Microfluidic System-Based Quantitative Analysis of Platelet Function through Speckle Size Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurement of Speckle Size and Contrast
2.2. Speckle Size Measurement System
2.3. Microparticle Preparation and Blood Sample Preparation
2.4. Fabrication of Microfluidic Device and System Operation
2.5. Flow Cytometry Measurement for Counting of Platelet Number
2.6. Confirmation of Platelet Aggregation by DIOC6 Staining
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jurk, K.; Shiravand, Y. Platelet phenotyping and function testing in thrombocytopenia. J. Clin. Med. 2021, 10, 1114. [Google Scholar] [CrossRef]
- Sun, S.; Urbanus, R.T.; Ten Cate, H.; de Groot, P.G.; de Laat, B.; Heemskerk, J.W.; Roest, M. Platelet activation mechanisms and consequences of immune thrombocytopenia. Cells 2021, 10, 3386. [Google Scholar] [CrossRef]
- Sikora, J.; Karczmarska-Wódzka, A.; Bugieda, J.; Sobczak, P. The use of total thrombus formation analysis system as a tool to assess platelet function in bleeding and thrombosis risk—A systematic review. Int. J. Mol. Sci. 2021, 22, 8605. [Google Scholar] [CrossRef]
- Fogelson, A.L. A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J. Comput. Phys. 1984, 56, 111–134. [Google Scholar] [CrossRef]
- Eppley, B.L.; Woodell, J.E.; Higgins, J. Platelet quantification and growth factor analysis from platelet-rich plasma: Implications for wound healing. Plast. Reconstr. Surg. 2004, 114, 1502–1508. [Google Scholar] [CrossRef]
- Shore-Lesserson, L.; Manspeizer, H.E.; DePerio, M.; Francis, S.; Vela-Cantos, F.; Ergin, M.A. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery. Anesth. Analg. 1999, 88, 312–319. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Qureshi, M.M.; Lee, S.Y.; Badadhe, J.D.; Cho, H.; Chung, E. Laser speckle decorrelation time-based platelet function testing in microfluidic system. Sci. Rep. 2019, 9, 16514. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Qureshi, M.M.; Lee, S.Y.; Chung, E. Optofluidic laser speckle image decorrelation analysis for the assessment of red blood cell storage. PLoS ONE 2019, 14, e0224036. [Google Scholar] [CrossRef]
- Smyth, S.; McEver, R.; Weyrich, A.; Morrell, C.; Hoffman, M.; Arepally, G.; French, P.; Dauerman, H.; Becker, R.; THE, F. Platelet functions beyond hemostasis. J. Thromb. Haemost. 2009, 7, 1759–1766. [Google Scholar] [CrossRef]
- Coughlin, S.R. Protease-activated receptors in hemostasis, thrombosis and vascular biology. J. Thromb. Haemost. 2005, 3, 1800–1814. [Google Scholar] [CrossRef]
- Basanova, A.; Baskova, I.; Zavalova, L. Vascular–platelet and plasma hemostasis regulators from bloodsucking animals. Biochemistry 2002, 67, 143–150. [Google Scholar] [PubMed]
- Paniccia, R.; Priora, R.; Alessandrello Liotta, A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Tantry, U.S.; Bliden, K.P.; Gurbel, P.A. Overestimation of platelet aspirin resistance detection by thrombelastograph platelet mapping and validation by conventional aggregometry using arachidonic acid stimulation. J. Am. Coll. Cardiol. 2005, 46, 1705–1709. [Google Scholar] [CrossRef] [PubMed]
- Sibbing, D.; Braun, S.; Jawansky, S.; Vogt, W.; Mehilli, J.; Schömig, A.; Kastrati, A.; von Beckerath, N. Assessment of ADP-induced platelet aggregation with light transmission aggregometry and multiple electrode platelet aggregometry before and after clopidogrel treatment. Thromb. Haemost. 2008, 99, 121–126. [Google Scholar] [PubMed]
- Pakala, R.; Waksman, R. Currently available methods for platelet function analysis: Advantages and disadvantages. Cardiovasc. Revascularization Med. 2011, 12, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Ingerman-Wojenski, C.; Smith, J.B.; Silver, M. Evaluation of electrical aggregometry: Comparison with optical aggregometry, secretion of ATP, and accumulation of radiolabeled platelets. J. Lab. Clin. Med. 1983, 101, 44–52. [Google Scholar] [PubMed]
- Velik-Salchner, C.; Maier, S.; Innerhofer, P.; Streif, W.; Klingler, A.; Kolbitsch, C.; Fries, D. Point-of-care whole blood impedance aggregometry versus classical light transmission aggregometry for detecting aspirin and clopidogrel: The results of a pilot study. Anesth. Analg. 2008, 107, 1798–1806. [Google Scholar] [CrossRef]
- Kundu, S.K.; Heilmann, E.J.; Sio, R.; Garcia, C.; Davidson, R.M.; Ostgaard, R.A. Description of an in vitro platelet function analyzer-PFA-100™. Semin. Thromb. Hemost. 2024, 50, 314–319. [Google Scholar] [CrossRef]
- Ding, J. Shear-Induced Platelet Dysfunction Relevant to Prosthetic Cardiovascular Devices; University of Maryland: Baltimore, MD, USA, 2018. [Google Scholar]
- Herbig, B.A. A Microfluidic Approach for Investigating the Role of Blood Flow in Thrombosis; University of Pennsylvania: Philadelphia, PA, USA, 2018. [Google Scholar]
- Ruggeri, Z.M. Mechanisms of shear-induced platelet adhesion and aggregation. Thromb. Haemost. 1993, 70, 119–123. [Google Scholar] [CrossRef]
- Piederrière, Y.; Le Meur, J.; Cariou, J.; Abgrall, J.; Blouch, M. Particle aggregation monitoring by speckle size measurement; application to blood platelets aggregation. Opt. Express 2004, 12, 4596–4601. [Google Scholar] [CrossRef]
- Piederrière, Y.; Cariou, J.; Guern, Y.; Le Jeune, B.; Le Brun, G.; Lotrian, J. Scattering through fluids: Speckle size measurement and Monte Carlo simulations close to and into the multiple scattering. Opt. Express 2004, 12, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Alexander, T.L.; Harvey, J.E.; Weeks, A.R. Average speckle size as a function of intensity threshold level: Comparison of experimental measurements with theory. Appl. Opt. 1994, 33, 8240–8250. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, M.M.; Brake, J.; Jeon, H.-J.; Ruan, H.; Liu, Y.; Safi, A.M.; Eom, T.J.; Yang, C.; Chung, E. In vivo study of optical speckle decorrelation time across depths in the mouse brain. Biomed. Opt. Express 2017, 8, 4855–4864. [Google Scholar] [CrossRef] [PubMed]
- Boas, D.A.; Dunn, A.K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 2010, 15, 011109. [Google Scholar] [CrossRef] [PubMed]
- Perper, R.J.; Zee, T.W.; Mickelson, M.M. Purification of lymphocytes and platelets by gradient centrifugation. J. Lab. Clin. Med. 1968, 72, 842–848. [Google Scholar] [PubMed]
- Headley, T.D. Method for collecting platelets and other blood components from whole blood. U.S. Patent No. 6296,602, 6 May 2003. [Google Scholar]
- Xia, Y.; Whitesides, G.M. Soft lithography. Annu. Rev. Mater. Sci. 1998, 28, 153–184. [Google Scholar] [CrossRef]
- Kunz, D.; Höffkes, H.G.; Kunz, W.; Gressner, A. Standardized flow cytometric method for the accurate determination of platelet counts in patients with severe thrombocytopenia. Cytom. J. Int. Soc. Anal. Cytol. 2000, 42, 284–289. [Google Scholar] [CrossRef]
- International Council for Standardization in Haematology Expert Panel on Cytometry; International Society of Laboratory Hematology Task Force on Platelet Counting. Platelet counting by the RBC/platelet ratio method: A reference method. Am. J. Clin. Pathol. 2001, 115, 460–464. [Google Scholar] [CrossRef]
- Terrisse, A.; Puech, N.; Allart, S.; Gourdy, P.; Xuereb, J.; Payrastre, B.; Sie, P. Internalization of microparticles by endothelial cells promotes platelet/endothelial cell interaction under flow. J. Thromb. Haemost. 2010, 8, 2810–2819. [Google Scholar] [CrossRef]
- Kirby, M.A.; Khaksari, K.; Kirkpatrick, S.J. Assessment of incident intensity on laser speckle contrast imaging using a nematic liquid crystal spatial light modulator. J. Biomed. Opt. 2016, 21, 036001. [Google Scholar] [CrossRef]
- Hamarová, I.; Šmíd, P.; Horváth, P.; Hrabovský, M. Methods for determination of mean speckle size in simulated speckle pattern. Meas. Sci. Rev. 2014, 14, 177–182. [Google Scholar] [CrossRef]
- Chicea, D. Speckle size, intensity and contrast measurement application in micron-size particle concentration assessment. Eur. Phys. J. Appl. Phys. 2007, 40, 305–310. [Google Scholar] [CrossRef]
- Abu-Raddad, L.J.; Patnaik, P.; Kublin, J.G. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science 2006, 314, 1603–1606. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.L.; Dangelmaier, C.; Jin, J.; Ashby, B.; Smith, J.B.; Kunapuli, S.P. Molecular basis for ADP-induced platelet activation: I. Evidence for three distinct ADP receptors on human platelets. J. Biol. Chem. 1998, 273, 2024–2029. [Google Scholar] [CrossRef] [PubMed]
- Thompson, O.; Andrews, M.; Hirst, E. Correction for spatial averaging in laser speckle contrast analysis. Biomed. Opt. Express 2011, 2, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Classics Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Michal, F.; Born, G. Effect of the rapid shape change of platelets on the transmission and scattering of light through plasma. Nat. New Biol. 1971, 231, 220–222. [Google Scholar] [CrossRef] [PubMed]
- Nadort, A.; Kalkman, K.; Van Leeuwen, T.G.; Faber, D.J. Quantitative blood flow velocity imaging using laser speckle flowmetry. Sci. Rep. 2016, 6, 25258. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Hayward, C.; Boshkov, L.K.; Santos, A.V.; Sheppard, J.; Bode, A.P.; Kelton, J.G. Sera from patients with heparin-induced thrombocytopenia generate platelet-derived microparticles with procoagulant activity: An explanation for the thrombotic complications of heparin-induced thrombocytopenia. Blood 1994, 84, 3691–3699. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.H.; Yoon, I.; Jeon, H.-J. Microfluidic System-Based Quantitative Analysis of Platelet Function through Speckle Size Measurement. Biomolecules 2024, 14, 612. https://doi.org/10.3390/biom14060612
Han JH, Yoon I, Jeon H-J. Microfluidic System-Based Quantitative Analysis of Platelet Function through Speckle Size Measurement. Biomolecules. 2024; 14(6):612. https://doi.org/10.3390/biom14060612
Chicago/Turabian StyleHan, Jong Hyeok, Inkwon Yoon, and Hee-Jae Jeon. 2024. "Microfluidic System-Based Quantitative Analysis of Platelet Function through Speckle Size Measurement" Biomolecules 14, no. 6: 612. https://doi.org/10.3390/biom14060612
APA StyleHan, J. H., Yoon, I., & Jeon, H. -J. (2024). Microfluidic System-Based Quantitative Analysis of Platelet Function through Speckle Size Measurement. Biomolecules, 14(6), 612. https://doi.org/10.3390/biom14060612