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Abstract: The development of hydrogels that allow vascular endothelial cells to form capillary-
like networks is critical for advancing tissue engineering and drug discovery. In this study, we
developed hydrogels composed of phenolated hyaluronic acid (HA-Ph) with an average molecular
weight of 490–159 kDa via sonication in an aqueous solution. These hydrogels were synthesized by
the horseradish peroxidase-catalyzed crosslinking of phenol moieties in the presence of hydrogen
peroxide and phenolated gelatin. The sonication-degraded HA-Ph (198 kDa) significantly enhanced
the migration ability of human umbilical vein endothelial cells (HUVECs) on cell culture plates
when added to the medium compared to the original HA-Ph (490 kDa) and less-degraded HA-Ph
(312–399 kDa). In addition, HUVECs cultured on these hydrogels formed networks that did not
occur on hydrogels made from the original HA-Ph. CD44 expression and PI3K gene expression,
both markers related to angiogenesis, were 3.5- and 1.8-fold higher, respectively, in cells cultured on
sonication-degraded HA-Ph hydrogels than in those cultured on hydrogels comprising the original
HA-Ph. These results highlight the potential of hydrogels containing sonication-degraded HA-Ph for
tissue engineering and drug-screening applications involving human vascular endothelial cells.

Keywords: endothelial cell network formation; hyaluronic acid; CD44 receptor; enzymatic crosslinking;
composite hydrogel

1. Introduction

Hyaluronic acid (HA), an endogenous glycosaminoglycan, is a crucial component
of various tissues and is present in the extracellular matrix (ECM). It plays an important
role in various physiological processes, such as angiogenesis, tissue regeneration, and
wound healing [1–3]. In these physiological processes, the interactions of HA with the
cell surface receptors CD44 and receptor for hyaluronan-mediated motility (RHAMM) are
critical in modulating cellular functions such as adhesion, proliferation, and migration [4,5].
The ability of HA to interact with cells depends on its molecular weight [6]. HA can be
classified into two main groups: high-molecular-weight HA (>500 kDa, HMWHA) and
low-molecular-weight HA (10–500 kDa, LMWHA) [7]. LMWHA interacts distinctively
with cell surface receptors such as CD44 and RHAMM in various cell types and induces
unique intracellular signaling pathways [6]. The engagement of CD44 with LMWHA
triggers a cascade of intracellular signaling and upregulates the synthesis of hyaluronidase,
an enzyme responsible for degrading HA, resulting in the remodeling of the ECM [8].

Angiogenesis is an important process in both physiological and pathological contexts,
including wound healing, tissue regeneration, and tumor growth [9,10]. Therefore, the
molecular-weight-dependent regulation of HA on vascular endothelial cell behavior has
been intensively studied [2,4,11,12]. However, gaps remain for on-demand control of the
molecular weight of HA and its impact on the behavior of vascular endothelial cells. The
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effects of HA molecular weight and CD44 interactions on vascular endothelial cell network
formation, which will provide valuable insights into the pro-angiogenesis process and the
development of diseases such as cancer, cardiovascular diseases, and diabetic retinopathy,
are particularly under-researched [13–15].

This study aimed to develop hydrogels incorporating LMWHA-Ph obtained by con-
trolled sonication that allow vascular endothelial cells to form capillary-like networks
through a process similar to angiogenesis in vivo, which is related to the expression of cell
surface CD44, using human umbilical vein endothelial cells (HUVECs) in vitro. HUVECs
have been widely used as model cells in angiogenesis studies to understand the behavior
of vascular endothelial cells [16]. Hydrogels, which provide a three-dimensional matrix,
are critical for mimicking the natural cellular environment, allowing a more accurate as-
sessment of vascular endothelial cell behavior involving HA-regulated network formation.

To obtain hydrogels composed of LMWHA, HMWHA possessing phenol moieties
(HMWHA-Ph) was synthesized and then degraded by sonication to obtain LMWHA-
Ph (Figure 1a). The sonication method was utilized to degrade HMWHA-Ph instead of
enzymatic degradation using hyaluronidase or thermal degradation, which have been
applied for the same purpose, owing to the difficulty of precise control of molecular
weight [17]. Degradation by sonication allows finer control of the molecular weight of HA
by adjusting the ultrasound frequency, intensity, and duration of exposure [18].
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Figure 1. Schematic illustrations of (a) HA-Ph synthesis and degradation by sonication of HA-Ph
solution to obtain LMWHA-Ph. (b) Hydrogel preparation method using HRP-mediated crosslinking
of phenolated HMWHA-Ph or LMWHA-Ph in the presence of H2O2.

Hydrogels were obtained through horseradish peroxidase (HRP)-mediated crosslink-
ing [19,20] of the phenol moieties introduced into HA (Figure 1b). Phenolated gelatin
(gelatin-Ph) was also present in the hydrogels to support the adhesion and elongation of
HUVECs, which was not accomplished via HA-Ph alone. The effectiveness of combin-
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ing gelatin-Ph with a less cell-adhesive polymer-Ph to obtain hydrogels with superior cell
adhesion and proliferation has been reported [21,22]. Several studies have demonstrated
the potential of composite or hybrid hydrogels containing both HA and gelatin to mimic
the ECM in the body [23–25], including their interaction with CD44 receptors [24]. The
hydrogels obtained in this study will provide valuable insights into the mechanisms of an-
giogenesis and the role of ECM components in regulating this complex process, and they will
advance tissue engineering and drug discovery involving vascular endothelial cells. It is hy-
pothesized that hydrogels composed of sonication-degraded LMWHA-Ph will enhance the
formation of capillary-like networks by HUVECs in vitro, potentially through upregulation
of CD44 receptor expression and subsequent PI3K-mediated signaling pathways.

2. Materials and Methods
2.1. Materials

HA-Ph (3.5-Ph groups per 100 repeating units) and gelatin-Ph (4.1 × 10−4 mol-Ph/g)
were prepared according to the previous protocols, and the phenol contents were deter-
mined based on the tyramine standard curve (Figure S1) [26,27]. Sodium hyaluronate (aver-
age molecular weight: 550 kDa, HA-LQ) was purchased from Kewpie (Tokyo, Japan) (molec-
ular weight was measured as per the protocol described in Section 2.4. Molecular Weight
Measurement). Tyramine hydrochloride, 3-(4-hydroxyphenyl)propionic acid, gelatin type B
from bovine skin, and phalloidin-iFluor 488 (ab176759) were purchased from Chem-Impex
(Wood Dale, IL, USA), Tokyo Chemical Industry (Tokyo, Japan), Sigma-Aldrich (St. Louis,
MO, USA), and Abcam (Cambridge, UK), respectively. N-Hydroxysuccinimide, water-
soluble carbodiimide hydrochloride, hyaluronidase, catalase from ovine, HRP, 31 w/w%
hydrogen peroxide (H2O2) aqueous solution, and phosphate-buffered saline (PBS) con-
taining 4 w/w% paraformaldehyde were purchased from FUJIFILM Wako Pure Chemical
(Osaka, Japan).

2.2. Cell Culture

The HUEhT-1 (HUVECs modified with pIRES-hTERT-hygr) cell line was purchased
from the RIKEN Cell Bank (Ibaraki, Japan). Cells were cultured in a humidified incubator
with 5% CO2 at 37 ◦C using MCDB107 (Peptide Institute, Osaka, Japan) base medium
supplemented with 10 ng/mL endothelial growth factor, 10 ng/mL basic fibroblast growth
factor (Sigma-Aldrich), and 10 v/v% fetal bovine serum (FBS).

2.3. HA-Ph Degradation

PBS containing 2 w/v% HA-Ph (HA-Ph-0) was sonicated using an ultrasonic cleaner
(LiebeWH, Shenzhen, China) operating at 40 kHz and 240 W at 50 ◦C for 5 min (HA-Ph-5),
10 min (HA-Ph-10), 30 min (HA-Ph-30), and 60 min (HA-Ph-60).

2.4. Molecular Weight Measurement

The polymer molecular weights were determined by high-performance liquid chro-
matography (HPLC) with respect to Pullulan standards using an intensity–time curve. The
eluent flow rate in the column (LC-20AD; Shimadzu, Kyoto, Japan) was set to 0.7 mL/min
at 25 ◦C.

2.5. Rheological Measurement

The viscoelastic properties of solutions containing 2 w/v% HA-Phs obtained after
different sonication times were determined using a rheometer (HAAKE MARS III, Thermo
Fisher Scientific, Waltham, MA, USA) with a cone plate (diameter: 35 mm) at 1% constant
shear strain and a 1 mm gap between plates at 25 ◦C.

2.6. Hydrogel Preparation and Gelation Time

Hydrogels were prepared from PBS containing 2 w/v% and 1.5 w/v% HA-Ph-0 or
2 w/v% HA-Ph-30 and 10 U/mL HRP by exposure to 16 ppm air containing H2O2 for



Biomolecules 2024, 14, 604 4 of 14

30 min. A composite hydrogel (HA-Ph/gelatin-Ph) was prepared by mixing 0.1 w/v%
gelatin-Ph with this solution. The gelation time was determined by adding 1 mL of the
above polymer solutions into a 12-well plate and exposing it to 16 ppm air containing H2O2
while stirring with a magnetic bar. The gelation time was determined based on the swelling
of the polymer solution.

2.7. Mechanical Property Measurement

Hydrogels were prepared by exposing air containing 16 ppm H2O2 to PBS containing
0.1 w/v% gelatin-Ph, 2 w/v% HA-Ph-0 to HA-Ph-60, and 10 U/mL HRP in a 6-well plate
(1 mL/well) for 30 min (diameter 35 mm and height 3 mm). The stiffness of these hydrogels
was measured using a material tester (EZ-SX, Shimadzu, Kyoto, Japan) equipped with a
load cell having a sensitivity of 5 N. An 8 mm diameter probe was used to apply localized
compression to the hydrogel sheet during the compression test at a compression speed of
6 mm/s. Young’s modulus was calculated from data obtained in the strain range of 1%
to 10%.

2.8. Diphenol Formation

PBS containing 2 w/v% HA-Ph-0 to HA-Ph-60 and 10 U/mL HRP was poured into a
96-well plate (200 µL/well) and exposed to air containing 16 ppm H2O2. Diphenol bond
formation was analyzed using a fluorescence plate reader (Molecular Devices, San Jose, CA,
USA). Fluorescence emission intensity at 420 nm was measured at an excitation wavelength
of 310 nm.

2.9. Impact of Sonicated HA-Ph Solutions on Cellular Dynamics
2.9.1. Cell Migration

HUEhT-1 cells were cultured in 6-well plates until they reached confluence. A scratch
was created using a pipette tip. After scratching, the growth medium was replenished
with a growth medium containing 0.1 w/v% HA-Ph-0 to HA-Ph-60. Cell migration speed,
defined as the scratch area covered by the cells over time, was monitored using a cell
culture monitoring system (CM20, Olympus, Tokyo, Japan).

2.9.2. Cell Proliferation

HUEhT-1 cell proliferation was determined via cell doubling time. Cells were cultured
in a 24-well plate at 5 × 102 cells/cm2 using MCDB107 growth medium containing 0.1 w/v%
HA-Ph-0 to HA-Ph-60 and monitored using the cell culture monitoring system to calculate
the doubling time.

2.10. Cell Adhesion and Morphology on Hydrogel

Hydrogels were prepared from solutions containing 10 U/mL HRP, 0.1 w/v% gelatin-
Ph, and 1.5 or 2 w/v% HA-Ph-0 or 2 w/v% HA-Ph-30 in 6-well plates following the
protocol outlined in Section 2.6. Hydrogel Preparation and Gelation Time, and cells at
5 × 103 cells/cm2 were seeded on the hydrogels. Before cell seeding, the residual H2O2
on the hydrogels was degraded by overnight incubation in MCDB107 medium containing
1 mg/mL catalase. After 48 h of culture, F-actin and nuclei were stained with the phalloidin
iFluor488 reagent and CellStain DAPI (Dojindo, Kumamoto, Japan), respectively. These
stains facilitated the analysis of cell morphological parameters, specifically cell area and
aspect ratio (the ratio between cell length and width). The morphological parameters
were analyzed based on fluorescence images captured using a fluorescence microscope
(Model BZ-9000, Keyence, Osaka, Japan) and ImageJ software (Version 1.53f, NIH, Bethesda,
MD, USA).

2.11. Network Formation

HUEhT-1 cell network formation on the prepared hydrogels was analyzed as described
in Section 2.6. Hydrogel Preparation and Gelation Time. Then, CD44 receptor-blocked
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and non-blocked HUEhT-1 cells at 4 × 104 cells/cm2 were cultured on the hydrogels
using MCDB107 medium supplemented with 2 v/v% FBS, 10 ng/mL endothelial growth
factor, and 10 ng/mL basic fibroblast growth factor for 16 h. Before cell seeding, the
remaining H2O2 was degraded according to the method described in 2.10. Cell Adhesion
and Morphology on Hydrogel. A fluorescence microscope and a cell culture monitoring
system were used to analyze network formation.

2.12. Flow Cytometry

HuEhT-1 cells were collected from the hydrogel via 3 h incubation in MCDB107
medium containing 0.1 w/v% hyaluronidase (FUJIFILM Wako Pure Chemicals). Next, the
cells were incubated with FCblock (BD Bioscience, San Jose, CA, USA) reagents to block
non-specific binding sites. Subsequently, cells were washed with PBS and incubated PBS
containing APC-conjugated mouse CD44 antibody (1:300) for 30 min at 4 ◦C. After 30 min
of incubation, the cells were washed twice with PBS and analyzed using a BD Accuri C6
flow cytometer (BD Biosciences).

2.13. Real-Time Quantitative Polymerase Chain Reaction (PCR) Analysis for PI3K and
Hypoxia-Inducible Factor (HIF)-1 Expression

HUEhT-1 cells were collected from the hydrogel as described in Section 2.12. Flow
Cytometry. For comparison, the cells cultured in the dish were trypsinized. Total RNA
was isolated from cells using an RNA isolation kit (Takara, Shiga, Japan) according to the
manufacturer’s protocol. Reverse transcription was performed using the PrimerScript RT
Master Mix reagent kit (Takara) according to the manufacturer’s protocol. PI3K and HIF-1
gene expression were quantified via real-time polymerase chain reaction (RT-PCR) using
the TB Green Master Kit (Takara) normalized to the expression of the GAPDH gene with
the delta Ct method.

2.14. Statistical Analysis

Statistical analyses were performed using Microsoft Excel 2019 version 1808 (Microsoft
Corp., Redmond, WA, USA). A one-way analysis of variance was used to determine statis-
tical differences between experimental conditions. Significant differences were identified
using Tukey’s honestly significant difference (HSD) and the post hoc t-test; p < 0.05 was
considered statistically different.

3. Results and Discussion
3.1. Viscoelastic Properties, Molecular Weight, and Hydrogel Characterization

The possibility of HA-Ph degradation by sonication was evaluated by measuring the
change in viscosity of the sonicated HA-Ph solutions and the molecular weight of HA-Ph
in the solutions. As shown in Figure 2a, the time-dependent degradation of HA-Ph was
indicated by the decrease in the viscosity of the solutions with increasing sonication time;
30 and 60 min of sonication resulted in a 39% and 68% reduction in viscosity, respectively,
compared with that of the non-sonicated solution. The average molecular weight of HA-Ph
in the sonicated solutions, determined via HPLC analysis (Figures 2b and S3), decreased
from 490 kDa (HA-Ph in the non-sonicated solution) to 198 and 159 kDa after 30 and
60 min of sonication, respectively. These results demonstrate that HA-Ph is degradable by
sonication, similar to unmodified HA. Ultrasound treatment causes HA chains to break
into shorter fragments, mainly through the breakage of glycosidic bonds [18].
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Figure 2. Effect of sonication time on the (a) viscosity of HA-Ph solution and (b) molecular weight
of HA-Ph. The stability of phenol groups with sonication time represents the fluorescence emission
of the (c) diphenol bond at excitation at 310 nm. The effect of sonication time on the mechanical
properties of HA-Ph hydrogels with and without gelatin-Ph is represented as (d) gelatin time and
(g) Young’s modulus calculated based on the (e,f) stress−strain curve at 1% to 10% strain. Error bars
represent the standard deviation (n = 5) for Young’s modulus and (n = 3) for gelation time. * p < 0.05,
n.s.: no significant difference (p > 0.05) in Tukey’s HSD.

The phenol moieties were introduced to obtain hydrogels through HRP-mediated
oxidative crosslinking. Phenols can be oxidized by sonication [28,29]. Therefore, the
remaining unoxidized phenol moieties were analyzed, HA-Phs, in the sonicated solutions
by measuring diphenol formation through HRP-mediated crosslinking. The fluorescence
emission of diphenol at 420 nm for the HA-Ph solutions sonicated for 5–30 min showed no
changes, whereas 60 min of sonication showed a lower fluorescence emission compared to
that detected for the non-sonicated HA-Ph solution. This result indicates that sonication
causes the oxidation of the phenolic moieties of HA-Ph, but the degree of oxidation is not
as high with treatments lasting less than 60 min under the conditions applied in this study
(Figure 2c).

Next, the gelation time and mechanical properties of the hydrogels formed from the
solutions obtained through HRP-mediated crosslinking were evaluated, which are affected
by the molecular weight of the polymers [30] and the density of crosslinkable phenol
moieties [26,31]. These are crucial parameters for hydrogel sheet fabrication in in vitro
cell culture studies. The gelation time increased significantly with the sonication time.
A longer average gelation time of 600 s was obtained with a 60 min sonicated HA-Ph
solution, which was nearly 10 times higher than that for all the other sonication times
(Figure 2d) (p < 0.05). The hydrogel stiffness (as measured by Young’s modulus calculated
from data obtained in the strain range of 1% to 10% (Figure 2e,f)) decreased with increasing
sonication time (Figure 2g). The hydrogels obtained from the HA-Ph solutions sonicated
for 5 and 10 min exhibited a negligible change in stiffness (p = 0.4), whereas those from
the solutions sonicated for 30 and 60 min decreased Young’s modulus to 49% and 90%,
respectively, compared to that of the hydrogel obtained from the non-sonicated HA-Ph
solution (p < 0.05). These results demonstrate that the hydrogelation time and mechanical
properties of the hydrogels obtained from sonicated HA-Ph solutions can be controlled by
varying the sonication time.
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The effect of adding 0.1 w/v% gelatin-Ph to the HA-Ph solutions on the gelation time
and mechanical properties of the hydrogels was also evaluated because the incorporation of
gelatin-Ph is necessary for cell adhesion and growth on HA-Ph hydrogels [27]. As shown in
Figure 2d,g, the addition had a negligible effect on the gelation time and hydrogel stiffness
within 30 min of sonication. This result indicates that the hydrogelation rate and mechanical
properties were mainly due to HA-Ph at 0.1 w/v% gelatin-Ph under these conditions.

3.2. Influence of Sonicated HA-Ph Solutions on Cell Migration and Proliferation

Low-molecular-weight HA fragments enhance endothelial cell migration [2,32] and
proliferation [33,34]. Therefore, the evaluation focused on whether HA-Ph degraded by
sonication can promote vascular endothelial cell migration and proliferation, similar to
unmodified HA. As shown in Figure 3, HUEhT-1 cells cultured in the presence of HA-
Ph-30 and HA-Ph-60 showed significantly enhanced migration speed by 21% and 20%,
respectively, compared to those cultured in the presence of non-sonicated HA-Ph (HA-Ph-0)
(p < 0.05) (Figure 3a,b). Proliferation was enhanced by HA-Ph-30 and HA-Ph-60, as shown
in Figure 3c. The cells treated with HA-Ph-30 and HA-Ph-60 showed decreased doubling
time by approximately 27% and 31%, respectively, compared to that of untreated cells
(p < 0.05) (Figure 3c).
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Figure 3. Impact of medium containing degraded HA-Ph on HUEhT-1 cell migration and proliferation.
(a) Time-lapse images captured at 0, 4, and 8 h after creating a scratch wound (scale bar 50 µm).
(b) Quantitative analysis of the normalized area of cell migration as a percentage. Error bars represent
the standard deviation (n = 3). (c) Doubling time of HUEhT-1 cells as a function of HA-Ph solution
sonication time. Error bars represent the standard deviation (n = 2). Cells cultured without adding
HA-Ph into the medium were considered the control, and the values are represented as the dashed
line in the graphs. * p < 0.05, n.s.: no significant difference (p > 0.05) Tukey’s HSD.

These results demonstrate that low-molecular-weight HA-Ph obtained by sonication-
mediated degradation can enhance the migration and proliferation of vascular endothelial
cells, similar to non-modified HA. Slevin et al. have reported that the interaction between
LMWHA and vascular endothelial cells enhances cell migration speed via the activation
of extracellular-regulated kinase 1/2 (ERK1/2) [2]. Low-molecular-weight HA regulates
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vascular endothelial cell proliferation through interactions with cell receptors such as
CD44 [35]. Clustering of CD44 on the cell surface was proposed to enhance the production
of vascular endothelial growth factor (VEGF), promoting EC proliferation [34].

3.3. Cell Adhesion and Morphology on Hydrogels

Understanding the adhesion of HUEhT-1 cells is essential to elucidating their ability
to form networks, particularly when interacting with HA of different molecular weights.
Based on the above results for the formation of hydrogels in a short time (Figure 2d,g) and
the enhancement of migration with a smaller decrease in cell growth (Figure 3), hydrogels
composed of 2 w/v% HA-Ph-30 and 0.1 w/v% gelatin-Ph (HA-Ph-30 hydrogel) were used
to evaluate the effect of the incorporation of degraded HA-Ph through sonication on the
behavior of vascular endothelial HUEhT-1 cells. Cellular adhesion is governed by substrate
stiffness [36]. As shown in Figure 2g, the 2 w/v% HA-Ph-0 and 2 w/v% HA-Ph-30 hydrogels
exhibited different stiffness values. Therefore, to mitigate the impact on hydrogel stiffness
and investigate the effect of the HA-Ph molecular weight on cellular adhesion, 1.5 w/v%
HA-Ph-0 hydrogel (Young’s modulus: 2.9 kPa) was utilized, which also has nearly the
same stiffness as 2 w/v% HA-Ph-30 hydrogel (Young’s modulus: 2.7 kPa, Figure 2g).

As shown in Figure 4, HUEhT-1 cells cultured on the 2 w/v% HA-Ph-0 hydrogel
showed a similar shape (a), cell area (b), and aspect ratio (c) to those on a cell culture
plate. The cells on the 1.5 w/v% HA-Ph-0 hydrogel showed a similar shape and aspect
ratio as those on the 2 w/v% HA-Ph-0 hydrogel and culture plate, but with a smaller
cell area (p < 0.05). The cells on the 2 w/v% HA-Ph-30 hydrogel showed a similar cell
area to those on the 1.5 w/v% HA-Ph-0 hydrogel (p = 0.9) but showed an approximately
3-fold larger aspect ratio (p < 0.05). As consistent with our previous studies, LMWHA-Ph
induced significant cellular elongation [37,38]. A possible mechanism for cell elongation
on the HA-Ph-30 hydrogel is the epithelial-to-mesenchymal transition [39], which involves
morphological changes of cells to an elongated spindle-like morphology. A previous study
by Pang et al. also reported that LMWHA could induce cell elongation [40].
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Figure 4. Evaluation of HUEhT-1 cell adhesion and morphology on the hydrogels composed of
2 w/v% or 1.5 w/v% HA-Ph-0 and 2 w/v% HA-Ph-30. (a) Fluorescence micrographs of the HUEhT-1
cells on hydrogels stained with phalloidin iFluor-488 (F-actin) and DAPI (nucleus). Scale bars: 100 µm.
(b) Area and (c) aspect ratio of cells on hydrogels (n ≥ 40). * p < 0.05, n.s.: no significant difference
(p > 0.05), Tukey’s HSD. Error bars represent the standard deviation.
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3.4. CD44-Mediated HUEhT-1 Cell Network Formation

Next, the network formation of HUEhT-1 cells on hydrogels with the same composition
of HA-Phs as described in Section 3.3. Cell Adhesion and Morphology on Hydrogels
was investigated. HUEhT-1 cells only formed a visible network-like structure in the
2 w/v% HA-Ph-30 hydrogel (Figure 5d and Movie S1). In contrast, the cells cultured on the
culture plate (Figure 5a) and hydrogels with 1.5 w/v% (Figure 5b) and 2 w/v% HA-Ph-0
(Figure 5c) exhibited no discernible network formation. This difference underscores the
pivotal role of the molecular weight of HA-Ph, particularly that of HA-Ph-30, in vascular
endothelial cell network formation. A targeted approach was used to elucidate the specific
interactions between the CD44 receptors and HA-Ph-30. The CD44 receptors on HUEhT-1
cells were selectively blocked using an anti-CD44 antibody before cell seeding onto the
2 w/v% HA-Ph-30 hydrogel (Figure S5). Cells in which the CD44 receptors were blocked
showed no network formation on the 2 w/v% HA-Ph-30 hydrogel (Figure 5e), whereas
non-blocked cells exhibited robust network-like structures (Figure 5d). HA oligomers
obtained via enzymatic degradation promote network formation by activating ICAM-1 and
VCAM-1 expression [34]. The interaction of HA oligomers with CD44 receptors enhanced
the production of VEGF, an essential growth factor in angiogenesis [5]. Therefore, the
suppression of network formation under CD44-blocked conditions may be due to the
regulation of the necessary signaling pathways for the secretion of necessary growth factors.
Also, LMWHA-Ph interaction with CD44 receptors could activate γ-adducin, which plays
a role in network formation [41].
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Figure 5. HUEhT-1 cell network formation assay on the (a) culture plate, (b) hydrogels composed of
1.5 w/v% HA-Ph-0, (c) 2 w/v% HA-Ph-0, (d) 2 w/v% HA-Ph-30, and (e) 2 w/v% HA-Ph-30 blocked
with CD44. Cells were observed after 13 h of culture.

3.5. HA-Ph Molecular Weight Modulates the Expression of CD44 Receptors

Based on flow cytometry analysis, CD44 expression was notably influenced by the
molecular weight of the HA-Phs, as shown in Figure 6. CD44 expression in HUEhT-1 cells
cultured on a cell culture plate and 1.5 w/v% and 2 w/v% HA-Ph-0 hydrogels decreased
by 83, 71, and 71%, respectively, compared to those cultured on the 2 w/v% HA-Ph-30
hydrogel (p < 0.05) (Figure 6a,b). These results are consistent with our recent study and
those of Khanmohammadi et al., who showed that LMWHA-immobilized gelatin-based
hydrogels increased endothelial cell motility and CD44 expression [42,43].
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Figure 6. Flow cytometry analysis of HUEhT-1 cells. (a) Representative flow cytometry histogram
of HUEhT-1 cells cultured on the hydrogels and well plate (medium containing different molecular
weights of HA-Ph). The quantitative mean fluorescence intensity (MFI) values of HUEhT-1 cells
cultured on the (b) hydrogel composed of 2 w/v% or 1.5 w/v% HA-Ph-0 and 2 w/v% HA-Ph-30
and (c) culture plate (culture medium consisting of 0.1 w/v% HA-Ph-0 and HA-Ph-30). Error bar:
standard deviation (n > 1000 cells). * p < 0.05, n.s.: no significant difference (p > 0.05), Tukey’s HSD.

The soluble forms of HA-Phs were also used to elucidate the effect of the molecular
weight of the HA-Phs on CD44 expression (Figure 6a,c) by incorporating HA-Ph-0 and HA-
Ph-30 into the cell culture medium at a concentration of 0.1 w/v%. The mean fluorescence
intensity (MFI) for the untreated cells and 0.1 w/v% HA-Ph-0-treated cells showed a
decrease of approximately 78% and 54%, respectively, compared to the 0.1 w/v% HA-Ph-
30-treated cells (p < 0.05). These results demonstrate that both the crosslinked and soluble
forms of HA-Ph-30 enhance CD44 expression in HUEhT-1 cells. This result is in accordance
with a previous report on human cerebral microvascular ECs (HCMVECs) in the presence
of both soluble and crosslinked HA [11].

3.6. Effect of HA-Ph-CD44 Interaction on PI3K and HIF-1 Gene Expression

PI3K and HIF genes play a significant role in angiogenesis [44–46]. Therefore, the
effect of the HA-Phs obtained by sonication-mediated degradation on PI3K gene expression
in HUEhT-1 cells cultured on hydrogels was analyzed. The cells cultured on the 2 w/v%
HA-Ph-30 hydrogel showed 1.5-fold and 1.8-fold higher PI3K gene expression than those
cultured on the same hydrogel with CD44 blocked and the 2 w/v% HA-Ph-0 hydrogel
(p < 0.05), respectively, indicating that the interaction of HA-Ph-30 with CD44 receptors
may increase PI3K gene expression (Figure 7a). Hypoxia-inducible factor 1 (HIF-1) is a
key gene involved in angiogenesis under hypoxic conditions [47]. Notably, no significant
differences were observed in HIF-1 gene expression across all tested conditions (p > 0.05)
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(Figure 7b). These findings suggest that hypoxic conditions did not primarily govern net-
work formation in HUEhT-1 cells but were likely due to the interaction between LMWHA
and CD44, as evidenced by the significant variations observed in PI3K gene expression.
This result supports the previous findings, which reported the influence of the PI3K gene
in angiogenesis and its activation through various signaling pathways initiated by the
interaction of CD44 and HA [44–46].
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4. Conclusions

In this study, we investigated the role of HA-Ph molecular weight, obtained by sonica-
tion of HA-Ph solutions, in vascular endothelial cell network formation within a hydrogel
prepared by HRP-mediated crosslinking. The degree of HA-Ph degradation was tuned
by controlling the sonication time at a constant frequency. Human vascular endothelial
cells exhibited distinct migration speeds and proliferation depending on the degree of
degradation. The degraded HA-Ph present in the hydrogel promoted the formation of the
HUEhT-1 cell network via CD44 interactions and elevated the expression of PI3K. These
results indicate that the sonication-mediated degradation of HA-Ph plays a crucial role in
vascular endothelial cell behavior. Therefore, these results provide a promising avenue
for fabricating hydrogels for in vitro vascular endothelial cell studies. Future research
should explore the CD44-LMWHA-Ph interaction in specific signaling pathways related to
network-like structure formation in endothelial cells. This study provides valuable insights
into the angiogenic potential of human vascular endothelial cells mediated by the CD44-
LMWHA-Ph interaction. Notably, we have focused exclusively on the LMWHA-Ph-CD44
receptor interaction. Other hyaluronan receptors, such as RHAMM, also interact with
LMWHA and play significant roles in mediating the cellular responses to HA. Our study
did not address the potential effects of the interaction of LMWHA-Ph with other receptors,
such as RHAMM, which is a limitation of our current research. Future studies should
explore the role of other receptor interactions with the LMWHA obtained via sonication to
fully understand the mechanisms of angiogenesis.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom14050604/s1, Figure S1: UV–Vis absorbance spectrum of (a) Na-HA,
HA-Ph, and (b) gelatin, gelatin-Ph; (c) tyramine hydrochloride standard curve was used to determine
the phenol content in each HA-Ph and gelatin-Ph; Figure S2: 1H NMR spectroscopy of (a) Na-
HA, HA-Ph, and (b) gelatin, gelatin-Ph; Figure S3: Intensity–time curve used for molecular weight
distribution calculations after sonication of HA-Ph solutions for 5–60 min. Average molecular weights
and molecular weight distribution calculations were conducted with respect to Pullulan standards.
PBS was used as the eluent, and the flow rate was set to 0.7 mL/min at 25 ◦C; Figure S4: Effect of the
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sonication time and the temperature on the oxidation of phenol groups present in the HA-Ph. UV–Vis
absorbance spectrum of phenol groups at 275 nm after (a) different sonication times at a constant
temperature and (b) incubation for 5–60 min at 50 ◦C without sonication. (c) Diphenol formation
between phenol moieties after incubation at 50 ◦C for 5–60 min. Additionally, 0 min samples were
maintained at 4 ◦C in UV–Vis and diphenol formation experiments; Figure S5: HUEhT-1 cell network
formation assay on the hydrogels composed of 2 w/v% HA-Ph-30. Phase contrast and fluorescence
images of HUEhT-1 network formation after 16 h of culture on the hydrogel under (a) CD44 receptor
non-blocked and (b) CD44 receptor block (red: APC-CD44 antibody) conditions; Movie S1: HUEhT-1
network formation.
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