
Citation: Cahill, C.M.; Sarang, S.S.;

Bakshi, R.; Xia, N.; Lahiri, D.K.; Rogers,

J.T. Neuroprotective Strategies and

Cell-Based Biomarkers for Manganese-

Induced Toxicity in Human

Neuroblastoma (SH-SY5Y) Cells.

Biomolecules 2024, 14, 647. https://

doi.org/10.3390/biom14060647

Academic Editors: Giuseppe Pignataro

and Benoit Coulombe

Received: 1 February 2024

Revised: 24 April 2024

Accepted: 20 May 2024

Published: 31 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Communication

Neuroprotective Strategies and Cell-Based Biomarkers for
Manganese-Induced Toxicity in Human Neuroblastoma
(SH-SY5Y) Cells
Catherine M. Cahill 1,†, Sanjan S. Sarang 1,†, Rachit Bakshi 1, Ning Xia 1, Debomoy K. Lahiri 2 and Jack T. Rogers 1,*

1 Neurochemistry Laboratory, Massachusetts General Hospital, Harvard Medical School,
Boston, MA 02129, USA; ccahill@mgh.harvard.edu (C.M.C.); sanjansarang1@gmail.com (S.S.S.);
rbakshi1@mgh.harvard.edu (R.B.); nxia@mgh.harvard.edu (N.X.)

2 Department of Psychiatry and Medical & Molecular Genetics, Indiana Alzheimer’s Disease Research Center,
Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
dlahiri@iupui.edu

* Correspondence: jack.rogers@mgh.harvard.edu; Tel.: +1-617-726-883
† These authors contributed equally to this work.

Abstract: Manganese (Mn) is an essential heavy metal in the human body, while excess Mn leads
to neurotoxicity, as observed in this study, where 100 µM of Mn was administered to the human
neuroblastoma (SH-SY5Y) cell model of dopaminergic neurons in neurodegenerative diseases. We
quantitated pathway and gene changes in homeostatic cell-based adaptations to Mn exposure. Utiliz-
ing the Gene Expression Omnibus, we accessed the GSE70845 dataset as a microarray of SH-SY5Y
cells published by Gandhi et al. (2018) and applied statistical significance cutoffs at p < 0.05. We report
74 pathway and 10 gene changes with statistical significance. ReactomeGSA analyses demonstrated
upregulation of histones (5 out of 10 induced genes) and histone deacetylases as a neuroprotective
response to remodel/mitigate Mn-induced DNA/chromatin damage. Neurodegenerative-associated
pathway changes occurred. NF-κB signaled protective responses via Sirtuin-1 to reduce neuroinflam-
mation. Critically, Mn activated three pathways implicating deficits in purine metabolism. Therefore,
we validated that urate, a purine and antioxidant, mitigated Mn-losses of viability in SH-SY5Y cells.
We discuss Mn as a hypoxia mimetic and trans-activator of HIF-1α, the central trans-activator of
vascular hypoxic mitochondrial dysfunction. Mn induced a 3-fold increase in mRNA levels for
antioxidant metallothionein-III, which was induced 100-fold by hypoxia mimetics deferoxamine
and zinc.

Keywords: manganese neurotoxicity; neuroprotection; urate; inflammation; oxidative stress; untranslated
regions; mRNAs; amyloid precursor protein (APP); ferritin; Parkinsonism; metallothionein-III

1. Introduction

The central nervous system is subject to acute, chronic, and latent perturbation by
heavy metals, including mercury (Hg), lead (Pb), and manganese (Mn) [1]. The acute neuro-
toxicity of Hg and Pb is well known. Both of these metals are also implicated in Alzheimer’s
disease (AD) [2–4]. Mn is associated with several neurodegenerative conditions, including
movement disorders such as Parkinson’s disease (PD) [5,6]. There are multiple pleiotropic
mechanisms of manganese toxicity within the nervous system [7,8]. At the cellular level,
we previously reported pathways by which this divalent cationic metal disrupts translation
of the L- and H-subunits of the iron storage multimer ferritin and the Alzheimer’s amyloid
β (Aβ) precursor protein (APP) that activates iron efflux by ferroportin (FPN) [7,9–12]. The
contribution of APP to iron homeostasis as a ferroportin-binding protein remains to be
solved [9,13]. Nevertheless, perturbations of iron-dependent post-transcriptional regulatory
events to both ferritin and APP are associated with damage to neurons by ferroptosis and
AD [14–16]. Mn inhibited expression of APP at the level of translation via Iron-Responsive
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Elements (IREs) in 5′untranslated region (5′-UTR) sequences in its transcript, while IREs
in other transcripts, such as transferrin receptor, are also potentially important regulatory
determinants of AD [7,17]. The APP 5′-UTR IRE is part of a multi-target nexus that also
responds to interleukin-1 and microRNA-346 [18]. This action of Mn can be modeled to
embargo of iron export sufficient to cause ferroptosis by limiting the export of excess Mn
and Fe by FPN [9,16]. Nevertheless, reduced levels of APP would also be predicted to limit
Aβ accumulation after cleavage from the precursor, although monomer concentration is set
by secretase cleavage and clearance [19–21]. Finally, the intracellular losses of both APP
and ferritin significantly reduced the viability of neurons during Mn exposure [7].

Mn is an essential trace element at physiological concentrations, acting as a cofactor in
many enzymatic reactions in humans, including the antioxidant enzyme superoxide dis-
mutase [22]. Nevertheless, at elevated industrial concentrations, Mn damages the nervous
system, causing a neurotoxic ailment that has been documented for about 150 years. Excess
manganese (Mn) intake causes manganism, a disease of occupational Mn overexposures.
Those with this chronic industrial occupational condition exhibit psychiatric and motor
disturbances [23], resulting in symptoms of bradykinesia, rigidity, tremor, gait disturbance,
postural instability, and dystonia and/or ataxia [24]. Elevated Mn in environmental water
supplies also impairs childhood cognitive performances and IQ in less-developed countries
that lack appropriate public water filtration capabilities [25,26], similar to better-known
effects of Pb [27]. We reported on biomarkers of environmental manganese exposure and
associations with childhood neurodevelopment [26], along with associations between APP
and autism [28–31]. Mn excess is associated with rare cases of Parkinson’s disease (PD)
in the field [23], and also results from mutations that prevent the Park-9 protein from
detoxifying Mn in affected neurons and a-synuclein fibril formation [32,33].

Depending on the duration and amount of exposure, Mn2+ induces toxic reactive
oxygen species in rats [34,35], while its exposure to cultured cells can facilitate toxic cellular
Fe overload, since FPN and iron efflux are inhibited [36]. Excess toxic Mn exposure certainly
causes motor deficits [37] as well as partial activation of GABAergic neurons in the Globus
pallidus and Substantia nigra brain subregions [38]. In order to offset toxic Mn overload,
the universal brain iron transporter FPN can function as a manganese exporter [39–41].

In seeking a therapy to offset Mn neurotoxicity, we tested the antioxidant purine urate,
which exerts a currently undefined protective action towards neurons in cell-based models
of Parkinson’s disease (PD) [42]. In this report, we addressed how increased neuronal urate
might therapeutically oppose Mn toxicity, since our bioinformatic analysis demonstrated
that, first, Mn disrupts purine metabolism via depurination and inhibition of HPRT [43]. In
fact, purines are metabolically converted to uric acid by xanthine oxidase, an enzymatic
activity that, in excess, causes gout. In the PD brain, however, at physiological pH, the
ionized urate salts protect against 1-methyl-4-phenyl-pyridinium (MPP+) degeneration
of dopaminergic neurons. In most mammals, urate is converted to allantoin by uricase
(uroxidase; UOx), an enzyme primarily expressed in the liver [44–47]. Urate added to
cultured neurons 24 h before and during treatment with MPP+ toxin attenuated the loss
of enriched dopaminergic neurons and fully prevented their atrophy in neuron–astrocyte
cultures [48]. Uric acid provides an antioxidant defense in humans that has a protective
effect against oxidant and radical-caused aging and cancer [49,50]. Similar functions of uric
acid and ascorbate were reported in humans [50]. UO knockout mice express brain urate
at elevated levels and are less vulnerable than wild-type mice to Parkinsonian-specific
neurodegenerative brain lesions [47,51].

In this communication, we provide a compelling rationale to further test urate’s
capacity to mitigate manganese-induced liabilities to cell survival, as outlined in the
bioinformatic and pilot cell-based data provided. Mn acts as a hypoxia mimetic in several
cell types, including SH-SY5Y cells [52–55]. Therefore, in this report, we also highlighted
the microarray-oriented bioinformatic findings, showing that metallothionein-III (MT-III)
is a prominent Mn-induced transcript. We discuss MT-III may provide further cell-based
antioxidant responses to mitigate Mn-induced ferroptosis and neurotoxicity [54–58].
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2. Materials and Methods
2.1. Data Access

The data for the human neuroblastoma cell line (SH-SY5Y) exposed to manganese were
accessed using accession GSE70845 in the Gene Expression Omnibus (GEO). This dataset
was derived from SH-SY5Y cells that were chronically exposed to 100 µM (1/5 of LD50) of
manganese as MnCl2 for 24 h; the experiment was performed in triplicate. Total RNA was
harvested using TRIzol, and 100 ng was used to prepare biotinylated complementary RNA
(cRNA). The cRNA was hybridized on Affymetrix Prime view Human arrays and scanned
using the Affymetrix GeneChip scanner, uploaded to GEO [56].

2.2. Data Exploration

The normalized data were downloaded from GEO and analyzed using the GEO2R
bioinformatics software (https://www.ncbi.nlm.nih.gov/geo/geo2r/, accessed on 6 Octo-
ber 2023) [59]. The three Mn exposure samples were assigned to the manganese treatment
group, and the three control samples were assigned to the control group. These groups
were analyzed using linear models for microarray analysis for statistical visualization [60].

2.3. Pathway and Gene Expression Statistical Analysis

ReactomGSA [61] was used to evaluate pathway and gene expression changes fol-
lowing manganese exposure. The Correlation-Adjusted Mean Rank gene set analysis
(CAMERA) [62] was used to conduct a differential expression analysis to determine differ-
entially expressed pathways and genes between two sample groups. The Binomial Test
was used to evaluate the statistical significance for each hit pathway and gene analysis
and a Benjamini–Hochberg p adjustment was subsequently utilized to manage the false
discovery rate. Using the filter of adjusted p < 0.05 as a statistical significance cut-off, the
top differentially expressed genes with adjusted p < 0.05 were plotted onto a heatmap and
hierarchically clustered using the Morpheus matrix visualization and analysis software
(https://software.broadinstitute.org/morpheus/, accessed on 11 October 2023).

2.4. Experimental Validation of Bioinformatic Model

Cell culture methods: The human neuroblastoma cell line SH-SY5Y was obtained from
the American Type Culture Collection (ATCC) [63,64].

MTT viability assays: In six separate cotreatment assays, cells were cotreated for 72 h
with 100 µM UA and separate increasing dosages of 25 µM Mn as MnCl2, 50 µM Mn as
MnCl2, 75 µM Mn as MnCl2, and 100 µM MnCl2. In octuplicate pre-treatment assays, cells
were pre-treated for 24 h with UA at 3 µM, 30 µM, 75 µM, 150 µM, and 300 µM. Then,
the cells were washed and dosed with 100 µM Mn as MnCl2. After the Mn treatment
period for both assay types, cell viability was measured by a colorimetric assay either by
using the MTT (thiazolyl blue tetrazolium, Sigma-Aldrich (St. Louis, MO, USA)) viability
assay or the MTS-Assay (CellTiter96 AQ assay, Promega [Madison, WI]) according to the
protocol of the supplier, as reported previously [7]. In parallel, cells were grown in 12-well
plates for cell growth analysis. Repetitive aliquots were taken and counted three times
using a hemocytometer with trypan blue exclusion assay, as previously reported. For each
treatment condition, triplicate wells were counted, and values were averaged.

Western blotting: SH-SY5Y cells (9 × 106), at a 60–70% confluency, were treated with
the following conditions in duplicate, and all for 48 h. The APP Western blot had (i) Lanes
1–2: control; (ii) Lanes 3–4: 100 µM Mn as 100 µM MnCl2; (iii) Lanes 5–8: 2 sets of increasing
UA at 75, 300 µM; and (iv) Lanes 9–12: 2 sets of 100 µM Mn and increasing UA at 75,
300 µM. The H-ferritin Western blot had (i) Lanes 1–2: control; (ii) Lanes 3–4: Fe as 100 µM
ferric ammonium citrate (FAC); (iii) Lanes 5–6: 100 µM Mn as 100 µM MnCl2; (iv) Lanes
7–8: 100 µM UA; (v) Lanes 9–10: 100 µM FAC and 100 µM UA; and (vi) Lanes 11–12:
100 µM Mn and 100 µM UA. After subsequent washing in PBS, cells were scraped into RIPA
lysis buffer. Total protein concentrations were analyzed using Bio-Rad protein assay. Cell
extracts were immunoblotted as described elsewhere [7,63]. Western blots were repeated at
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least three times, and densitometric analysis was performed using ImageJ software (version
1.54 g) [65].

RT-PCR: Triplicate assays were performed in untreated versus deferoxamine (DFO)-
and zinc-treated SH-SY5Y cells for 6 and 16 h timepoints with the following conditions
(i) control; (ii) control; (iii) 100 µM DFO; (iv) 200 µM Zn as ZnSO4; (v) 100 µM Zn as
ZnSO4; (vi) 200 µM Zn as ZnSO4 and 100 µM DFO; and (vii) 100 µM Zn as ZnSO4
100 µM DFO. Total RNA was isolated using TRI-reagent (Sigma-Aldrich) according to
the manufacturer’s instructions. Assays were performed using an ABI Prism 7000 system
(Applied Biosystems, Foster City, CA, USA). Metallothionein-III mRNA primers, For-
ward: 5′AGT GCG AGG GAT GCA AAT G 3′. Reverse: 5′ACA CAC AGT CCT TGG
CAC ACT T3′. APP mRNA primers (forward, 5-GCCCTGCGGAATTGACAAG-3; reverse,
5-CCATCTGCATAGTCTGTGTCTG-3). transferrin receptor mRNA primers (forward, 5-
GGCTACTTGGGCTATTGTAAAGG-3; reverse, 5-CAGTTTCTCCGACAACTTTCTCT-3);
and beta-actin mRNA primers (forward, 5-CATGTACGTTGCTATCCAGGC-3; reverse,
5-CTCCTTAATGTCACGCACGAT-3) were purchased from Life Technology.

2.5. Experimental Statistics

Following the MTT co-treatment assays, one-tailed Student’s t-tests were conducted
between Mn and Mn + UA treatment groups. Statistical significance was deemed to be
p < 0.05, indicating that UA recovery of cells did not occur by chance. Pre-treatment
assays were evaluated for statistical significance via the use of one-tailed Student’s t-tests
for control versus treatments. Using densitometric data, unpaired two-tailed Student’s
t-tests were performed for control versus treatment lanes, as indicated by the Western blot
treatment conditions.

3. Results
3.1. Data Exploration

In the dataset analyzed by GEO2R, each sample was log2 normalized with the median-
centering values being present, indicating cross-comparability between samples in the
dataset (Figure 1a). We visualized 27,770 transcripts by volcano plot and found that 29
of them were significantly differentially expressed (adjusted p < 0.05). These transcripts
mapped to 22 differentially expressed genes (DEGs) (Figure 1b). Of the 22 DEGs, 21
were upregulated and one was downregulated following chronic Mn exposure. Similarly,
the mean difference (MD) plot represents the differential expression showing the most
differentially expressed genes on the right region of the plot (Figure 1c).
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Figure 1. The effect of exposure of SH-SY5Y cells to Mn. (a) Expression boxplot of the three treatments
and three control samples. (b) Volcano plot of differential expression and significance by adjusted
p-value. (c) MD plot of differential expression.

3.2. Manganese Pathway Modulation

We found significant changes via the ReactomeGSA pathway analysis tool utilizing
the efficient CAMERA algorithm, which further filters DEGs from GEO2R analyses. Table 1
shows six pathways to be upregulated in Mn exposure; these pathways are participants
in histone deacetylase (HDAC) expression as a neuroprotective response to DNA dam-
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age, depurination, and amyloidosis. Two pathways were downregulated, resulting from
mitochondrial dysfunction and a protective oxidative stress pathway.

Table 1. Critical pathways modulated by Mn exposure.

Pathway Regulation Adj. p-Value

SIRT1 negatively regulates rRNA expression Up 1.51 × 10−7

Nucleotide salvage defects Up 3.96 × 10−2

Cleavage of the damaged purine Up 1.94 × 10−5

Depurination Up 1.47 × 10−3

HDACs deacetylate histones Up 7.82 × 10−6

Amyloid fiber formation Up 9.58 × 10−5

Activation of NF-κB as in B cells Down 4.34 × 10−2

Regulated NRF2 gene expression Down 1.14 × 10−2

3.3. Manganese Gene Modulation

Table 2 represents the top gene changes following 24 h of manganese treatment of
SH-SY5Y cells. After ReactomeGSA CAMERA analysis, the 22 DEGs identified in GEO2R
were narrowed down to 10 DEGs; these genes were involved in and indicate neuropro-
tection, histone expression, mitochondrial stress response, and detrimental expression of
proinflammatory cytokines.

Table 2. Top differentially expressed genes (DEGs) modulated by manganese exposure.

Gene Name Official Gene ID Fold Change Adj. p-Value

Fos Proto-Oncogene c-Fos 4.5739312 0.006176581
H2B Clustered Histone 9 H2BC9 4.20377174 0.00894777

H2A Clustered Histone 20 H2AC20 3.36206822 0.006787579
Metallothionein 3 MT3 3.35987602 0.01623366

Aquaporin 10 AQP10 3.31760548 0.006787579
H2A Clustered Histone 16 H2AC16 2.80395203 0.042364419
H2B Clustered Histone 13 H2BC13 2.67995046 0.006787579

Activating Transcription Factor 3 ATF3 2.62974577 0.00651086
Early Growth Response 1 EGR1 2.20370534 0.020852612
H3 Clustered Histone 10 H3C10 2.17211627 0.031638477

3.4. DEG Similarity and Expression Analysis

A heatmap of the DEGs (Figure 2) represents interrelationships via a dendrogram
created using one minus the Pearson correlation and complete linkage. Clustering iden-
tified that genes have potential co-expression with histone-related and cellular stress-
response genes.
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3.5. Experimental Validation

We found that multiple pathways were activated after Mn exposure, including sirtuin-
dependent rRNA translation and inhibition of NF-κB, as well as the capacity to inhibit pro-
oxidant pathways via NRF-2 (Table 1). However, the most significant effect of manganese
exposure was to perturb three major pathways involving purine metabolism (nucleotide
salvage defects were highly expressed, as well as pathways involving cleavage and damage
to purines and also depurination steps of DNA and RNA). Therefore, we further tested
whether pre- and co-incubation of the antioxidant purine urate might mitigate manganese
toxicity (Figures 3–5). The top panel in Figure 3 shows MTT assay results indicating that
co-treatment of cells with uric acid (100 mM UA) mitigated manganese toxicity to SH-SY5Y
neuroblastoma cells relative to controls (i.e., UA reduced the toxic effects of treatments
with 25 mM, 50 mM, 75 mM, and 100 mM MnCl2 to cells for 72 h).
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Figure 3. The purine and antioxidant urate offsets manganese-dependent pathways of cell-based
toxicity to SH-SY5Y neuroblastoma cells. Top Panels: MTT assay of cell viability: The effects of co-
treatment of cells with uric acid (100 mM) on dose-responsive Mn toxicity to SH-SY5Y neuroblastoma
cells relative to controls (i.e., Plus/minus urate to mitigate toxicity of 25 mM MnCl2, 50 mM MnCl2,
75 mM MnCl2 and 100 mM MnCl2 to cells for 72 h, N = 6. Bottom Panels: A: Representative Western
blot depicting the effects of urate and manganese to modulate APP (FPN-APP complexes export
excess iron from cells) in SH-SY5Y neuroblastoma cells. Western blot shows the effect of urate on
Mn-dependent repression of APP by Mn in SH-SY5Y cells (9 × 106 cells) when treated for 48 h,
(A) (i) Lanes 1–2: control; (ii) Lanes 3–4: 100 µM Mn as 100 µM MnCl2; (iii) Lanes 5–8: 2 sets of
increasing UA at 75, 300 µM; and (iv) Lanes 9–12: 2 sets of 100 µM Mn and increasing UA at 75,
300 µM. B: Effect of urate towards Fe- and Mn-dependent modulation of H-ferritin translation;
(B) (i) Lanes 1–2: control; (ii) Lanes 3–4: Fe as 100µM ferric ammonium citrate (FAC); (iii) Lanes 5–6:
100 µM Mn as 100 µM MnCl2; (iv) Lanes 7–8: 100 µM UA; (v) Lanes 9–10: 100 µM Mn and 100 µM
UA; and (vi) Lanes 11–12: 100 µM Mn and 100 µM UA. Full-length Western blot Gels #95 and #97 are
provided in the Supplemental Materials section of this paper. * p < 0.05 for Student’s t-test conducted
between Mn and Mn + UA groups. *** p = 0.000165; Student’s t-test conducted between Mn and
Mn + UA groups.
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Figure 4. Densitometric quantization of the Western blots shown in Figure 3 after normalization with
β-actin. (A) Standardized fold modulations (1 = 100%) of the APP/b-actin levels in response to Mn
dose (100 mM, 48 h) as compared to control and Mn treatment in the presence of urate (75 mM and
300 mM urate; see Western blots in Supplemental Materials). Prior to normalization, the data showed
β-actin was unchanged by all treatments. (B) Standardized fold modulations of the H-ferritin/b-actin
levels in response to Fe (100 mM FAC, 48 h) and Mn (100 mM MnCl2, 48 h) as compared to controls;
Fe and Mn treatments in the co-presence of 100 mM urate (see Supplemental Materials). Data without
normalization with β-actin were unchanged by treatments. To test statistical significance for changes
in APP expression, unpaired two-tailed t-tests were performed for controls vs. treated lanes and are
indicated on the graphs. * & *** p ≤ 0.05, i.e., for Cont. vs. UA and for Mn vs. Mn + UA treatments.
Statistical P values reflect the capacity of urate to restore APP expression after its inhibition by Mn
treatments, n = 3 independent WB experiments, each in duplicate.
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Figure 5. Averaged Urate (@ 3, 30 75, 150 300 mM) pre-treatments afforded a dose graded up to 14%,
which increased neuroprotection to SH-SY5Y cells after washout when exposed to Mn (100 mM 24 h)
(n = 8). ** One-tailed t-tests were performed for controls vs. Mn-treated, p = 4.00 × 10−8; Mn-treated
vs. Mn + UA treated, p = 3.70 × 10−2; control vs. Mn + UA treated, p = 6.689 × 10−5 (N = 8).

The top right-hand panel in Figure 3 exhibits a representative experiment demonstrat-
ing that the presence of urate completely mitigated a 33% loss of SHY5Y cell viability over
the three-day period of exposure. This representative experiment was conducted to high
statistical significance (n = 6), p < 0.05) as indicated in the histogram on the left-hand side
(Figure 3, next page).

In terms of statistical significance, we observed a 33% loss of viability at the max dose
of 100 mM manganese relative to untreated controls, while the presence of UA (100 mM)
mitigated 33% of the loss of viability (MTT @ 72 h *** p = 0.000165; Student’s t-test conducted
between Mn and Mn + UA groups). We noted that at 72 h, cotreatment of the cells with
100 mM urate completely rescued the cells from such toxicity. Losses of cellular viability
were dose-responsive, and the degree of cell death and recovery with urate co-treatment
was statistically significant (p < 0.05, n = 6) over several separate assays.
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As we observed in a previous publication [7], Mn reduced the expression of neuropro-
tective APP and ferritin. Western blots are shown in Figure 3 and densitometric quantitation
is provided in the histogram in Figure 4 (See Supplemental Materials for full-length gels).
In three separate experiments performed in duplicate, we observed that both APP and
ferritin were reduced by >50% after 48 h Mn exposure. During these studies, we noted that
the presence of urate co-treatment restored the steady-state levels of APP, although this was
not the case for steady-state levels of H-ferritin during urate + Mn co-exposures of SH-SY5Y
cells. Densitometric quantitation of APP and H-ferritin expression relative to that of b-actin
is graphically represented in Figure 4. The results of treatments with Mn alone and Mn
in the presence of urate are also depicted. Duplicate assays in Figure 4A showed that Mn
reduced APP levels by 3-fold, while the presence of urate enhanced APP protein levels
2–3-fold, such that the presence of co-added urate mitigated Mn inhibition of APP levels to
90 percent of control levels. We quantitated that 100 mM iron as ferric ammonium citrate
(FAC) treatment increased ferritin expression by 2.2-fold, as standardized to b-actin in the
representative densitometry of the averaged duplicate lanes. Contrary to APP expression,
the presence of urate did not change the Mn inhibition or Fe induction of H-ferritin (n = 3)
(Figure 4B).

In addition to urate co-treatment with Mn exposures (Figures 3 and 4), we also tested
whether pre-treatment with urate might offset Mn neurotoxicity (Figure 5). Indeed, 24 h
pre-treatment with urate dose afforded 14% neuroprotection to SH-SY5Y cells exposed to
Mn (100 mM 24 h) [54,66].

Our bioinformatics findings showed a three-fold increase in MT-III mRNA (Table 2)
when characterizing the transcriptomic profile of manganese-exposed SH-SY5Y cells. Man-
ganese is a divalent cation and may well exhibit biology typical of other divalent cations,
whereas Mn, cobalt, zinc, and DFO are known hypoxia mimetics [52,53]. Wang et al.
demonstrated that hypoxia is an active inducer of MT-3 mRNA via RT-PCR analyses in
human adipocytes [53].

To follow up, we demonstrated RT-PCR data in Figure 6 to show that MT-3 mRNA,
transferrin receptor (TfR) TfR-mRNA and APP mRNAs were all induced in response to
DFO and Zn treatments (hypoxia mimetics). We obtained three independent RT-PCR
measurements from SH-SY5Y cells to quantify inductions of MT-III mRNA in order to
determine whether they occurred as a result of treatment of cells with the hypoxia mimetics
DFO and Zn. RT-PCR data (N = 3) showed that MT-3 mRNA levels were induced by
500-fold by DFO > 3–30-fold inductions of MT-3 mRNA by ZnCl2 (Figure 6).

We noted from the RTPCR experiments in Figure 6 that DFO increased levels of mRNA
for neuroprotectant MT-III by 500-fold (N = 3). The divalent cation zinc, another hypoxia
mimetic, increased MT-3 mRNA by up to 30-fold in SH-SY5Y cells. Transferrin receptor
mRNA and APP mRNA are known to be abundant transcripts. In these experiments, DFO
and zinc were found to increase TfR mRNAs to a less inductive, although similar, extent
relative to MT-3 mRNA when responding to hypoxia mimetic (DFO and Zn). APP mRNA
is regulated via translational control circuits, and thus its mRNA was unchanged by DFO
and Mn and Zn, as predicted.

Our bioinformatic and pre- and post-published experimental data are shown in Table 3
to quantitate, list, and rank the cellular biomarkers of Mn toxicity. We reported a notable
increase in the transferrin receptor (TfR) mRNA in reference [7] in MnCl2-exposed SHSY5Y
cells. However, in this study, we statistically reevaluated the source q-RT-PCR data to
demonstrate a precise 7.8-fold increase in TfR mRNA levels (N = 3 standardized to b-actin
controls). Iron regulatory protein 1 (IRP1) was also noted to be slightly increased at the
basal level with enhanced IRE binding after Mn exposures (pre-published data). Iron-
regulatory Protein 2 (IRP2) decreased to 9.05% (St dev (SD), ±1.47%) of controls by the
same Mn exposures [7]. Table 3 presents our reanalysis of densitometry from Western blots
to confirm our previous report [7] that H-ferritin deceased to 5% of that exhibited by the
controls in SHSY5Y cells treated with 100 mM MnCl2. By contrast, a study of welders
exposed to airborne Mn showed serum ferritin, which is rich in the L-subunit and was
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slightly increased by chronic Mn exposures while also providing an existing biomarker
for iron overload [67]. Metallothionein 3 (MT-3) also implicated its role as a potential
manganese chelator, elevating its expression as a neuroprotectant 3.36-fold, as listed in
Table 3. Alpha-synuclein protein (60 KDa tetramer) levels decreased 2-fold in Mn-exposed
SH-SY5Y cells.
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We propose that the ratio of APP protein/APP mRNA constitutes a top candidate
cellular biomarker for Mn toxicity. In Table 3, APP mRNA increased by 4.02-fold (10 mM,
24 h) and 3.68-fold (100 mM, 24 h) in response to Mn treatments of SH-SY5Y cells while
APP protein was greatly inhibited, i.e., by 15% (10 mM MnCl2, 24 h), 50% (50 mM MnCl2,
24 h), 85% (100 mM MnCl2, 24 h) in the same SH-SY5Y cell lineage. Therefore, the ratio of
APP protein/APP mRNA (index ratio of APP gene expression) provides a clear cellular
biomarker signal unique to Mn relative to iron exposure (i.e., Mn causes APP translational
repression, while APP mRNA levels are increased by Mn exposures).



Biomolecules 2024, 14, 647 10 of 19

Table 3. Potential cellular biomarkers of manganese toxicity in SH-SY5Y cells (100 mM, 24 h).

Gene Name Fold Changes Citations

Transferrin Receptor mRNA Up 7.8-fold, SD = 2 (Venkataramani et al., 2018) Ref. [7]
Serum Ferritin (L-subunit-rich) Unchanged (Lu et al., 2005), Ref. [67]

H-Ferritin subunit Decreased to 5% of control. (Venkataramani et al., 2018), Ref. [7]
Iron Regulatory Protein 1 (IRP1) Unchanged (Venkataramani et al., 2018) Ref. [7]

IRP 1/APP-IRE-Type-II Up 2-fold, SD = 0.2 To be submitted
Iron Regulatory Protein 2 Decreased to 9.05% of control (Venkataramani et al., 2018), Ref. [7]

Metallothionein 3 Up 3.36-fold, SD = 0.016 Table 2
Alpha-Synuclein 2-fold decrease Herein

Alpha-synuclein fibrilization Increased (Harischandra et al. 2019), Ref. [68]

Amyloid Precursor Protein Decreased to 15% of Control
6.7-fold decrease. Figure 4

Amyloid Precursor Protein mRNA Up 3.68-fold SD = 0.27
Translational Inhibition Ratio of APP to

APP mRNA
24-fold increase in the index of APP

mRNA translation Cellular Biomarker for Mn neurotoxicity.

4. Discussion

We conducted bioinformatic analyses based on microarray data in triplicate to identify
the metabolic pathways modulated by Mn exposures in SH-SY5Y cells [56]. Here, we report
which gene transcripts are indeed activated by Mn exposure in SH-SY5Y cells. The study
pertains to inductions in human cells in SHSY5Y, while comparative findings for mouse
cell lines, including mouse N2a neuroblastoma cells, will be investigated. Although we
have reported our work here using SH SY5Y cells, our lab has used other neuroblastoma
lines, such as SK-N-SH, derived from the same stock as well as human primary neuronal
enriched cultures (18). Based on our experience, the effect we report here most likely would
work in other neuroblastoma cells; however, it needs additional future work to confirm the
effect in other neuro-derivative cultures.

This is particularly relevant, since Mn influences APP expression via the human IRE-
type-II sequences in the 5′UTR of its transcript, which is relevant to this study. Our findings
in Figures 3 and 4 are consistent with the model that the human APP 5′UTR-specific iron-
responsive element-Type-II drives APP translation as the major conduit though which urate
operates, providing therapeutic value to offset Mn toxicity (Table 3). Our current findings
support future tests to establish species-specific differences by which Mn exposures might
induce APP translation as a biomarker for predicting toxicity in human SHSY5Y cells
compared to mouse cell N2A types and ultimately in vivo. There may be differences for
manganese toxic actions acting through the APP 5′UTR sequences in humans compared to
mouse models (Supplementary Figure S3).

Our bioinformatic findings were experimentally validated via MTT viability assays
and RT-PCR analyses. We found, as a first example, that Mn activated histone deacetylases,
which act to prevent chromatin condensations from oxidative stresses induced by Mn. Con-
sistent with this finding, Mn exposures induced five histone gene variants H3C10, H2BC13,
H2AC16, H2AC20, and H2BC9 of the best ten differentially expressed genes (DEGs).

The transcriptomics microarray analyses demonstrated that the antioxidant, low
molecular weight, neuroprotectant metallothionein-III (MT-3) was among the top Mn
induced mRNAs in SH-SY5Y cells. MT-3 is a neuroprotectant capable of offsetting AD [69]
and PD, as well as biochemically limiting Mn-induced damage [58,70]. Like cobalt, zinc,
and DFO, the divalent metal Mn has been experimentally employed in lung epithelial
and adipocytes as a chemical mimetic of hypoxia [52,53]. The data in Figure 6 further
validated Mn as a hypoxia mimic by the use of RT-PCR, as is consistent with a model for
MT-3 providing neuroprotection to SH-SY5Y cells.

Overall, using the SH-SY5Y model of dopaminergic-transformed neurons, the results
from our bioinformatic analysis indicated that Mn exposures primarily modulated path-
ways involved in depurination, HDAC-related neuroprotection, histone modulation, and
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amyloid fiber formation. Manganese also specifically upregulated specific target genes
listed in Table 2, such as the histone genes (as stated above), stress response, transport
genes (MT3, AQP10), and immediate early genes (ATF3, c-Fos, EGR1). Neuronal damage re-
sulting from Mn exposure elevated reactive oxygen species (ROS) concentrations, which we
reported to be mediated via IRE/IRP control of ferritin (iron storage) and APP (iron efflux
by APP/FPN complexes) translational control circuits [7]. Consequentially, ROS surplus
by Mn can activate NF-κB, which may exacerbate neuronal damage by further elevating
concentrations of reactive oxygen species to cause pro-inflammatory reactions [71].

As an adaptive cellular response, we note that SIRT1 deacetylases the p65 subunit of
NF-κB at its Lys310 residue, an event that could protect cells from apoptosis by reducing
transcriptional activity [72]. Overall, the adaptive upregulation of SIRT1 (Table 1) and down-
regulation of NF-kB pathways is a cellular marker indicating accelerated activation of an
ameliorative SIRT1/NF-κB signaling pathway to reduce neuroinflammation [73]. Further-
more, increases in the HDAC expression pathway are specifically involved in this functional
pathway, i.e., the Class I HDACs (HDAC1, HDAC3, HDAC8) and HDAC10. Notably in
neuronal cells, HDAC1 binds to SIRT1 and provides neuroprotective effects [74]. HDAC
expression was increased and involved in neurodegeneration through inflammation [75].

Following exposure of manganese to SH-SY5Y cells, there was increased expression of
three depurination-related pathways from the eight top Mn-induced pathways listed in
Table 1. These adaptations are likely in response to damage to adenine and guanine struc-
tures. This prompted our report that aspects of Mn neurotoxicity could be quelled by urate
(Figures 3–5). We reasoned that the purine damage can be ameliorated by supplementing
urate to repair the transversion mutation; this theory was also supported by our prior
publications [45,46]. The purine metabolism pathway we observed after Mn perturbations
controls the rates of mutation load to affected cells [43,76]. It is noteworthy that increased
intracellular urate is the metabolic product of the oral purine supplement inosine and has
long been shown to be a neuro-protective antioxidant [42,44,46,47,77]. The Mn-induced
loss of APP and ferritin we observed here was consistent with our previously reported
losses of IRE/IRP-dependent translation of both H-ferritin and APP mRNAs [7].

In addition to our own findings, our colleagues have shown that the APP 5′-UTR-
directed drugs posiphen and phenserine inhibit APP translation to generate anti-amyloid
efficacies [78,79] for the purpose of treating AD as effectively as current anti-inflammatory
pathways [80]. Antioxidant and APP-processing pathways also proved to be highly relevant
as key therapies for AD [81,82]. However, in younger adults and children, amyloidosis
is not a risk factor for developing AD. Therefore, as a model for mitigating metal toxicity
and oxidative neurotoxicity in younger age groups, we suggest that antioxidants such as
urate might favor APP translation, possibly via the same 5′-UTR, and thus increases of
APP/FPN complexes, sufficient to efflux excess embargoed Mn and Fe in SH-SY5Y cells,
as outlined in our previously reported models [7,9]. Here, urate treatments left ferritin
expression unchanged, as shown in Figure 3. Thus, the canonical IRE was unresponsive
to the intracellular therapeutic presence of urate, while the 5-’UTR specific IRE-type-II of
APP mRNA may be tested as being responsive to urate (iron efflux-associated event [9,83]).
These events are consistent with the theory that urate could induce neuroprotective APP(s),
an event that facilitates FPN-dependent Fe efflux and thus counteracted ferroptosis resulting
from prolonged cellular exposures to Mn [16].

Mn inhibition of APP translation requires further testing to detect decreases in levels of
APP(s) as well as c-terminal fragments of APP (APP-CTF-b) which are produced after BACE
cleavage. Certainly, APPs and APP-CTF-b fragments of APP have differing consequences to
influence cellular iron homeostasis [84,85]. Here, we employed conditions of Mn exposure
where APP was limited at the translational level so as to limit the appearance of APP(s)
and APP CTF [86]. We previously stated that APP 5′UTR translation blockers reduced both
fragments in parallel, as detected by 22C11 and A8717 antibodies on Western blots [86].
Thus, Mn does not appear to separately induce CTF-b via compensatory activation of BACE
in SHSY5Y cells although this remains to be compared in human and mouse cell lines [86].
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The biological action of APP CTF fragments might change intracellular iron levels via
perturbations to the mitochondrial ATPases that induce lysosomal driven pH changes and
inclusion bodies [84,85,87]. Here, lysosomal dysfunction was shown to occur when APP
is overexpressed in Down syndrome (triple APP) and in Alzheimer mouse models so as
to proportionately also increase APP CTF (see citations [85,88]. By contrast, Mn might not
promote the appearance of Tyr(682)-phosphorylated APP beta-CTF if shown to induce
parallel losses of both of APP and APP CTF.

Metallothionein-III is a known key neuroprotectant that was noticeably induced in
SH-SY5Y cells exposed to manganese. Mn is a divalent cation and may well exhibit
biology typical of other divalent cations such as cobalt and zinc, which are known hypoxia
mimetics [54,66]. Our bioinformatics findings showed that Mn induced MT-III mRNA
three-fold, while the data in Figure 6 confirmed hypoxic mimetics are active inducers of MT-
3 mRNA, which is consistent with published RT-PCR analyses in human adipocytes [53]. In
this context, our data in Figure 6 confirm MT-3 mRNAs were 100-fold induced in response
to the hypoxia mimetics DFO and zinc.

The bioinformatic findings in this communication therefore provide rationale to reintro-
duce urate as a neuroprotective agent to treat Mn neurotoxicity. In this context, depurination
is a chemical reaction of purine deoxyribonucleosides, deoxyadenosine, and deoxyguano-
sine, in which the beta-n-glycosidic bond is hydrolytically cleaved, releasing the nucleic
base, adenine and guanine, respectively [76]. The removal of purine structures elicits a
transversion mutation that needs a new purine to repair the DNA [43].

Metallothioneins (MTs) are cysteine-rich metal-binding proteins that chelate metals
and inhibit oxidative stress, inflammation, and mitochondrial dysfunction induced by
metals, while MT-III is reduced in Alzheimer’s disease [69]. Furthermore, MT proteins
scavenge free radicals and exhibit anti-inflammatory effects through the suppression of
microglial activation; MTs are also critical, as they can act as targets for reducing metal-
induced α-synuclein aggregation [58]. Our study showed that MT-3 was increased three-
fold following manganese exposure in SH-SY5Y cells. MT-3 is also transcriptionally induced
several hundred-fold by our hypoxia mimetics and in [55]. Our current findings in Figure 6
confirm that deferoxamine induced MT-3 mRNA in SH-SY5Y cells by several multiples of
10 while leaving APP mRNA unchanged; also, we determined that there is a putative IRE
in the 3′UTR of MT-3 mRNA [89,90]. We therefore conducted validating RT-PCR studies of
SH-SY5Y cells dosed with zinc and deferoxamine, agents known to induce hypoxia, and we
found these agents, like Mn, exhibited similar effects to significantly induce MT-3 mRNA.
Overall, like deferoxamine and zinc, manganese is a hypoxia mimetic that significantly
upregulates the expression of MT-3 mRNA levels in SH-SY5Y cells.

In the literature, both DFO and manganese can function to induce hypoxia, while
DFO is known to upregulate HIF1α in rat brains after injury [91]. In lung cells, manganese
induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase. This action interferes with
the hydroxylation of HIF-1α, a key post-translational modification for the Von Hippel–
Lindau dependent degradation of HIF-1α [52]. Manganese was also shown to mediate the
upregulation of HIF-1α protein in Hep2 human laryngeal epithelial cells by activating the
MAPK family of enzymes [92]. These manganese-mediated hypoxic conditions appear
potentially to play a role in the induction of MT-3, a highly inducible gene in hypoxia [55].
Based on these considerations, Metallothionein-III, like urate, may present new therapeutic
angles for treating neurotoxic assaults from manganese overexposures, such as those that
occur in children suffering from the effects of industrial pollution or for those suffering
from neurodegenerative Manganism [7,26].

At a more global level, Mn exposures increase caspase-3 promoter activity through
the Sp1-binding regions, increasing the caspase-3 mRNA and triggering the apoptotic
chromatin condensation [70], which may be similar to the latent disruption of Sp1 induced
by early-life exposure to Pb that we have previously reported [3,93,94]. Our results indicate
an increase in the expression of core histones; specifically, H2BC9, H2AC20, H2AC16,
H2BC13, and H3C10 in SH-SY5Y cells. We note that the increase in histones in response
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to DNA damage is essential for protecting cells against hydroxyl radical-induced DNA
damage [95]. Histone mRNA is the only replication-dependent mRNA in eukaryotes,
and is typically expressed during the S-phase of the cell cycle to coincide with DNA
replication [96]. It has been shown that cadmium, nickel, and chromium, divalent cations
similar to manganese, deplete the stem–loop binding protein (SLBP). This SLBP structure is
essential for histone pre-mRNA pre-processing, histone mRNA stabilization and migration,
and proper histone expression. This occurs because the histone mRNAs have a stem–loop
structure at their 3′ ends, meaning they are not polyadenylated; these stem–loop structures
are also highly critical to the histone mRNA regulation. Depletion of the SLBP will increase
histone mRNAs outside the S-phase of the cell cycle through elevated polyadenylation.
This depletion is also implicated in altered chromatin assembly, supporting the findings that
manganese increases chromatin condensation, [97] while compensatory histone expression
was observed in Table 2. Furthermore, the polyadenylated genes have been shown to be
expressed in response to DNA damage or senescence, which is also present in manganese-
induced toxicity, functionally acting as a biomarker of DNA damage [98].

Increases occur not only for MT-3 mRNA (Table 2) but also for TfR mRNA levels and
these data are included in Table 3 to represent top potential cellular biomarkers for Mn
toxicity. We re-quantitated our q-RT-PCR data that we had previously reported [7]. In
Table 3, TfR mRNA levels are listed to be increased by >7-fold in SH-SY5Y cells when
exposed to acute MnCl2 bolus (i.e., 7.6-fold, 10 mM MnCl2 (SD = 0.2219), and 7.8-fold,
100 mM. (SD = 2); each result was obtained after 24 h treatments [7]. Under the same
conditions, iron (as ferric ammonium citrate) did not alter TfR mRNA levels in SH-SY5Y
cells, while iron chelation with DFO caused a 9.7-fold increase in the steady state of
TfR-mRNA levels. We note that TfR protein is readily detected in the serum as a blood-
based biomarker and elevated in conditions of anemia. The reference range of serum
TfR varies by sex in adults. Normal findings are as follows: Men: 2–5 mg/L, Women:
1.9–4.4 mg/L [99]. Certainly, increases in TfR mRNA expression in certain blood cell
types, including lymphocytes, might be tested as a biomarker for Mn exposure while,
conversely, levels of serum TfR were already reported to be reduced in welding factory
workers who were chronically exposed to Mn in airborne fumes [67]. RNA stability factors
may confound this direct correlation between TfR mRNA and TfR protein levels in the
blood of Mn-exposed patients [16].

Several immediate early genes (IEGs), ATF3, FOS, and EGR1, were significantly up-
regulated by manganese exposures. First, ATF3 encodes the CREB protein family of tran-
scription factors. ATF3 expression also mediates the mitochondrial stress response [100].
Secondly, c-Fos and the associated c-Jun potentially form heterodimer AP-1, expressing
subsequent survival genes [101]. c-Fos, a proto-oncogene, has been determined to show an
immediate increase in response to brain injury, and it increases to protect neurons [102].
Thirdly, EGR1 has been associated with the control of neuronal cell death and inflam-
mation [103–105]. Fourth, AQP10, a member of the aquaporin family, was significantly
upregulated in response to manganese. Fifth, this aquaporin potentially plays a potential
role in the transport of glycerol [106]. We provide a highly useful dendrogram that rep-
resents the relationships between Mn-induced genes based on their expression patterns
(as shown in the heatmap in Figure 2). The dendrogram branches indicate the presence of
co-expression. MT3, H2AC16, and H2BC13 express similar patterns that potentially function
through similar neuroprotective pathways. FOS, EGR1, and ATF3 are also biologically
related due to the inferred dendrogram relatedness functioning through an immediate
early gene pathway.

Our demonstration of key acute expression effects for Mn treatment can be used to
interlock with other pathways vital to understanding neurodegeneration. PD is not usually
associated with acute toxic responses any more than AD. However, chronic elevation levels
of Mn have been reported for the movement disturbances of manganism which is distinct
from, although often compared with, Parkinson’s disease. Should Mn have a place as an
important factor in neurodegenerative disorders, it may be through latent pathways, such
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as changing epigenetic markers, as has been explored for Pb and dementia [27,107,108].
For example, Mn overexposure of SH-SY5Y cells alters the methylation of PD-associated
genes [109] and induces histone acetylation changes [110]. Thus, we consider this work to
be an important foundation in establishing not only acute but potentially long-term effects
of Mn overexposure in neurological health.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom14060647/s1, Figure S1: Original Western Blot; Figure S2: Original
Western Blot; Figure S3: Homology between APP IRE-Type II in the human and mouse genomes.
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