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Abstract: The heterogeneity of tumors poses a challenge for understanding cell interactions and
constructing complex ecosystems within cancer tissues. Current research strategies integrate spatial
transcriptomics (ST) and single-cell sequencing (scRNA-seq) data to thoroughly analyze this intricate
system. However, traditional deep learning methods using scRNA-seq data tend to filter differen-
tially expressed genes through statistical methods. In the context of cancer tissues, where cancer
cells exhibit significant differences in gene expression compared to normal cells, this heterogeneity
renders traditional analysis methods incapable of accurately capturing differences between cell types.
Therefore, we propose a graph-based deep learning method, GTADC, which utilizes Silhouette scores
to precisely capture genes with significant expression differences within each cell type, enhancing
the accuracy of gene selection. Compared to traditional methods, GTADC not only considers the
expression similarity of genes within their respective clusters but also comprehensively leverages
information from the overall clustering structure. The introduction of graph structure effectively
captures spatial relationships and topological structures between the two types of data, enabling
GTADC to more accurately and comprehensively resolve the spatial composition of different cell
types within tissues. This refinement allows GTADC to intricately reconstruct the cellular spatial
composition, offering a precise solution for inferring cell spatial composition. This method allows
for early detection of potential cancer cell regions within tissues, assessing their quantity and spatial
information in cell populations. We aim to achieve a preliminary estimation of cancer occurrence and
development, contributing to a deeper understanding of early-stage cancer and providing potential
support for early cancer diagnosis.

Keywords: cancer; cell type identification; graph attention networks; single-cell RNA sequencing;
spatial transcriptomics

1. Introduction

Large-scale tumor genome projects have revealed extensive heterogeneity both be-
tween and within tumors [1]. The widespread application of single-cell RNA sequencing
(scRNA-seq) technology has significantly enhanced our understanding of the heterogeneity
features of tumor cells at the single-cell level [2]. However, scRNA-seq still has limita-
tions, as the dissociation of tissues into single-cell suspensions results in the loss of spatial
and morphological information, making it challenging to study the spatial structure of
tumors [3–5]. Spatial transcriptomics (ST) technology overcomes these limitations, pro-
viding high-quality whole-genome transcriptomic data with complete two-dimensional
positional information [6–9]. Combining ST and scRNA-seq helps overcome the limitations
of each technique individually. Nonetheless, inherent limitations exist in spatial transcrip-
tomic analysis, where, in most cases, each point or spot covers multiple cells. Even with
high-resolution technology, a small fraction of several cells can be included in the same
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spatial barcode region. Moreover, tissues with high heterogeneity, such as cancer, consist of
various cell types in each small region. There is a causal relationship between specific cell
types in the tumor microenvironment (TME) and the state of cancer cells [10]. Therefore,
identifying different cell types in spatial positions within cancer tissues is a crucial task,
contributing to understanding the spatial context of pathological physiology.

To gain a deeper understanding of cell type distribution in spatial transcriptomics,
current strategies predominantly involve integrating it with single-cell RNA sequencing
(scRNA-seq). Mainstream approaches typically employ deconvolution techniques aiming
to estimate the exact cell type proportions at each spatial position through regression
models [11,12], deep learning models [13,14], or fitting probability distributions [15,16].
Feature selection is crucial for the performance of these deep learning models. However,
current methods often rely on statistical approaches in feature extraction, selecting genes
with the maximum differential expression among different cell types. Yet, in the process
of extracting feature genes, cancer cell gene expression exhibits a more complex pattern.
Specifically, the heterogeneous expression patterns of cancer cells significantly differ from
normal cells, posing a challenge to accurately capture the tissue’s biological features.
Understanding and considering this heterogeneity are crucial to ensure that the extracted
feature genes accurately reflect the overall expression patterns of the tissue. Simultaneously,
previous research has demonstrated that graph structures can effectively capture topological
relationships and spatial correlations between spots. However, in cancer tissues, the spatial
arrangement of cells presents complex heterogeneity [17,18]. Traditional simple graph
methods fall short in adequately considering interactions and relative positions between
spots. This heterogeneity accentuates the limitations of conventional graph methods, as
they fail to capture the more intricate relationships between cells.

To overcome the limitations of traditional deconvolution methods in deciphering cell
type distribution in cancer tissues, we introduce a novel approach named GTADC: a graph-
based method for inferring cell spatial distribution in cancer tissues. This method employs a
Graph Attention Network (GAT) model for deconvolution [19]. GTADC utilizes Silhouette
scores, a metric based on the similarity and dissimilarity between cell types, to comprehen-
sively capture differential expression patterns within each cell type [20,21]. This enables
a deeper understanding and utilization of cell distribution and arrangement throughout
the entire cancer tissue, thereby enhancing the accuracy and comprehensiveness of marker
gene exploration. Our method incorporates the Seurat IntegrateData approach [22] to
eliminate batch effects between generated pseudo-spatial transcriptomics (pseudo-ST) data
and real ST data, significantly improving data consistency and comparability [23].

Subsequently, we employ a random projection forest to construct a weighted adjacency
matrix [24], accurately characterizing the topological relationships between pseudo-ST and
real ST. Through a complex graph structure representation, our method adapts better to
the heterogeneity in gene expression within cancer tissues. Importing these features and
the weighted adjacency matrix into the GAT model achieves accurate inference of cell type
composition at each position in spatial transcriptomics. Validated on simulated spatial
transcriptomics data, GTADC demonstrates high accuracy and sensitivity in predicting cell
type proportions. This innovative approach not only enables the early detection of potential
cancer cell regions within tissues but also accurately determines the content and positional
information of these cells within cell populations. Through this technology, we anticipate
providing a preliminary estimation of cancer occurrence and development, offering robust
potential support for early cancer diagnosis, and providing a comprehensive and insightful
perspective for a deeper understanding of the cancer microenvironment.

2. Materials and Methods
2.1. Datasets

GTADC takes as input spatial transcriptomics (ST) data, gene expression data from
single-cell RNA sequencing (scRNA-seq), and cell type metadata for each cell. Due to
the difficulty in obtaining reliable standards from real ST datasets for method validation,
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we chose to generate a benchmark testing ST dataset using two scRNA-seq datasets from
human colorectal cancer (GSE132465 and GSE144735) [25]. In this validation process,
scRNA-seq data from colorectal cancer patients in Korea and Belgium were used to simulate
the ST dataset fully randomly to assess the performance of GTADC. To simulate the ST
dataset, we randomly selected mixtures of 2–8 cells from scRNA-seq, adding their gene
expression values to represent the gene expression for each spot in the synthetic ST data.
This synthetic ST data not only mimics the characteristics of real ST data but also provides
a reliable benchmark for evaluating GTADC’s performance in identifying different cell
type proportions within each synthetic spot. This process helps ensure that GTADC can
accurately and reliably infer cell spatial distribution in the face of real cancer tissues.

To comprehensively evaluate GTADC’s performance and reliability in inferring cell
spatial distribution in real cancer environments, we tested it on three different types of
cancer tissues. First, we selected human squamous cell carcinoma, using ST data and
scRNA-seq data from the study GSE144240 [26]. Second, we examined human hepa-
tocellular carcinoma, where ST data came from the study “Comprehensive analysis of
spatial architecture in primary liver cancer” [27], and scRNA-seq data originated from
GSE149614 [28]. Due to the non-correspondence of the stages between ST and scRNA-seq
data for this cancer, resulting in significant differences in the number of each cell type,
especially in cancer cell types, we adopted a combination of multiple samples in this
cancer. We performed random sampling for each cell type with a fixed quantity, using
the sampled results as reference scRNA-seq data for the experiment. Finally, we studied
human breast cancer, with scRNA-seq data from GSE176078 and ST data obtained from the
public database https://zenodo.org/records/4739739 (accessed on 5 June 2021), patient ID
CID4535 [29]. The diverse set of cancer samples helps validate GTADC’s generality and
robustness in different cancer environments.

2.2. Implementation of GTADC

Feature selection plays a crucial role in GTADC. In contrast to other deep learning
methods that tend to focus on genes with significant differential expression in each cell
type or select a subset of genes with the most significant differential expression overall,
GTADC employs a more flexible and adaptive feature gene selection method tailored to
the heterogeneity of cancer tissues. Traditional methods, such as statistical rank tests in
tools like Seurat or scnapy [30,31], often struggle to accurately filter genes with significant
meaning in cancer tissues due to the complex and diverse nature of gene expression
abnormalities. To address this challenge, GTADC introduces an innovative feature selection
strategy that better adapts to the heterogeneity of cancer tissues. Additionally, as the
graph structure is a crucial data structure for representing topological relationships, a more
nuanced modeling approach is required for cancer tissues. Traditional k-nearest neighbors
(knn) methods may struggle to meet the complexity of data relationships we encounter
in cancer tissues. Therefore, GTADC employs a novel graph construction method and
an improved Graph Attention Network (GAT) model to accurately predict the cell type
proportions for each spot. This integrated strategy of feature selection and graph modeling
enhances GTADC’s robustness and accuracy when dealing with cancer tissue data. The
overall workflow of GTADC is depicted in the figure below (Figure 1).

https://zenodo.org/records/4739739
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and determine the proportions of cell types within spots. 

2.2.1. Feature Genes Selection 
In classical scRNA-seq datasets, there are typically over 20,000 genes. To reduce com-

putational complexity, the expression rates of all genes in each cell type are first com-
puted. As a preprocessing step before filtering, genes with expression levels below 20% 
across all cell types are removed. Subsequently, normalization is performed to mitigate 
experimental biases for effective comparisons [32]. The gene expression in scRNA-seq 
data is represented as 𝑄 ∈ ℝൈ, where n is the number of cells, and m is the number of 
genes. The matrix Q is considered a combination of k distinct cell types, each treated as an 
independent cluster. For enhanced computational efficiency, gene filtering is applied to 
each cluster. In the gene filtering stage, the expression rate matrix O and the mean expres-
sion value matrix P are computed on the Q matrix. Utilizing the calculated expression rate 
matrix O, genes with expression rates above a threshold are filtered for each of the k cell 
types, as expressed by the following formula: 
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For each gene g, calculate a dispersion measure to obtain candidate genes. Subse-
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Figure 1. The framework diagram depicts the utilization of GTADC in deconvolving spatial transcrip-
tomic data of cancer tissue. (A) Extract the most representative genes from the gene expression matrix
of cancer tissues as features. (B) Integrate the generated pseudo-ST and real ST data. (C) Obtain
the topological relationships between spots based on the random projection forest. (D) Utilize the
processed gene expression matrix and adjacency matrix as inputs to train the model and determine
the proportions of cell types within spots.

2.2.1. Feature Genes Selection

In classical scRNA-seq datasets, there are typically over 20,000 genes. To reduce
computational complexity, the expression rates of all genes in each cell type are first
computed. As a preprocessing step before filtering, genes with expression levels below 20%
across all cell types are removed. Subsequently, normalization is performed to mitigate
experimental biases for effective comparisons [32]. The gene expression in scRNA-seq
data is represented as Q ∈ Rn×m, where n is the number of cells, and m is the number of
genes. The matrix Q is considered a combination of k distinct cell types, each treated as an
independent cluster. For enhanced computational efficiency, gene filtering is applied to each
cluster. In the gene filtering stage, the expression rate matrix O and the mean expression
value matrix P are computed on the Q matrix. Utilizing the calculated expression rate
matrix O, genes with expression rates above a threshold are filtered for each of the k cell
types, as expressed by the following formula:

threshold = 0.5 × (2 × Q3 + 1.5 × IQR) (1)

Here, Q3 represents the third quartile, and IQR stands for the interquartile range (the
difference between the third and first quartiles, i.e., between the 75th and 25th percentiles).

Next, filtering is performed on the expression rate matrix O and the average expression
value matrix P to obtain O1 ∈ Rk×s and P1 ∈ Rk×s, where s indicates the number of genes
with expression rates higher than the threshold. Simultaneously, filtering is applied to O1
and P1 using the top-ranking genes in the average expression matrix P1 to obtain O2 ∈ Rk×l

and P2 ∈ Rk×l .
For each gene g, calculate a dispersion measure to obtain candidate genes. Subse-

quently, rank the genes based on their dispersion values, selecting the top t genes with the
highest dispersion values as candidate marker genes for the k cell types. The formula is
as follows:

disp =
(a − b)× ce

d∗
(2)

In this context, a represents the average expression level of gene g in cell type k (derived
from matrix P2), b signifies the maximum average expression level of gene g in other cell
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types (from matrix P2), c denotes the expression rate of gene g in cell type k (derived from
matrix Q2), d represents the average expression rate of gene g in other cell types (from
matrix Q2), and e is a constant regulating the importance of the expression rate of gene g.

In cancer tissues, the heterogeneity of cell types and states is pronounced, and single-
cell RNA sequencing (scRNA-seq) data often reflects this heterogeneity. In such cases,
traditional statistical methods may fail due to substantial variations in gene expression, as
these methods assume that the data are identically distributed. In contrast, the Silhouette
coefficient, as a non-parametric method based on similarity and distance, exhibits greater
robustness to the heterogeneity of cancer tissues. Therefore, the use of the Silhouette
coefficient in GTADC serves as a metric for evaluating clustering quality. It provides a
measure of clustering effectiveness ranging from −1 to 1 [33]. This coefficient is based on
the similarity of each data point to other points within the same cluster and the dissimilarity
to the nearest points in the neighboring cluster. For each cell type, the top t genes with the
highest Silhouette coefficients are selected, forming the final set of feature genes.

2.2.2. Pseudo-ST and True ST Data Integration

In previous approaches, multiple cells were typically combined to simulate the com-
position of real ST (spatial transcriptomics) data. In this step, the gene expression values of
multiple cells were often summed to form the gene expression of a single spot, creating
pseudo-ST data. These pseudo-ST data were generated by mixing single-cell RNA sequenc-
ing (scRNA-seq) data from the same tissue, aiming to emulate spatial transcriptomics (ST)
data. The purpose of generating pseudo-ST data is to provide a theoretically controllable
dataset for evaluating and optimizing the performance of deconvolution methods.

We followed the process of generating a benchmark test dataset using scRNA-seq
to create pseudo-ST data as a reference for model training. To enhance the consistency
and comparability between the generated pseudo-ST data and true ST data, we integrated
pseudo-ST and true ST data. Initially, cells underwent preprocessing and standardization,
typically involving embedding cells from each dataset into a low-dimensional space. Com-
mon methods, such as Principal Component Analysis (PCA), were employed to reduce
computational complexity and extract key cell features. Subsequently, we computed sim-
ilarity scores between each pair of spots (sample points). Typically, cosine similarity or
other similarity measures were used to assess the degree of expression pattern similarity
between spots. Between the two datasets, we selected spot pairs with high similarity
scores as anchor points. These anchor point pairs represented spots with similar expression
patterns between different datasets. Then, we associated the anchor points by maximizing
the similarity scores to determine which spots corresponded between different datasets.
This process aimed to establish connections between datasets, preserving the information
of anchor points. Leveraging the information of anchor points, we aligned spots from
different datasets, mapping them to a common integrated space. This involved mapping
features from each dataset to the integrated space and consolidating them into an overall
expression matrix. Finally, by integrating different datasets, we formed a unified expression
matrix. This integration method effectively fused cell expression information between
different datasets, providing a robust foundation for subsequent comprehensive analyses.

2.2.3. Graph Construction

First, create an index array to track the original order of feature data, preserving data
order during the construction of the random projection tree [34]. Next, build a random
projection tree based on the integrated feature matrix and return the root node of the
tree [35,36]. Obtain a list of indices for all leaf nodes. For each leaf node, combine the
points within that node pairwise, generating an edge list. This list encompasses all edges
between points within the same leaf node. Set the weight of all edges in the edge list to 1
and convert it into an adjacency matrix. Subsequently, add the adjacency matrix of each
random projection tree to the overall adjacency matrix to integrate the results of all trees.
By averaging the results of all trees, the weighted adjacency matrix obtained represents the
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final result. In comparison to traditional k-nearest neighbors (knn) methods, this approach
demonstrates superior accuracy and performance in constructing the graph structure of
cancer tissue. Not only does it enhance precision, but it also exhibits robust processing
capabilities when dealing with highly heterogeneous cancer tissue data, enabling a more
detailed and accurate analysis of cancer tissue data.

2.2.4. Model Building

Compared to traditional graph convolutional networks (GCN), Graph Attention Net-
work (GAT) [37] exhibits significant advantages in addressing the specificity of cancer
tissue. GCN employs fixed weights when aggregating node information, assigning equal
importance to the contribution of each node to its neighboring nodes. This rigid weight
assignment may lack flexibility when dealing with the highly heterogeneous and complex
relationships among nodes in cancer tissue. GAT cleverly addresses this issue by introduc-
ing a graph attention mechanism. By calculating adaptive attention weights, the model
dynamically learns the importance and correlation between nodes. This mechanism takes
into account the diversity of relationships between different nodes, providing the network
with more flexible expressive capabilities. Specifically, GAT leverages the relationships
between the graph structure and node features to adaptively learn the degree of association
between each node and its neighboring nodes by computing attention weights. This allows
the model to more accurately capture the complex biological characteristics of cancer tissue,
as interactions between different cells may have varying importance in different contexts.
A notable advantage is that the GAT model incorporates multiple graph attention heads.
Each head can learn different attention weight distributions between nodes, comprehen-
sively capturing contextual information for nodes. This multi-head mechanism enables the
model to simultaneously consider and integrate information from multiple relationships,
enhancing its ability to model complex relationships.

In the model, for each attention layer, given N node features, h |= {
→
h 1,

→
h 2, . . . ,

→
h N},

→
h i ∈ RF, where each node feature has a dimension of F, the calculation of attention
coefficients can be represented as:

eij = (
→
a

T
[W

→
h i ∥ W

→
h j]), (3)

where eij represents the attention coefficient of node i with respect to node j, and
→
a

T
and W

are both shared learnable parameters.
Subsequently, after calculating the attention coefficients, the previously computed

adjacency matrix weights are incorporated into the model, emphasizing the topological
relationships of the graph. The formula is represented as follows:

V = E ⊙ A (4)

Here, V represents all attention coefficients taking into account the weights of the
adjacency matrix, E represents the attention coefficients between all nodes, and A represents
the overall weighted adjacency matrix.

By parallelly computing multiple attention heads, the model comprehensively captures
information in the input sequence. The outputs of all attention heads at each layer are
concatenated as input for the next layer, or an average operation is performed at the final
layer to obtain the model’s output result:

h′i =∥K
k=1 σ

 ∑
vj∈N(vi)

α
(k)
ij W(k)hj

 (5)

Here, h′i represents the new feature of node i after incorporating neighborhood in-
formation, ∥ denotes vector concatenation or averaging operations, and σ represents the
activation function.
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The cross-entropy is employed as the loss function to evaluate the pseudo-ST data,
and the softmax activation function is utilized in the output layer to learn the cell type
proportions. Upon completion of training, the model provides estimates of cell type
proportions for all spots in the test data, mimicking the real ST data.

3. Results
3.1. Evaluate Algorithm Performance in Comparison with State-of-the-Art Methods

In this study, we employed a cell mixing approach to generate a synthetic dataset as
our benchmark data, based on the human colorectal cancer dataset used for benchmarking
in Section 2.1. In this benchmark dataset, the proportions of cell types are known, enabling a
comprehensive evaluation of the method’s performance in inferring cell spatial distribution.

We conducted a comparison of GTADC with other published tools for cell type decon-
volution, including CellDART [13], STRIDE [16], DSTG [14], and RCTD [15]. Specifically,
we compared GTADC with GTAD [38], which replaces the feature gene selection stage with
a statistical test (implemented in the scanpy package). When running each of the previously
published methods, all parameters were set to their default values as specified in their
documentation. This approach allowed us to comprehensively evaluate the performance of
GTADC in the feature gene selection stage and understand its advantages relative to other
methods. For performance comparison, we utilized the Jensen–Shannon distance (JSD) as a
benchmark metric [39]. JSD is a distance metric used to measure the similarity between two
probability distributions, ranging from zero to one. A JSD value of zero indicates complete
similarity between two distributions, while a value of one indicates complete dissimilarity
with no overlap. Therefore, a smaller JSD value indicates higher similarity between the
estimated cell type compositions, reflecting higher accuracy. This comprehensive perfor-
mance comparison framework provides insights into the performance of GTADC relative
to other tools.

Based on the experimental results, we generated violin plots and bar charts using the
Jensen–Shannon distance (JSD) as the metric. In the bar chart, the average JSD of GTADC is
significantly lower than other published methods, especially compared to GTAD, indicating
superior performance (Figure 2B). The violin plot provides a more intuitive visualization,
showing that GTADC has more data points in the regions with lower JSD, implying smaller
differences between estimated cell type proportions and actual proportions at these points
(Figure 2A). To ensure the reliability of the results, we conducted Wilcoxon rank-sum tests.
The Wilcoxon rank-sum test, a non-parametric statistical method, is used to compare the
distributions of two independent samples for significant differences [40]. In comparison to
the t-test, the Wilcoxon rank-sum test makes no assumptions about the distribution of data,
making it suitable for non-normally distributed data. The results demonstrate that GTADC
significantly outperforms other methods in terms of JSD, with all comparisons yielding
p-values less than 0.0001, providing strong statistical support for our conclusions.
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the performance of various methods on the simulated dataset of human colorectal cancer. In order to
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ensure that the comparative figures appear aesthetically pleasing and fully displayed, we have set
the lower limit of the y-axis for JSD (Jensen–Shannon divergence) to extend below zero. The JSD
values themselves range from 0 to 1. (B) Bar chart depicting the average JSD of simulated spatial
data generated from human colorectal cancer scRNA-seq dataset. Wilcoxon signed-rank test was con-
ducted on JSD values of GTADC against other methods. Statistical significance (**** p-value < 10−4)
is indicated at the top of violin plots in (A).

In summary, our study indicates that GTADC exhibits outstanding performance and
stability in deciphering spatial transcriptomics data, providing a reliable tool for accurately
interpreting the cell type composition in cancer tissues. This has significant implications
for advancing our understanding of the cancer microenvironment and the development of
precision medicine.

3.2. Decomposition of Spatial Cell Distribution with GTADC in cSCC

Squamous cell carcinoma (cSCC) is a prevalent type of skin cancer, and studying
it contributes to a deeper understanding of the pathogenic mechanisms of skin tumors.
Analyzing cSCC data allows us to identify expression characteristics of different cell types,
understand immune cell infiltration, and explore interactions within the tumor microenvi-
ronment. As a widely occurring tumor type, studying cSCC provides essential clues for
early detection of the disease and improvement of treatment methods [41]. The application
of GTADC to cSCC data helps unveil the cellular composition and transcriptomic features
of this tumor, laying the foundation for a comprehensive understanding of its development.

We selected data from patient 2 for spatial deconvolution of the ST data, successfully
reconstructing the structure of cSCC (Figure 3A). A pie chart intuitively displays the
proportions of heterogeneous cells identified at each local spot, confirming not only the
accuracy of predictions but also highlighting the high predictive accuracy and sensitivity of
the GTADC method. Furthermore, the GTADC method successfully predicts and spatially
maps the distribution of important cell types.

Moreover, the GTADC method provides detailed information on the composition of
each cell type, enhancing our understanding of heterogeneity. The research results indicate
a correlation between the enrichment of each cell type in the region and its determined pro-
portion (Figure 3B). Additionally, as the original study did not provide explicit proportion
results, we mapped the gene expression distribution of marker genes corresponding to cell
types in that spatial domain for validation [42], confirming the accuracy of the GTADC
experimental results. For instance, epithelial cells are enriched in the upper-middle part
of the slice, consistent with the high expression of its marker gene KRT14 in that region;
tumor cells mainly concentrate at the top and middle-lower parts of the slice, with sparse
clustering in other areas, aligning with the expression trend of the LGASL1 gene in that
region; melanocytes, with fewer in number, are minimally enriched at the far right of the
slice, where its marker gene DCT shows high expression, undetectable or at very low levels
in other spatial points (Figure 3C).

GTADC’s spatial deconvolution in cSCC enables precise analysis, uncovering cell
type distribution and interactions. This innovative approach offers insights into tumor
dynamics, aiding targeted therapies. It sets a precedent for comprehensive cancer microen-
vironment studies.
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3.3. Application of GTADC on Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver
globally and typically accompanies the development of chronic liver diseases. In-depth
analysis of HCC data allows a comprehensive study of the molecular mechanisms of liver
cancer and exploration of the expression characteristics of tumor cells in liver tissue. Given
the high incidence and invasiveness of HCC, molecular research is crucial for identifying
effective treatment methods [43]. The application of GTADC to HCC data provides a
profound understanding of the transcriptomic heterogeneity of liver cancer, establishing a
solid foundation for the development of personalized treatment and diagnostic strategies.

Due to the distinct origins of scRNA-seq and ST data from different studies, covering
various stages of cancer tissue and varying cancer cell quantities in different stages, the
heterogeneity of cancer tissue and the differing cancer cell numbers in different stages can
significantly impact the semi-supervised GTADC method. To address this challenge, we
merged sequencing results from multiple samples in scRNA-seq data and performed fixed-
sample-size random sampling for each cell type, using the sampling results as a reference
dataset. The results of the GTADC method were utilized to map the reference cell types
to the spatial positions in the images (Figure 4A). This strategy enables a more accurate
revelation of the distribution and spatial relationships of different cell types in human
primary liver cancer. This method provides a powerful tool for a deeper understanding of
the cellular features of HCC.
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According to the original study, we observed significant distribution differences among
the “transition zone” and its adjacent “normal zone” and “tumor zone”. The deconvolution
results of GTADC for this cancer are consistent with the literature description (Figure 4B).
In the “transition zone”, fibroblasts were mapped to the center of the small sample, clearly
distinguishing the cancer and normal areas, aligning with the distribution of its marker
gene COL3A1. Tumor cells were significantly enriched on the right side of the sample,
consistent with the location of the high expression of the marker gene GPC3, in line with
the original study’s description of the “tumor zone”. Hepatocytes were widely distributed
in the tissue, scattered in both the “normal zone” and “tumor zone”, with a higher quantity
in the “normal zone” than in the “tumor zone”, corresponding to the distribution range of
the marker gene ALB (Figure 4C).

In Figure 4, while the fibroblast results exhibit clear signals that align with the bi-
ological experiments of the original dataset, the classification boundaries for the other
two cell types lack clarity, indicating less distinct boundaries between them. This finding
suggests that our method may encounter challenges in accurately delineating boundaries
between these cell types based solely on gene expression data. This is primarily because
single cell gene expression data may not fully capture the complex cellular phenotype
differences. Cells in different physiological states and microenvironments may exhibit
similar gene expression patterns, leading to blurred classification boundaries. Therefore,
for more accurate delineation of cell type boundaries, future research may need to integrate
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multiple data sources, such as protein expression data and cellular morphological features,
to comprehensively consider the multidimensional information of cells.

GTADC excelled in deconvoluting HCC spatial transcriptomics, unveiling diverse cell
types’ distribution and relationships. This deep analysis reveals HCC’s unique features,
holding potential for understanding its pathogenesis, finding new targets, and personal-
ized treatments.

3.4. GTADC Characterizes the Spatial Heterogeneity of Tumor Cells in Human Breast Cancer

Breast cancer, one of the most prevalent cancers among women, may also occur in
men. In-depth analysis of breast cancer data allows a better understanding of tumor
heterogeneity, molecular subtypes, and the impact of the tumor microenvironment on
cancer development. One key goal of breast cancer research is to identify the molecular
characteristics of different subtypes, providing a solid scientific foundation for personalized
treatment [44]. The application of GTADC in breast cancer data is significant as it helps
reveal the transcriptomic differences among various cell types in breast tissue, providing
a foundational support for more precise diagnostic and treatment strategies (Figure 5A).
This research direction holds promise for improving treatment outcomes and survival rates
for breast cancer patients.
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mapping represents the maximum and minimum cell scores. (C) Display of marker gene expression
levels for the cell types corresponding to (B).

By examining the spatial distribution of cell types inferred by GTADC and comparing
it with the original study, which focused on the distribution of marker genes specific to each
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cell type, we gained insights into the accuracy of GTADC’s predictions (Figure 5B). In breast
cancer tissue, we observed that endothelial cells were located in the peripheral regions,
consistent with the spatial expression pattern of the marker gene PECAM1. The distribution
of cancer epithelial aligned with the source of the ST data, being highly enriched in the
upper tissue, predominantly present in the central tissue’s edge regions, and exhibiting a
distinct layered structure in the lower tissue, closely resembling the expression pattern of
the marker gene ESR1. Finally, B cells were sparsely present in the tissue, clustering in a few
spots in the central tissue, consistent with the expression pattern of the marker gene MS4A1
(Figure 5C). Moreover, the expression levels of these cell type-specific marker genes in
other spots were lower or undetectable. These observations further validate the reliability
of GTADC in accurately revealing the distribution of cell types in breast cancer tissue.

GTADC’s precise analysis in breast cancer deepens cell distribution understanding,
showcasing exceptional efficacy. This method supports cancer research, laying a solid
foundation for future strategies, providing a unique view into breast cancer’s microcosm.

4. Discussion

In current biological research, cancer, as a compelling focus of study, benefits signif-
icantly from the combined analysis of multi-omics technologies, providing a powerful
tool to delve into the essence of this disease [45]. The complexity and heterogeneity of
cancer make it challenging to reveal the complete picture relying solely on data from a
single omics approach. The integration of multi-omics methods addresses this limitation,
enabling a more comprehensive understanding of the various changes in cancer occurrence,
progression, and treatment processes [46–48]. By integrating information from single-cell
genomics and spatial transcriptomics, we can gain a more accurate insight into the interac-
tions between different cell types in tumor tissue. This integrated analysis not only helps
uncover the intricate complexity of cell signaling pathways but also facilitates in-depth ex-
ploration of the distribution and mutual influences of cells in the tumor microenvironment.
This holistic multi-omics approach plays a crucial role in cancer research, offering oppor-
tunities for a more comprehensive understanding of tumor biology. Furthermore, such
integrated analyses aid in identifying potential therapeutic targets, providing more precise
directions for personalized treatment [49]. Therefore, multi-omics integration studies in
cancer not only expand our theoretical knowledge of cancer biology but also establish a
solid foundation for future treatment strategies and drug development.

In this study, we introduced an innovative method, GTADC, to gain a deeper un-
derstanding of cancer, a complex disease. We implemented a unique feature selection
mechanism designed to more accurately identify genes with a greater inclination for classi-
fication. This innovative feature selection method not only contributes to improving the
performance of the classification model but also flexibly adapts to the heterogeneity of
cancer tissue, allowing us to finely explore potential biological information. Simultaneously,
by integrating two types of data, we significantly enhanced data consistency and compara-
bility, making it more accurate for application in spatial transcriptomics. Additionally, we
employed a more complex graph construction method, namely, a random projection forest,
to comprehensively describe the complex relationships between data. The heterogeneity
of cancer tissue is not only reflected in the differences in gene expression but also in the
complexity of interactions between cells. By introducing graph structure, we better capture
and represent the unique relationships between different parts of cancer tissue, providing
the model with richer information. The application of a random projection forest enables
us to more comprehensively and accurately reveal the complex biological features within
cancer tissue, offering a new perspective for a deeper understanding of cancer.

5. Conclusions

In summary, GTADC exhibits unique advantages in addressing the spatial composition
of cells in cancer tissue, demonstrating high accuracy and sensitivity in predicting cell type
proportions. It serves as a reliable tool for in-depth exploration of spatial cell composition
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issues. The distinctive features of GTADC provide a new perspective, unlocking fresh
possibilities in cancer research. It stands out as a powerful instrument, contributing to a
deeper understanding of cancer biology in the scientific community.
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