRef] [PubMed]
- Yamada, M.; Tanaka, K.; Arakawa, M.; Miyake, Y. Perinatal Maternal Depressive Symptoms and Risk of Behavioral Problems at Five Years. Pediatr. Res. 2022, 92, 315–321. [Google Scholar] [CrossRef]
- Carson, R.; Monaghan-Nichols, A.P.; DeFranco, D.B.; Rudine, A.C. Effects of Antenatal Glucocorticoids on the Developing Brain. Steroids 2016, 114, 25–32. [Google Scholar] [CrossRef]
- Das, C.; Vijayan, M.M. Cortisol Rapidly Facilitates Glucocorticoid Receptor Translocation to the Plasma Membrane in Primary Trout Hepatocytes. Biology 2023, 12, 311. [Google Scholar] [CrossRef] [PubMed]
- Lipid Rafts, G Proteins and the Etiology of and Treatment for Depression: Progress toward a Depression Biomarker|Future Neurology. Available online: https://www.futuremedicine.com/doi/10.2217/14796708.3.5.511 (accessed on 31 January 2024).
- Schneider, M.; Levant, B.; Reichel, M.; Gulbins, E.; Kornhuber, J.; Müller, C.P. Lipids in Psychiatric Disorders and Preventive Medicine. Neurosci. Biobehav. Rev. 2017, 76, 336–362. [Google Scholar] [CrossRef] [PubMed]
- Händel, M.N.; Rohde, J.F.; Rimestad, M.L.; Bandak, E.; Birkefoss, K.; Tendal, B.; Lemcke, S.; Callesen, H.E. Efficacy and Safety of Polyunsaturated Fatty Acids Supplementation in the Treatment of Attention Deficit Hyperactivity Disorder (ADHD) in Children and Adolescents: A Systematic Review and Meta-Analysis of Clinical Trials. Nutrients 2021, 13, 1226. [Google Scholar] [CrossRef] [PubMed]
- Wang, H. Lipid Rafts: A Signaling Platform Linking Cholesterol Metabolism to Synaptic Deficits in Autism Spectrum Disorders. Front. Behav. Neurosci. 2014, 8, 104. [Google Scholar] [CrossRef]
- Oboti, L.; Ibarra-Soria, X.; Pérez-Gómez, A.; Schmid, A.; Pyrski, M.; Paschek, N.; Kircher, S.; Logan, D.W.; Leinders-Zufall, T.; Zufall, F.; et al. Pregnancy and Estrogen Enhance Neural Progenitor-Cell Proliferation in the Vomeronasal Sensory Epithelium. BMC Biol. 2015, 13, 104. [Google Scholar] [CrossRef]
- Schumacher, M.; Liere, P.; Ghoumari, A. Progesterone and Fetal-Neonatal Neuroprotection. Best. Pract. Res. Clin. Obstet. Gynaecol. 2020, 69, 50–61. [Google Scholar] [CrossRef]
- Salazar, P.; Villaseca, P.; Cisternas, P.; Inestrosa, N.C. Neurodevelopmental Impact of the Offspring by Thyroid Hormone System-Disrupting Environmental Chemicals during Pregnancy. Environ. Res. 2021, 200, 111345. [Google Scholar] [CrossRef]
- Micevych, P.; Dominguez, R. Membrane Estradiol Signaling in the Brain. Front. Neuroendocrinol. 2009, 30, 315–327. [Google Scholar] [CrossRef] [PubMed]
- Latif, R.; Ando, T.; Davies, T.F. Lipid Rafts Are Triage Centers for Multimeric and Monomeric Thyrotropin Receptor Regulation. Endocrinology 2007, 148, 3164–3175. [Google Scholar] [CrossRef] [PubMed]
- Segeritz, C.-P.; Vallier, L. Cell Culture. In Basic Science Methods for Clinical Researchers; Academic Press: Cambridge, MA, USA, 2017; pp. 151–172. [Google Scholar] [CrossRef]
- Malik, P.; Mukherjee, S.; Mukherjee, T.K. Mammalian Cell Culture Types and Guidelines for Their Maintenance. In Practical Approach to Mammalian Cell and Organ Culture; Mukherjee, T.K., Malik, P., Mukhopadhyay, S., Eds.; Springer Nature: Singapore, 2022; pp. 1–26. ISBN 978-981-19173-1-8. [Google Scholar]
- Jose, M.; Sivanand, A.; Channakeshava, C. Membrane Cholesterol Is a Critical Determinant for Hippocampal Neuronal Polarity. Front. Mol. Neurosci. 2021, 14, 746211. [Google Scholar] [CrossRef] [PubMed]
- Tamariz, E.; Varela-Echavarría, A. The Discovery of the Growth Cone and Its Influence on the Study of Axon Guidance. Front. Neuroanat. 2015, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Nozumi, M.; Ito, Y.; Natsume, R.; Kawasaki, A.; Nakatsu, F.; Abe, M.; Uchino, H.; Matsushita, N.; Ikeda, K.; et al. Very-Long-Chain Fatty Acids Are Crucial to Neuronal Polarity by Providing Sphingolipids to Lipid Rafts. Cell Rep. 2023, 42, 113195. [Google Scholar] [CrossRef]
- Swanwick, C.C.; Shapiro, M.E.; Vicini, S.; Wenthold, R.J. Flotillin-1 Promotes Formation of Glutamatergic Synapses in Hippocampal Neurons. Dev. Neurobiol. 2010, 70, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Samhan-Arias, A.K.; Poejo, J.; Marques-da-Silva, D.; Martínez-Costa, O.H.; Gutierrez-Merino, C. Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling? Molecules 2023, 28, 7909. [Google Scholar] [CrossRef] [PubMed]
- Bernardino de la Serna, J.; Schütz, G.J.; Eggeling, C.; Cebecauer, M. There Is No Simple Model of the Plasma Membrane Organization. Front. Cell Dev. Biol. 2016, 4, 106. [Google Scholar] [CrossRef]
- Croushore, C.A.; Sweedler, J.V. Microfluidic Systems for Studying Neurotransmitters and Neurotransmission. Lab Chip 2013, 13, 1666–1676. [Google Scholar] [CrossRef]
- Long, K.R.; Huttner, W.B. How the Extracellular Matrix Shapes Neural Development. Open Biol. 2019, 9, 180216. [Google Scholar] [CrossRef]
- Shah, D.D.; Raghani, N.R.; Chorawala, M.R.; Singh, S.; Prajapati, B.G. Harnessing Three-Dimensional (3D) Cell Culture Models for Pulmonary Infections: State of the Art and Future Directions. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2023, 396, 2861–2880. [Google Scholar] [CrossRef] [PubMed]
- Winkler, J.; Abisoye-Ogunniyan, A.; Metcalf, K.J.; Werb, Z. Concepts of Extracellular Matrix Remodelling in Tumour Progression and Metastasis. Nat. Commun. 2020, 11, 5120. [Google Scholar] [CrossRef] [PubMed]
- Białkowska, K.; Komorowski, P.; Bryszewska, M.; Miłowska, K. Spheroids as a Type of Three-Dimensional Cell Cultures—Examples of Methods of Preparation and the Most Important Application. Int. J. Mol. Sci. 2020, 21, 6225. [Google Scholar] [CrossRef] [PubMed]
- Kato-Negishi, M.; Tsuda, Y.; Onoe, H.; Takeuchi, S. A Neurospheroid Network-Stamping Method for Neural Transplantation to the Brain. Biomaterials 2010, 31, 8939–8945. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chu, R.; Ni, N.; Nan, G. The Effect of Matrigel as Scaffold Material for Neural Stem Cell Transplantation for Treating Spinal Cord Injury. Sci. Rep. 2020, 10, 2576. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Mao, X.; Xie, L.; Galvan, V.; Lai, B.; Wang, Y.; Gorostiza, O.; Wang, X.; Greenberg, D.A. Transplantation of Human Neural Precursor Cells in Matrigel Scaffolding Improves Outcome from Focal Cerebral Ischemia after Delayed Postischemic Treatment in Rats. J. Cereb. Blood Flow Metab. 2010, 30, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Cheng, K.; Kisaalita, W. Three Dimensional Neuronal Cell Cultures More Accurately Model Voltage Gated Calcium Channel Functionality in Freshly Dissected Nerve Tissue. PLoS ONE 2012, 7, e45074. [Google Scholar] [CrossRef]
- Kim, S.; Chang, M.-Y. Application of Human Brain Organoids—Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases. Int. J. Mol. Sci. 2023, 24, 12528. [Google Scholar] [CrossRef]
- Mulder, L.A.; Depla, J.A.; Sridhar, A.; Wolthers, K.; Pajkrt, D.; Vieira de Sá, R. A Beginner’s Guide on the Use of Brain Organoids for Neuroscientists: A Systematic Review. Stem Cell Res. Ther. 2023, 14, 87. [Google Scholar] [CrossRef]
- Lee, C.-T.; Bendriem, R.M.; Wu, W.W.; Shen, R.-F. 3D Brain Organoids Derived from Pluripotent Stem Cells: Promising Experimental Models for Brain Development and Neurodegenerative Disorders. J. Biomed. Sci. 2017, 24, 59. [Google Scholar] [CrossRef]
- Hofer, M.; Lutolf, M.P. Engineering Organoids. Nat. Rev. Mater. 2021, 6, 402–420. [Google Scholar] [CrossRef] [PubMed]
- Bagley, J.A.; Reumann, D.; Bian, S.; Lévi-Strauss, J.; Knoblich, J.A. Fused Cerebral Organoids Model Interactions between Brain Regions. Nat. Methods 2017, 14, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Koo, B.-K.; Knoblich, J.A. Human Organoids: Model Systems for Human Biology and Medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 571–584. [Google Scholar] [CrossRef]
- Velasco, S.; Kedaigle, A.J.; Simmons, S.K.; Nash, A.; Rocha, M.; Quadrato, G.; Paulsen, B.; Nguyen, L.; Adiconis, X.; Regev, A.; et al. Individual Brain Organoids Reproducibly Form Cell Diversity of the Human Cerebral Cortex. Nature 2019, 570, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Amiri, A.; Coppola, G.; Scuderi, S.; Wu, F.; Roychowdhury, T.; Liu, F.; Pochareddy, S.; Shin, Y.; Safi, A.; Song, L.; et al. Transcriptome and Epigenome Landscape of Human Cortical Development Modeled in Organoids. Science 2018, 362, eaat6720. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viljetić, B.; Blažetić, S.; Labak, I.; Ivić, V.; Zjalić, M.; Heffer, M.; Balog, M. Lipid Rafts: The Maestros of Normal Brain Development. Biomolecules 2024, 14, 362. https://doi.org/10.3390/biom14030362
Viljetić B, Blažetić S, Labak I, Ivić V, Zjalić M, Heffer M, Balog M. Lipid Rafts: The Maestros of Normal Brain Development. Biomolecules. 2024; 14(3):362. https://doi.org/10.3390/biom14030362
Chicago/Turabian StyleViljetić, Barbara, Senka Blažetić, Irena Labak, Vedrana Ivić, Milorad Zjalić, Marija Heffer, and Marta Balog. 2024. "Lipid Rafts: The Maestros of Normal Brain Development" Biomolecules 14, no. 3: 362. https://doi.org/10.3390/biom14030362
APA StyleViljetić, B., Blažetić, S., Labak, I., Ivić, V., Zjalić, M., Heffer, M., & Balog, M. (2024). Lipid Rafts: The Maestros of Normal Brain Development. Biomolecules, 14(3), 362. https://doi.org/10.3390/biom14030362