Structural Insights into the Rrp4 Subunit from the Crystal Structure of the Thermoplasma acidophilum Exosome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning and Protein Expression
2.2. Protein Production and Crystallization
2.3. Data Collection and Structure Determination
2.4. RNA Assay
2.5. Microscale Thermophoresis (MST) Measurement
2.6. Inflection Temperature (Ti) Measurement
3. Results
3.1. Overall Structures
3.2. Active Site and Phosphate-Ion-Binding Site
3.3. Structural Comparisons
3.4. Bioassays
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, P.; Petfalski, E.; Shevchenko, A.; Mann, M.; Tollervey, D. The exosome: A conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 1997, 91, 457–466. [Google Scholar] [CrossRef]
- Allmang, C.; Petfalski, E.; Podtelejnikov, A.; Mann, M.; Tollervey, D.; Mitchell, P. The yeast exosome and human PM–Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 1999, 13, 2148–2158. [Google Scholar] [CrossRef]
- Chekanova, J.A.; Shaw, R.J.; Wills, M.A.; Belostotsky, D.A. Poly (A) Tail-dependent Exonuclease AtRrp41p from Arabidopsis thaliana Rescues 5.8 S rRNA Processing and mRNA Decay Defects of the Yeast ski6 Mutant and Is Found in an Exosome-sized Complex in Plant and Yeast Cells. J. Biol. Chem. 2000, 275, 33158–33166. [Google Scholar] [CrossRef]
- Evguenieva-Hackenberg, E.; Walter, P.; Hochleitner, E.; Lottspeich, F.; Klug, G. An exosome-like complex in Sulfolobus solfataricus. EMBO Rep. 2003, 4, 889–893. [Google Scholar] [CrossRef]
- Hilleren, P.; McCarthy, T.; Rosbash, M.; Parker, R.; Jensen, T.H. Quality control of mRNA 3′-end processing is linked to the nuclear exosome. Nature 2001, 413, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Raijmakers, R.; Schilders, G.; Pruijn, G.J. The exosome, a molecular machine for controlled RNA degradation in both nucleus and cytoplasm. Eur. J. Cell Biol. 2004, 83, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Orban, T.I.; Izaurralde, E. Decay of mRNAs targeted by RISC requires XRN1, the Ski complex, and the exosome. RNA 2005, 11, 459–469. [Google Scholar] [CrossRef]
- Houseley, J.; LaCava, J.; Tollervey, D. RNA-quality control by the exosome. Nat. Rev. Mol. Cell Biol. 2006, 7, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Harlow, L.S.; Kadziola, A.; Jensen, K.F.; Larsen, S. Crystal structure of the phosphorolytic exoribonuclease RNase PH from Bacillus subtilis and implications for its quaternary structure and tRNA binding. Protein Sci. 2004, 13, 668–677. [Google Scholar] [CrossRef]
- Januszyk, K.; Lima, C.D. The eukaryotic RNA exosome. Curr. Opin. Struct. Biol. 2014, 24, 132–140. [Google Scholar] [CrossRef]
- Anderson, J.R.; Mukherjee, D.; Muthukumaraswamy, K.; Moraes, K.C.; Wilusz, C.J.; Wilusz, J. Sequence-specific RNA binding mediated by the RNase PH domain of components of the exosome. RNA 2006, 12, 1810–1816. [Google Scholar] [CrossRef]
- Briani, F.; Carzaniga, T.; Dehò, G. Regulation and functions of bacterial PNPase. Wiley Interdiscip. Rev. RNA 2016, 7, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Symmons, M.F.; Jones, G.H.; Luisi, B.F. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 2000, 8, 1215–1226. [Google Scholar] [CrossRef]
- Büttner, K.; Wenig, K.; Hopfner, K.-P. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol. Cell 2005, 20, 461–471. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.L.; Waterman, D.G.; Antson, A.A.; Ortiz-Lombardia, M. Structure of the Methanothermobacter thermautotrophicus exosome RNase PH ring. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.V.; Oliveira, C.C.; Zanchin, N.I.; Guimaraes, B.G. Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J. Biol. Chem. 2008, 283, 14120–14131. [Google Scholar] [CrossRef]
- Lorentzen, E.; Dziembowski, A.; Lindner, D.; Seraphin, B.; Conti, E. RNA channeling by the archaeal exosome. EMBO Rep. 2007, 8, 470–476. [Google Scholar] [CrossRef]
- Lorentzen, E.; Walter, P.; Fribourg, S.; Evguenieva-Hackenberg, E.; Klug, G.; Conti, E. The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat. Struct. Mol. Biol. 2005, 12, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Lorentzen, E.; Conti, E. Crystal structure of a 9-subunit archaeal exosome in pre-catalytic states of the phosphorolytic reaction. Archaea 2012, 2012, 721869. [Google Scholar] [CrossRef]
- Lu, C.; Ding, F.; Ke, A. Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS ONE 2010, 5, e8739. [Google Scholar]
- Hartung, S.; Niederberger, T.; Hartung, M.; Tresch, A.; Hopfner, K.-P. Quantitative analysis of processive RNA degradation by the archaeal RNA exosome. Nucleic Acids Res. 2010, 38, 5166–5176. [Google Scholar] [CrossRef] [PubMed]
- Wasmuth, E.V.; Januszyk, K.; Lima, C.D. Structure of an Rrp6–RNA exosome complex bound to poly(A) RNA. Nature 2014, 511, 435–439. [Google Scholar] [CrossRef] [PubMed]
- Evguenieva-Hackenberg, E.; Hou, L.; Glaeser, S.; Klug, G. Structure and function of the archaeal exosome. Wiley Interdiscip. Rev. RNA 2014, 5, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Bycroft, M.; Hubbard, T.J.P.; Proctor, M.; Freund, S.M.V.; Murzin, A.G. The Solution Structure of the S1 RNA Binding Domain: A Member of an Ancient Nucleic Acid–Binding Fold. Cell 1997, 88, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Valverde, R.; Edwards, L.; Regan, L. Structure and function of KH domains. FEBS J. 2008, 275, 2712–2726. [Google Scholar] [CrossRef] [PubMed]
- Grishin, N.V. KH domain: One motif, two folds. Nucleic Acids Res. 2001, 29, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Roppelt, V.; Klug, G.; Evguenieva-Hackenberg, E. The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome. FEBS Lett. 2010, 584, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Kritssinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Büttner, K.; Wenig, K.; Hopfner, K.P. The exosome: A macromolecular cage for controlled RNA degradation. Mol. Microbiol. 2006, 61, 1372–1379. [Google Scholar] [CrossRef]
- Lorentzen, E.; Conti, E. Structural basis of 3′ end RNA recognition and exoribonucleolytic cleavage by an exosome RNase PH core. Mol. Cell 2005, 20, 473–481. [Google Scholar] [CrossRef]
- Shi, Z.; Yang, W.Z.; Lin-Chao, S.; Chak, K.F.; Yuan, H.S. Crystal structure of Escherichia coli PNPase: Central channel residues are involved in processive RNA degradation. RNA 2008, 14, 2361–2371. [Google Scholar] [CrossRef] [PubMed]
Rrp41:42 | Rrp4:41:42 | |
---|---|---|
Data Collection | ||
Wavelength | 1.000 | 1.000 |
Space group | P213 | P3221 |
a, b, c (A) | 164.6, 164.6, 164.6 | 240.82, 240.82, 216.83 |
α, β, γ (°) | 90, 90, 90 | 90, 90, 120 |
Resolution (A) | 29.1–2.3 (2.4–2.3) | 49.4–3.5 (3.6–3.5) |
Unique reflections | 65425 (6388) | 86210 (7510) |
Completeness | 99.2 (98.4) | 94.4 (83.2) |
Multiplicity | 5.4 (3.8) | 4.1 (2.3) |
I/σ(I) | 23.1 (2.4) | 5.3 (2.0) |
Rmerge (%) | 0.09 (0.45) | 0.18 (0.39) |
Refinement Statistics | ||
Resolution (A) | 29.1–2.3 | 49.4–3.5 |
Reflections used in refinement | 65413 | 86202 |
Rwork/Rfree | 0.2042/0.2355 | 0.2302/0.2740 |
R.M.S deviations | ||
Bond lengths (A) | 0.003 | 0.017 |
Bond angles (°) | 0.86 | 1.77 |
Ramachandran plot (%) | ||
Favored | 99.67 | 98.74 |
Allowed | 0.33 | 1.16 |
No. atoms | ||
Protein | 7105 | 16049 |
Ligands | 20 | 0 |
Solvent | 285 | 134 |
B-factors | ||
Protein | 52.5 | 86.9 |
Ligands | 64.1 | 0 |
solvent | 49.9 | 49.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kim, H.S.; Bang, K.; Han, A.; Shin, B.; Seo, M.; Kim, S.; Hwang, K.Y. Structural Insights into the Rrp4 Subunit from the Crystal Structure of the Thermoplasma acidophilum Exosome. Biomolecules 2024, 14, 621. https://doi.org/10.3390/biom14060621
Park S, Kim HS, Bang K, Han A, Shin B, Seo M, Kim S, Hwang KY. Structural Insights into the Rrp4 Subunit from the Crystal Structure of the Thermoplasma acidophilum Exosome. Biomolecules. 2024; 14(6):621. https://doi.org/10.3390/biom14060621
Chicago/Turabian StylePark, Seonha, Hyun Sook Kim, Kyuhyeon Bang, Ahreum Han, Byeongmin Shin, Minjeong Seo, Sulhee Kim, and Kwang Yeon Hwang. 2024. "Structural Insights into the Rrp4 Subunit from the Crystal Structure of the Thermoplasma acidophilum Exosome" Biomolecules 14, no. 6: 621. https://doi.org/10.3390/biom14060621
APA StylePark, S., Kim, H. S., Bang, K., Han, A., Shin, B., Seo, M., Kim, S., & Hwang, K. Y. (2024). Structural Insights into the Rrp4 Subunit from the Crystal Structure of the Thermoplasma acidophilum Exosome. Biomolecules, 14(6), 621. https://doi.org/10.3390/biom14060621