
Citation: Barace, S.; Santamaría, E.;

Infante, S.; Arcelus, S.; De La Fuente,

J.; Goñi, E.; Tamayo, I.; Ochoa, I.;

Sogbe, M.; Sangro, B.; et al.

Application of Graph Models to the

Identification of Transcriptomic

Oncometabolic Pathways in Human

Hepatocellular Carcinoma.

Biomolecules 2024, 14, 653. https://

doi.org/10.3390/biom14060653

Academic Editor: Dirk Geerts

Received: 29 April 2024

Revised: 22 May 2024

Accepted: 29 May 2024

Published: 3 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Article

Application of Graph Models to the Identification of
Transcriptomic Oncometabolic Pathways in Human
Hepatocellular Carcinoma
Sergio Barace 1, Eva Santamaría 1,2 , Stefany Infante 1,3 , Sara Arcelus 1, Jesus De La Fuente 4, Enrique Goñi 4 ,
Ibon Tamayo 4, Idoia Ochoa 5 , Miguel Sogbe 6 , Bruno Sangro 2,6,7 , Mikel Hernaez 4,7,†, Matias A. Avila 2,7,8,†

and Josepmaria Argemi 1,2,6,7,9,*,†

1 DNA and RNA Medicine Division, Applied Medical Research Center (CIMA), University of Navarre,
31008 Pamplona, Spain; sbarace@alumni.unav.es (S.B.); evasmaria@external.unav.es (E.S.);
stefany.infante@udep.edu.pe (S.I.); sarcelus@unav.es (S.A.)

2 Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EHD),
Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain; maavila@unav.es (M.A.A.)

3 Facultad de Medicina Humana, Universidad de Piura, Lima 15074, Peru
4 Bioinformatics Platform, Applied Medical Research Center (CIMA), University of Navarre,

31008 Pamplona, Spain; mhernaez@unav.es (M.H.)
5 Tecnun School of Engineering (TECNUN), University of Navarre, 31008 Pamplona, Spain; iochoal@unav.es
6 Liver Unit, Tecnun School of Engineering (TECNUN), University of Navarre, 31008 Pamplona, Spain;

msogbe@unav.es
7 Instituto de Investigación Sanitaria de Navarra (IdisNA), 31008 Pamplona, Spain
8 Solid Tumor Program, Hepatology Laboratory, Applied Medical Research Center (CIMA),

University of Navarre, C. de Irunlarrea, 3, 31008 Pamplona, Spain
9 Division of Gastroenterology Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA 15232, USA
* Correspondence: jargemi@unav.es
† These authors contributed equally to this work.

Abstract: Whole-tissue transcriptomic analyses have been helpful to characterize molecular subtypes
of hepatocellular carcinoma (HCC). Metabolic subtypes of human HCC have been defined, yet
whether these different metabolic classes are clinically relevant or derive in actionable cancer vulnera-
bilities is still an unanswered question. Publicly available gene sets or gene signatures have been
used to infer functional changes through gene set enrichment methods. However, metabolism-related
gene signatures are poorly co-expressed when applied to a biological context. Here, we apply a
simple method to infer highly consistent signatures using graph-based statistics. Using the Cancer
Genome Atlas Liver Hepatocellular cohort (LIHC), we describe the main metabolic clusters and their
relationship with commonly used molecular classes, and with the presence of TP53 or CTNNB1 driver
mutations. We find similar results in our validation cohort, the LIRI-JP cohort. We describe how
previously described metabolic subtypes could not have therapeutic relevance due to their overall
downregulation when compared to non-tumoral liver, and identify N-glycan, mevalonate and sphin-
golipid biosynthetic pathways as the hallmark of the oncogenic shift of the use of acetyl-coenzyme A
in HCC metabolism. Finally, using DepMap data, we demonstrate metabolic vulnerabilities in HCC
cell lines.

Keywords: hepatocellular carcinoma; RNA sequencing; metabolism; signature; graph; gene set
enrichment analysis; gene set variation analysis

1. Introduction

Gene set enrichment (GSE) methods have been widely used to facilitate the functional
interpretation of transcriptomic data using sets of selected genes that are assigned to a
specific biological context [1]. GSE methods such as gene set variation analysis (GSVA) have
enabled the interpretation of thousands of gene expression changes between conditions
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or groups of patient samples by integrating statistical post hoc analysis into pathway-
centric models [2]. However, the functional diversity between species, organs, tissues,
and cell types as well as the heterogeneity of human cohorts weakens the generalization
capabilities of most published signatures and gene sets, which were likely generated in
highly controlled in vitro experiments on cell types and organs not related to the conditions
under investigation. Similarly, some public gene sets have been curated by experts using
knowledge about a specific pathway or biological process. For instance, the Metabolic Atlas
(MetAtlas) repository was created from genome-scale metabolic models based on multi-
omics and specific tissue subsystems [3]. For the Molecular Signature Database (MSigDB),
hundreds of gene set collections were obtained largely from perturbation experiments [4],
limiting their use in other, less controlled, transcriptomic analyses. A generalized method
for adapting the available signatures to the biological context under study is thus warranted.

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death world-
wide [5,6]. Hepatocyte differentiation is one of the most important prognostic factors in
HCC [7], as exemplified by the histological classification first proposed by Edmondson and
Steiner [8]. High-degree HCCs—Edmonson grades II to IV—behave aggressively, with an
easily distinguishable atypical cell shape. As a highly proliferative cancer, the metabolism
of high-histological-grade HCC shifts towards a more glycolytic phenotype, with more
oxidative stress and glutathione usage and activation of the pentose phosphate pathway for
the synthesis of purines and pyrimidines [9]. In recent years, the availability of transcrip-
tomic data from human HCC has allowed the application of machine learning approaches
to inferring metabolic classification with prognostic value [10–13]. These works have tried
to understand the metabolic underpinnings of HCC in an unbiased manner, generating
de novo signatures, mostly based only in cancer samples. Despite these analytic efforts,
targeting cancer metabolic reprogramming is still an unmet objective. The performance of
GSVA or other GSE methods using publicly available metabolic signatures has not been
yet explored to define HCC metabolism, most probably because of the above-mentioned
limitations.

In this work, to find metabolic vulnerabilities in human HCC, we developed a simple
method to adapt published signatures by applying graph-based statistics to filter off-
the-shelf gene sets before performing GSVA. We used the two largest available cohorts
of sequenced HCC samples (TCGA-LIHC and ICGC-LIRI-JP) and showed the poor co-
expression of published metabolic signatures present in MetAtlas and MSigDB.

The application of graph-based statistics led to the identification of metabolic clusters,
with increased co-expression. We describe the association of newly generated metabolic
signatures with other well-known transcriptomics HCC subclasses (such as those of
Hoshida [14], Chiang [15]) and with the presence of TP53 or CTNNB1 driver mutations.
We focus our study on signatures found to be enriched in tumors when compared to
non-tumoral tissue, namely N-glycan, mevalonate and sphingolipid biosynthetic pathways.
Finally, we show the genetic vulnerabilities within these pathways using the DepMap
initiative (https://depmap.org/portal/, accessed on 15 April 2024) and suggest future
avenues for targeting oncometabolic pathways in HCC.

2. Materials and Methods
2.1. Data Collection

Raw transcriptomic counts and the clinical information of the TCGA-LIHC cohort
were obtained from Xenabrowser platform of the University of California Santa Cruz
(UCSC) (https://xenabrowser.net/datapages/, accessed on 9 March 2023). RNA sequenc-
ing counts belonging to the ICGC-LIRI-JP cohort were downloaded from ICGC Portal
(https://dcc.icgc.org/projects, accessed on 10 March 2023) with its corresponding clinical
information. Clinical data from the TCGA-LIHC and the ICGC-LIRI-JP cohorts are summa-
rized in Supplementary Table S1. In total, 559 HCC (359 from TCGA-LIHC and 200 from
LIRI-JP) and 231 non-tumoral liver samples (49 from TCGA-LIHC and 172 from LIRI-JP)
were included in the analyses. The patients’ cohorts were different regarding clinical char-

https://depmap.org/portal/
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acteristics. For example, LIRI patients were older, all Asian, and mostly chronically infected
with HCV, while LIHC patients were half Caucasian–half Asian and mostly non-viral.
Other differences included a higher G2 histological grade, a higher proportion of cirrhotic
patients, and a higher proportion of CTNNB1 mutated tumors in LIRI, compared to LIHC.
Human molecular signatures tested in this article were obtained from the Metabolic Atlas
repository (https://metabolicatlas.org/explore/Human-GEM/gem-browser, accessed on
23 December 2021) and Molecular Signature Database (https://www.gsea-msigdb.org/
gsea/msigdb/, accessed on 11 April 2024). Cell lines used for dependency and gene effect
analyses were collected from the DepMap portal (https://depmap.org/portal/, accessed
on 15 April 2024).

2.2. Normalization and Filtering Method

Raw counts from both cohorts were normalized using edgeR (version: 4.0.16) [16].
Genes with an expression lower than 1 count in more than 30% of samples were removed.
Then, library size and normalization were performed via the calcNormFactors function
and the TMM methodology. Counts per million (CPM) were calculated using the voom
function of the limma package (version: 3.58.1) and used for downstream analyses.

2.3. Gene Set Adaptation Based on Graph-Based Statistics

Graph were developed using the igraph package (version: 2.0.2) [17]. Using CPM from
normalized cohorts and retrieved metabolic gene sets, gene-gene co-expression was calcu-
lated using Spearman correlation after noticing extreme values in some observations. Cor-
relation matrixes were filtered applying different correlation cutoffs called the Correlation
Cutoff of Input Matrix (CCIM). For downstream analyses, a CCIM of 0.4 was used, as de-
tailed in Section 3. Then, a graph was generated using graph_from_adjacency_matrix with
mode = “undirected”. In these graphs, centrality was obtained using the eigen_centrality
function, and Louvain communities were examined using the cluster_louvain function
with resolution = 1. We considered eigenvalue centrality as our preferential metric for
estimating the centrality of each gene in the graph in a range between 0 (isolated gene) and
1 (central gene). Since the purpose of our signature adaptation is to keep the biological
meaning of the originally published gene set, only those communities with at least 20% of
the original gene set size were included. In large gene sets, more than one community were
found to have at least 20% of the original gene set, which led to the generation of more than
one adapted gene set for some of the original signatures. To name these adapted signatures,
therefore, the central gene of each community was used. Additionally, a core set of genes
with the best centrality (eigenvalue ≥ 90% of the central gene eigenvalue) were defined.

To verify the persistence of the original meaning in the new adapted gene set, each
novel signature was tested for its enrichment against the MSigDB and MetAtlas gene
sets using the function enricher of the clusterProfiler package (version: 4.10.1) with the
minGSSize set to 5 [18]. Any adapted gene that was not first-ranked in the hypergeometric
test, meaning other signatures differing from the one that gave origin to the adapted one,
was excluded from downstream analysis.

2.4. Sample Enrichment with ssGSEA

A single sample gene set enrichment algorithm (ssGSEA) from the corto package
(version: 1.2.4) [19] was used to estimate the enrichment of each gene set across non-tumor
and tumor samples. Those ones with less than 2 genes where removed from ssGSEA
enrichment (min. size parameter set to 2).

2.5. Statistical Analysis Based on ssGSEA Score

Molecular and metabolic HCC subgroups obtained from previous works [10,14,15]
and sample information presented in clinical data were evaluated considering the ssGSEA
score. Means and standard deviations were found and statistical tests were performed and
retrieved for further visualization.

https://metabolicatlas.org/explore/Human-GEM/gem-browser
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://depmap.org/portal/
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2.6. Ridgeplot and Heatmap Visualization

Statistically significant gene sets found in molecular and clinical categories were plot-
ted using pheatmap (version: 1.0.12) [20], ggplot2 (version: 3.5.0), ggridges (version: 0.5.6)
and ggthemes (version: 5.1.0) [21]. When analyzing differences in ssGSEA scores between
non-tumor and tumor samples, only paired samples were selected.

2.7. Survival Analysis

TCGA patients were previously divided into two partitions (training and validation
subsets) with a proportion of 50:50. ICGC-LIRI-JP was considered as test subset in survival
analyses. Survival analysis was performed by taking the median ssGSEA score as a
numerical discriminator between high- and low-expression groups. The median survival
of both groups was estimated using the survival (version: 3.5-5) and survminer (version:
0.4.9) packages [22,23]. In addition, median survival difference (MSD) was computed by
subtracting low- from high-expression samples.

2.8. Estimation of Gene Dependency and Gene Effect with DepMap Portal

Cell lines from HCC (Supplementary Table S2) were analyzed in silico to estimate
the effect and dependency of each cell line on the knock-out of the genes included in the
relevant adapted signatures. To this end, we downloaded the CRIPR-Cas9 screen from the
DepMap portal [24,25]. Briefly, a gene dependency score of 0 means minimal dependency,
whereas one indicates full dependency of the cell line on the specific gene. Regarding
gene effect score, a score of 0 represents no effect of the deletion of that particular gene on
cell survival; negative scores indicate a deleterious effect; and positive scores indicate a
protecting role of that particular gene on the cell line.

2.9. Statistical Analysis

A Shapiro–Wilk test was used to test the normality of each distribution. For variables
with two groups, a t-test or Wilcoxon test was performed according to normality tests. For
three or more groups, parametric ANOVA or Kruskal–Wallis tests were performed, and
each individual comparison were also evaluated two by two. A log-rank test was used
for survival analyses. In box plots, median and interquartile range were displayed. Only
p-values less than 0.05 were considered statistically significant.

3. Results
3.1. Graphs Generate Highly Compacted Metabolic Signatures

Considering metabolism as a crucial hallmark of HCC development, we first investi-
gated how co-expressed curated signatures from the Hallmark collection of MSigDB are
in the context of the HCC transcriptome (Figure 1A). As expected, genes belonging to
proliferative signatures such as E2F_TARGETS, describing a high protein translation rate,
or MYC_TARGETS—as 60% of HCCs in TCGA overexpress the MYC oncogene—have
high median gene-to-gene correlation (MGGC). Metabolic signatures present moderate
to low co-expression, with MGGC values closer to non-hepatic non-cancer signatures,
which present the lowest co-expression. When the Metabolic Atlas (MetAtlas) repository
was tested, similarly low levels of MGGC were found (Figure 1B), with higher values
in signatures related to oxidative phosphorylation or beta-oxidation of fatty acids when
compared to others such as acylglyceride metabolism or cytosolic carnitine shuttle. These
data confirm the specificity of the biological context of HCC and suggest that enrichment
scores based on these signatures could be affected by a low signal-to-noise ratio.
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Figure 1. Using graphs to adapt public signatures. (A) Violin plot showing the median gene to gene
correlation (MGGC) of selected Hallmark signatures in the LIHC HCC cohort, including those related
to proliferation (green), metabolism (light blue), and unrelated to liver or liver cancer (dark blue).
(B) MGGC of signatures from the Metabolic Atlas (MetAtlas). (C) Scheme of the method of adaptation
of public signatures from the Molecular Signature Database (MSigDB) and MetAtlas to identify centric
nodes and metabolic clusters using graphs. (D) Effect of the method on the MGGC of metabolic
signatures from MSigDB and MetAtlas in LIHC. (E) An example of a non-filtered co-expression
matrix of “Xenobiotic Metabolism” signature of the MetAtlas in the LIHC cohort, where all genes
(nodes) are connected in an apparently equal relationship (edge). (F) An example of a Louvain cluster
obtained by after graph-based adaptation was applied to the “Xenobiotic Metabolism” signature.

We thus designed a pipeline to derive highly co-expressed signatures from public
gene sets using graph-based statistics, aiming to identify networks of genes based on
co-expression matrices from human HCC transcriptomic data (see Section 2: Methods). To
pursue this, we retrieved 130 metabolic signatures from Metabolic Atlas and 315 Hallmark
(H) and canonical pathways from curated gene sets (C2-CP) from MSigDB (Figure 1C). A
total of 445 metabolic signatures were analyzed with 1684 genes shared in both databases,
2105 uniquely present in MetAtlas, and 717 specific to MSigDB. As expected, globally,
adapted gene sets obtained from bioinformatic pipeline presented better MGGC compared
to their original counterparts (Figure 1D).

Next, TCGA-LIHC samples were randomly clustered into training and validation
sets, while ICGC-LIRI-JP composed the test set. Graphs generated with higher correlation
thresholds generated less populated graphs and smaller Louvain communities (Figure 1E,F).
Testing all possible correlation thresholds, we detected that a range between 0.2 and
0.5 generated the highest number of communities with the highest number of co-expressed
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genes, with a considerable increase in MGGC and decrease in median gene–gene variance
(MGGV) at the expense of a limited reduction in gene set size to between 40 and 30%
of its original size, indicating that a significant number of genes in the original public
signature in MetAtlas or MSigDB were preserved (Supplementary Figure S1). We also
confirmed that all newly generated signatures were ranked first after a hypergeometric test
was performed against the universe of all available gene signatures (all GSEA H and C2
collections plus MetAtlas signatures). The final collection of gene signatures was named
after its central gene (with an eigenvalue of 1 or the highest eigenvalue in the case of
one original signature generating two or more new Louvain communities, see Methods).
Finally, among those signatures with the same central gene, some of them from different
signatures and representing similar metabolic pathways were merged.

3.2. Metabolic Clusters Are Tumor-Specific and Associated with Molecular Subtypes in the TCGA
LIHC Cohort

The intermediate metabolism is one of the most important functions of normal hepa-
tocytes. We hypothesized that tumor communities could not be entirely coincident with
non-tumor ones, regarding both the number and size of the gene sets and the specific
central genes. It was found that non-tumor communities presented higher number of
clusters, unique genes per cluster, unique core genes, and unique central genes when com-
pared to tumor ones (Figure 2A,B) and that the central genes defining clusters were mostly
divergent (Figure 2C–F). After applying gene set adaptation and selecting enriched gene
sets, 74 different signatures were obtained, conforming to different metabolic signatures, of
which only 17 were also found in non-tumor samples (Figure 2F, Supplementary Table S3).

We then decided to explore whether the relative increase or decrease in the global
expression of a specific community defined a particular biology or was associated with
a previously described HCC subtype. We thus interrogated the enrichment of the new
graph-identified signatures using ssGSEA in the HCC samples of the TCGA-LIHC cohort
(Figure 2G–J). The hierarchical clustering of the signatures led to four main groups of
pathways (Figure 2G, Table 1), which are described as follows.

• The largest group of pathways included a varied array of typically hepatic metabolic
functions, some related to fatty acid metabolism and transport, such as Cytochrome
P450 Family 4 Subfamily A Member 22 (CYP4A22) or Carnitine Palmitoyltransferase 2
(CPT2), which is involved in mitochondrial long-chain fatty acid transport. Others re-
lated to the catabolism of amino acids, such as Glutaryl-CoA Dehydrogenase (GCDH),
an important enzyme in the degradation of lysine, hydroxylysine, and tryptophan;
Sarcosine Dehydrogenase (SARDH) involved in glycine cleavage; Alpha-Aminoadipic
Semialdehyde Synthase (AASS), in charge of lysine degradation; and Methylcrotonoyl-
CoA Carboxylase 2 (MCCC2), involved in the catabolism of leucine. Some additional
pathways related to this group included those centered in enzymes of the respiratory
chain, such as the subunits of the Succinate Dehydrogenase (SDHA and B) and en-
zymes and transporters involved in the processing of drugs and xenobiotics (CYP3A4,
AOX1, NAT2, and ABCC2).

• The second largest group of pathways included functions related to metabolic as-
pects of extracellular matrix (ECM) organization and cell adhesion, such as signatures
centered in Lumican (LUM), Decorin (DCN), Versican (VCAN), thrombospondin
2 (THBS2) and Collagen Type III Alpha 1 Chain (COL3A1); pathways related to
inflammation, including the leukotriene biosynthesis pathway centered in Arachi-
donate 5-Lipoxygenase Activating Protein (ALOXAP5); and pathways related to the
modification of glucosamine glycans, such as those centered in the Carbohydrate
Sulfotransferase 3 (CHST3) and the Beta-1,3-Galactosyltransferase 5 (B3GALT5) genes.

• A third group was composed of signatures related to nucleotide synthesis, such as
the Nucleoside Diphosphate Kinase 1 (NME1), protein synthesis (RPL17A-driven
signature), mitochondrial function (COX5B), glutathione (GPX4) and cytoplasmic
glycosylation pathways (GMPPA).
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• The fourth group included gene sets related to mevalonate and cholesterol biosynthesis,
such as Isopentenyl-diphosphate Delta Isomerase 1 (IDI1), Farnesyl Diphosphate Syn-
thase (FDPS), 7-Dehydrocholesterol Reductase (DHCR7), and the Emopamil-Binding
Protein (EBP).

• Interestingly, a residual group with ssGSEA values unrelated to any of the four men-
tioned groups encompassed transcriptional regulators and nuclear factors such as
the ones included in the mediator complex and nuclear co-repressors included in
the EP300 community, and a PIK3C2A-centered signature, with genes involved in
inositol-phosphate metabolism.
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Figure 2. Identification of metabolic clusters in HCC and their association with transcriptomic classes.
(A) LIHC was used as the training cohort, where tumor (HCC, n = 359) and non-tumor (NT, n = 49)
samples were analyzed. (B) From the original MSigDB and MetAtlas signatures, unrestricted co-
expression matrix (r threshold 0.05) led to the identification of only 148 metabolic clusters in HCC and
183 in NT, which increased to 261 and 454 in HCC and NT, respectively, with an r threshold of 0.4, as
used in downstream analyses. These clusters included 1182 and 1785 unique genes, 369 and 445 core
genes, and 143 and 273 central genes in HCC and NT, respectively (see Section 2). (C–F) Overlap
between signatures (C), unique genes (D), unique core genes (E), and unique central genes (F) found
in HCC and NT. (G) Heatmap of ssGSEA scores using newly identified metabolic clusters and
their association with Hoshida classes S1, S2, and S3. (H–J) Ridge plots showing the expression of
signatures belonging to group 1, 2, and 3 by Hoshida class S1, S2 and S3.
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Table 1. Main metabolic signatures upon hierarchical clustering of the TCGA-LIHC cohort.

Hierarchical Cluster Signature Name Function

Group 1
Liver-specific

CYP4A22, CPT2 Fatty acid metabolism and transport
GCDH Lysine, hydroxylysine, and tryptophan metabolism
SARDH Glycine cleavage
AASS Lysine catabolism
MCCC2 Leucine catabolism
SDHA, SDHB Respiratory chain reaction
CYP3A4, AOX1 Detoxification and metabolism of xenobiotics

Group 2
ECM metabolism

LUM, DCN, VCAN, THBS2, COL3A1 Extracellular matrix, organization, and cell adhesion
ALOXAP5 Leukotriene metabolism
CHST3, B3GALT5 Modification of glucosamine glycans

Group 3
Proliferation

NME1 Nucleotide metabolism
RPL37A Protein synthesis
COX5B Oxidative phosphorylation
GPX4 Glutathione management
GMPPA Cytoplasmic glycosylation

Group 4
Cholesterol IDI1, FDPS, DHCR7, EBP Mevalonate and cholesterol biosynthesis

Group 5 EP300 Nuclear factors
PIK3C2A Inositol phosphate metabolism

Unclustered

DLD Glycolysis
SPTLC1 Sphingolipid metabolism
ABCC2 Glucuronidation and transport of bilirubin
NAT2 Metabolism of drugs

Interestingly, some of the Hoshida subtypes originally not defined based on metabolic
characteristics [14] clustered according to some of the new graph-based metabolic sig-
natures (Figure 2G, top). For example, while Hoshida S1 class was enriched in group 2
signatures (metabolism of ECM-related proteins), S3 class had higher scores of group 1
(liver-specific). Both signatures are present in the non-tumoral tissue, which suggests that
in S1 tumors, there is a specific downregulation of group 1 signatures, such as CYP3A4 and
SDHA (Figure 2H), and in S3 tumors, there is a downregulation of group 2 signatures, such
as VCAN or B3GALT5 (Figure 2I). As expected, the intensity of liver-specific signatures was
higher in non-tumoral livers than in S3 tumors (Figure 2H). On the other hand, the intensity
of ECM signatures was slightly higher in S1 tumors than in non-tumors (Figure 2I). Hoshida
class S2 had lower expression of both group 1 and group 2 signatures when compared to
non-tumor samples (Figure 2G–I). Whether group 1 and group 2 signatures reflect two dif-
ferentiation states is unknown. Two groups of metabolic signatures (group 3, “proliferation”
and group 4, “cholesterol”) had increased ssGSEA scores in tumor samples when compared
to non-tumoral livers, indicating potential metabolic targets. Samples with high scores in
group 3 and 4 signatures were distributed among Hoshida S1, S2 and S3 classes. This could
indicate that while liver differentiation and ECM define one layer of metabolic subtype,
the proliferation rate—in terms of protein synthesis and nucleotide and mitochondrial
metabolism—and the induction of the mevalonate pathway could define a second perhaps
more dynamic onco-metabolic shape (Figure 2J). Interestingly, not all tumors with high
group 3 scores had increased group 4 signature scores, indicating different mechanisms of
regulatory control.

We then analyzed Chiang transcriptomic classes [15] in the context of the newly gener-
ated metabolic signatures. As with Hoshida subclasses, there were metabolic differences
between Chiang subclasses. For example, the proliferative subgroup presented the lowest
levels of expression of group 1 signatures, whereas CTNNB1, Polysomy 7 and Interferon
classes presented higher expression of these signatures (Supplementary Figure S2A). Con-
versely, when interrogating group 2 signatures, CTNNB1 and Polysomy 7 seven (but not
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the Interferon class) had the lowest level of expression (Supplementary Figure S2B). These
results indicated the relationship between a specific molecular subtype and the metabolic
status of the cell.

Finally, the metabolic landscape of HCC, as inferred by the generated signatures,
matched with previously described metabolic classes. Bidkhori metabolic class iHCC1 [10]
was enriched with liver-specific (group 1) signatures (Supplementary Figure S2C,D), while
iHCC3 tumors had the lowest levels of these signatures but the highest levels of metabolism
of ECM (Supplementary Figure S2C,E). As described, the iHCC2 metabolic subgroup had
an intermediate score in group 1 signatures when compared to iHCC1 and 3. Some
signatures, such as those related to drug and xenobiotic metabolism (NAT2, UGT1A4)
and those related to steroid metabolism (HSD17B4) (Supplementary Figure S2C,F), were
enriched specifically in iHCC2 samples.

3.3. TP53 and CTNNB1 Mutant Tumors Are Metabolically Diverse

HCC’s main driver mutations include deleterious TP53 variants, activating N terminal
CTNNB1 mutations and activating variants of the TERT gene promoter. Among them, TP53
and CTNNB1 mutations are mutually exclusive in most HCC patients, which allows for the
comparative analysis of their specific biologic behavior. With newly adapted signatures, we
could define a specific metabolic shape for TP53- and CTNNB1-mutated tumors. Tumors
bearing TP53-null mutations presented overexpression of the NME1 signature related to
purine metabolism. On the other hand, CTNNB1-mutated patients presented an enrichment
in metabolic signatures such as MAT1A and CYP3A4, when compared to TP53-null patients.
Conversely, tumors with wild-type TP53 presented higher metabolic enrichment of MAT1A
and CYP3A4. These data suggest that CTNNB1 mutation supports the maintenance of a liver
metabolic-like phenotype in HCC, while TP53-mutant tumors are more de-differentiated
and highly proliferative (Supplementary Figure S3).

3.4. The Survival of Patients with Low Metabolic Tumors Is Worse in the LIHC and LIRI Cohorts

It has previously been observed that Bidkhori iHCC1 class determines survival progno-
sis [10]. We therefore used the training, validation, and test cohorts to verify the prognostic
significance of our derived metabolic signatures (Figure 3A). Only liver-specific metabolic
signatures (group 1) such as ABAT, DMGDH and GLYAT, which were downregulated
in tumors (Figure 3B), were associated with prognosis in all three cohorts. Patients with
tumors with higher expression of these metabolic signatures had increased overall survival
(Figure 3C). This result indicates the validity of the signatures found in the LIHC cohort
in interrogating the metabolic phenotype of unseen data, such as the LIRI-JP cohort. The
median survival difference was lower in the LIRI-JP cohort, perhaps due to the better global
survival in this cohort.
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Figure 3. Validation of the method for prognostic prediction in patients with HCC. (A) A random
50:50 split of the LIHC cohort led to the training (n = 180) and validation (n = 179) cohorts for
prognostic analyses, while the LIRI-JP cohort (n = 200) was used as the test cohort. (B,C) Overall
ssGSEA scores of prognostic signatures ABAT, DMGDH and GLYAT when comparing tumor vs.
non-tumor in LIHC (C) and LIRI-JP (D). (E,F) Survival analyses of patients in LIHC-training, LIHC-
validation and LIRI-JP-testing cohorts when dividing the population into high and low ssGSEA
scores for ABAT (E), DMGDH (F) and GLYAT signatures.

3.5. Mevalonate, N-Glycan and Sphingolipid Biosynthesis Pathways Shape Tumor Metabolism in
Human HCC

We then decided to study in more detail the few signatures with increased scores in
tumors when compared to non-tumoral livers in both cohorts LIHC and LIRI, regardless
their molecular subtype (signature groups 3 and 4). Some signatures, such as IDI1 signature,
glycosylation (GMPPA signature), sphingolipid (SPTLC1 signature), and nucleotide (NME1
signature) metabolism, and the catabolism of the polyamines were related to the meval-
onate/cholesterol biosynthetic pathway with mostly proteasome subunit genes (PSMB3
signature). Isopentenyl-diphosphate delta-isomerase 1 (IDI1) was the most centric gene
of the Louvain community with increased enrichment scores (Figure 4A) involving other
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cholesterol-related genes such as Squalene Epoxidase (SQLE), Mevalonate Diphosphate
Decarboxylase (MVD), Sterol Regulatory Element-Binding Transcription Factor 2 (SREBP2),
Farnesyl Diphosphate Synthase (FDPS), and Phosphomevalonate Kinase (PMVK), all of
them with increased expression in the HCC of both the LIHC and the LIRI-JP cohorts
(Figure 4B,C).
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Figure 4. IDI1, GMPPA, and SPTLC1-centered clusters are overexpressed metabolic signatures in
HCC. (A) Ridge plots of ssGSEA scores of Isopentenyl-diphosphate delta-isomerase 1 (IDI1) signature
in LIHC and LIRI-JP cohorts compared with paired non-tumor tissue. (B,C) Box plots showing
the expression levels of individual genes included in the IDI1 signature in LIHC (B) and LIRI-JP
(C) cohorts. (D) Ridge plots of ssGSEA scores of GDP-mannose pyrophosphorylase A (GMPPA)
signature in LIHC and LIRI-JP cohorts compared with paired non-tumor tissue. (E,F) Box plots
showing the expression levels of individual genes included in GMPPA signature in LIHC (E) and
LIRI-JP (F) cohorts. (G) Ridge plots of ssGSEA scores of Serine Palmitoyltransferase Long-Chain
Base Subunit 1 (SPTLC1) signature in the LIHC and LIRI-JP cohorts compared with paired non-
tumor tissue. (H,I) Box plots showing the expression levels of individual genes included in GMPPA
signature in the LIHC (H) and LIRI-JP (I) cohorts. Abbreviations: * p < 0.05, ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

GDP-mannose pyrophosphorylase A, encoded by GMPPA gene, was the central gene
in a signature associated with other enzymes related to the synthesis and ramification
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of N-Glycans in the cytoplasmic and luminal domains of the endoplasmic reticulum
wall, including Dolichyl-Phosphate Mannose Synthase Subunit 3 and 8 (ALG3, ALG8),
Dolichol kinase (DOLK), and Required for FTase Activity Protein 1 (RTF1), the flippase that
internalizes the glycans to be incorporated to nascent polypeptides inside the ER. All of
these genes were upregulated in tumors both in LIHC and LIRI (Figure 4D,F).

The signature centered in the Serine Palmitoyltransferase Long-Chain Base Subunit
1 (SPTLC1) was also upregulated in tumors of both the TCGA-LIHC and ICGC-LIRI-JP
cohorts (Figure 4G). SPTLC1 is a key enzyme in sphingolipid biosynthesis, catalyzing the
generation of ketosphingoids from Serine and Acetyl-CoA, the rate-limiting step for the
generation of ceramides. Other enzymes in the same signature belonging to the lysosomal
pathway of ganglioside catabolism, such as Hexosaminidase Subunit Beta (HEXB) and
Neuraminidase 1 (NEU1), were also overexpressed in tumor samples of both LIHC and
LIRI-JP (Figure 4H–I).

The NME1 signature comprised nucleotide metabolism and polimerase enzymes
related to DNA replication and transcription. As expected, tumor samples presented higher
expression in comparison with non-tumor ones (Supplementary Figure S4A). Among the
most relevant genes in this signature were Thymidine Kinase 1 (TK1), Uridine-Cytidine
Kinase 2 (UCK2), and Deoxythymidylate Kinase (DTYMK), all of which were involved in
nucleotide metabolism (Supplementary Figure S4B,C).

Finally, overexpression of the PSMB3 signature, was related to the metabolism of
polyamines (but also to the more general proteasome function) and was found to differ-
entially increase in tumor samples (Supplementary Figure S5A). Several components and
subunits of the proteasome presented a general upregulation in tumor samples of both the
LIHC and LIRI-JP cohorts (Supplementary Figure S5B,C).

3.6. HCC Metabolic Vulnerabilities in Mevalonate, N-Glycan, and Sphingolipid Pathays as New
Targets for Therapy

The aforementioned results point to a possible implication of mevalonate/cholesterol,
N-glycan, and sphingolipid metabolism in HCC biology, regardless of the molecular sub-
type or the driver mutation. Since these pathways are induced in tumor samples when
compared to non-tumoral liver, we thought they could constitute potential targets for
anticancer therapy. Thus, to determine the importance of these enzymes for the survival of
HCC cells, DepMap data were used to analyze cell viability and dependency when these
genes are targeted. After analyzing six tumor-specific signatures (IDI1, GMPPA, NME1,
PSMB3, SPTLC1 and EBP), the gene effect and gene dependency were measured in different
non-cancerous cell lines and liver cancer lines of human HCC. The genes 3-Hydroxy-3-
Methylglutaryl-CoA Synthase 1 (HMGCS1), 3-Hydroxy-3-Methylglutaryl-CoA Reductase
(HMGCR), Farnesyl Diphosphate Synthase (FDPS), and Mevalonate Diphosphate Decar-
boxylase (MVD) were the most affected genes upon CRISPR-knock out, impacting cell
survival as exemplified by the highest gene dependency scores (Figure 5A) and the most
negative gene effect (Figure 5B). Interestingly, the knock-down of another gene in the
same community, the NAD(P)H Steroid Dehydrogenase-Like (NSDHL), conferred higher
survival and had a positive effect on cancer cells (Figure 5B).

In the N-Glycan GMPPA signature, the UDP-N-Acetylglucosaminyltransferase Sub-
unit (ALG14) and RFT1 Gene (RFT1) accounted for the highest vulnerability in most HCC
cell lines tested (Figure 5C,D). In the case of SPTLC1 signature, some but not all HCC cell
lines were dependent on SPTLC1 and SLC33A1 genes, indicating a pathway less relevant
for HCC survival than the previous two.
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Figure 5. Identification of metabolic vulnerabilities in HCC cell lines using DepMap. (A) Gene
dependency scores for individual genes included in the IDI1 signature. (B) Gene effect scores for
individual genes included in the IDI1 signature. (C) Gene dependency scores for individual genes
included in the GMPPA signature. (D) Gene effect scores for individual genes included in the GMPPA
signature. (E) Gene dependency scores for individual genes included in the SPTLC1 signature.
(F) Gene effect scores for individual genes included in the SPTLC1 signature.

4. Discussion

In the present work, we implement a simple computational method for inferring
metabolic pathways, using public signatures in MSigDB and the MetAtlas, by understand-
ing HCC-specific gene networks using graph-based statistics. The newly generated gene
communities are highly co-expressed and represent major metabolic domains of liver cancer
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cells. We use ssGSEA as an enrichment method to infer the activity of these pathways in
samples of the two largest cohorts with available transcriptomic data, the TCGA-LIHC and
the ICGC-LIRI-JP, including a total of 559 HCC samples and 149 non-tumoral liver samples.

We show that the metabolic phenotype is only partly associated with previously
described signatures such as Hoshida and Chiang. As expected, liver-enriched metabolic
pathways were associated with Hoshida S3 subclass and Chiang subclasses CTNNB1, Poly7,
and Interferon. On the other hand, ECM metabolism was associated with Hoshida S1. We
nevertheless describe the presence of two groups of signatures, groups 3 “proliferation” and
4 “Mevalonate/cholesterol”, which can be increased or decreased in Hoshida subclasses S1,
S2 and S3, indicating a level of metabolic regulation that works in asynchrony with regard
to hepatocyte differentiation. In conclusion, our work confirms and enriches previous
transcriptomic classification of HCC, adding an important validation of the main findings
in the LIRI-JP cohort, which so far has not been used to study metabolic profiles. We show
that TP53-null and CTNBB1-mutated tumors have divergent metabolic profiles, which is
consistent with what has been previously described [26–28].

The strength of this study is our focus on signatures enriched in tumoral samples
when compared to non-tumor tissues. Previous works [10,14,15] have depicted the tran-
scriptomic landscape of HCC but did not consider the expression of metabolic signatures
in non-tumoral livers. Here, we show that those tumors with high liver-specific signature
enrichment are still poorly differentiated when compared to non-tumoral livers. This
approach helps us discover metabolic pathways increased in tumors that constitute part of
the hallmarks of liver cancer and that could be targeted by future synergistic approaches
using immunotherapy.

We confirm that metabolic pathways related to nucleotide biosynthesis, such as the
NME1 signature, are related to highly proliferative tumors and have a role in HCC pro-
gression [29], although this role could be non-HCC-specific but common to other cancer
types. We describe the mevalonate, the N-glycan, and sphingolipid biosynthetic pathways
as induced pathways in HCC and thus potential targets for therapy. Although these new
findings validate previous evidence of the role of these pathways in cancer cell survival
and immune evasion, such data are so far lacking and fragmented in the literature on HCC.

Regarding mevalonate biosynthesis, it has been shown that IDI1 promotes tumor
growth [30]. Interestingly, IDI1 represses CCL5- and CXCL10-expressing cells in the tumor
microenvironment, increasing the capacity for immune evasion. On the other hand, EBP
inhibitors have been shown to impair prostate cancer proliferation [31]. FDPS has been
largely studied in other cancers. For instance, its role in promoting glioblastoma growth is
known; it acts by recruiting tumor-associated macrophages through increased expression
of CCL20 [32]. This same immunosuppressive mechanism set up by cancer cells has been
demonstrated in in mouse models of beta-catenin-induced HCC [33]. In osteosarcoma cell
lines and HeLa cells, FDPS was also able to change the ECM organization and promote
proliferation and DNA repair [34]. Finally, FDPS has been proposed as a biomarker of
breast cancer development [35]. Squalene epoxidase (SQLE) is capable of promoting tumor
growth by inhibiting apoptosis [36] and is able to interact with the TGFb-SMAD axis to
promote EMT and metastatic capacity [37]. We observed using the DepMap data that
HMGCR, HMGCS1, FDPS, MVD and IDI1 confer different degrees of vulnerability when
knocked out with CRISPR-Cas9 in several human HCC cell lines. Whether available
HMGCR inhibitors such as statins could be used as repurposed drugs for combination with
immunotherapy remains a provocative possibility.

Few glycosylation pathways have been described in HCC. An abnormal glycosylation
of the ectonucleotidase CD73 was found in HCC samples [38] but not in adjacent livers.
More broadly, glycosylation patterns are known to be present in a variety of cancer types
and contribute to their fitness and evasion from the immune surveillance [39–41]. Targeting
ALG14 or RFT1 led to HCC cell death in a consistent fashion, expanding a variety of cancer
cell lines. To determine whether targeting these genes or other members of this pathway is
feasible and non-toxic for non-tumoral cells, further preclinical work is required.
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Finally, for the sphingolipid biosynthesis pathway, conflicting data have been reported.
On one hand, the SPTLC1 gene has been found to be anti-oncogenic. In colorectal cancer,
the low expression of SPTLC1 leads to worse prognosis [42]; in renal cell carcinoma, it
inhibits cell proliferation [43], and in lymphoma patients, a mutation of SPTLC1 increases
enzymatic activity, thereby sensitizing BCR-ABL tumors to imatinib [44]. On the other
hand, serum ceramides and sphingolipids such as S1P and SA1P are increased in patients
with HCC but not in cirrhotic controls [45], and the blockade of sphingolipids in Huh7 and
HepG2 cell lines leads to increased susceptibility to sorafenib [46]. More broadly, it has
been described that sphingolipids are produced in higher amounts in cancer cells and that
the sphingosine-1-phosphate (S1P) intermediate promotes proliferation, migration, and
EMT [47] and regulates the interphase with other cells through the inhibition of sindecan
1 [48].

One potential unifying model to explain the relationship between the above-mentioned
metabolic pathways in HCC could be the cancer-specific change in the use of Acetyl-CoA,
the most-used substrate of the cell for anabolic and energetic functions (Figure 6). In non-
cancerous liver cells, Acetyl-CoA is a central metabolic intermediate, and the maintenance
of the Acetyl CoA pool is essential for growth, proliferation, and protein modification.
Cancer cells have developed the capacity to capture acetate as an alternative source to
glucose from the circulation and even from the intestinal microbiome [49,50]. In the
present work, we show that in human HCC, many of the metabolic pathways using
Acetyl-CoA—such as lipid biosynthesis—are downregulated when compared with not-
tumoral tissues. This is particularly evident in highly de-differentiated tumors, while
unique genuinely overexpressed metabolic signatures are the mevalonate/cholesterol,
N-glycan, and sphingolipid pathways, all three meant to deviate Acetyl-CoA precursors
into pro-tumoral biosynthetic pathways related to protein glycosylation, turnover, and
ECM organization. The fact that the main transporter of Acetyl-CoA into the lumen of ER
and lysosomes, SLC33A1, is one of the most overexpressed genes in HCC may lead to its
experimental evaluation as a potential target for HCC therapy.

Patients with advanced HCC are currently treated with immunotherapy as a first line,
and two combinations are currently approved in Western countries and in Asia for this indi-
cation: atezolizumab plus bevacizumab and tremelimumab plus durvalumab [51,52]. One
of the main limitations of this work is the lack of baseline liver and tumor transcriptomic
data from patients with advanced HCC treated with these regimens. Both the TCGA-
LIHC and ICGC-LIRI-JP cohorts mostly include patients with early HCC that were treated
through curative therapies such as resection. We have not found a clear association of
immune infiltration with metabolic signatures. Whether the inhibition of the metabolic
pathways found in the present work could impact the response of these patients to im-
munotherapy is an area for further investigation. Additionally, the role of these signatures
as prognostic or predictive biomarkers is yet to be explored.
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5. Conclusions

Utilizing computational methods to infer gene networks specific to HCC, this study
identifies major metabolic domains in liver cancer cells, validating and enriching previous
transcriptomic classifications. The metabolic phenotype of HCC reveals associations with
known HCC subclasses, such as Hoshida and Chiang, while also highlighting the presence
of distinct metabolic pathways in poorly differentiated tumors compared to non-tumoral
liver tissue. Mevalonate/cholesterol, N-glycan, and sphingolipid pathways emerge as
potential therapeutic targets for HCC, with specific genes within these pathways showing
promise for targeted therapies, potentially in combination with immunotherapy. This study
also provides insights into the functional roles of various metabolic pathways in HCC
progression, including nucleotide biosynthesis, glycosylation, and sphingolipid biosyn-
thesis, shedding light on their reported involvement in tumor growth, immune evasion,
and metastasis. The findings raise questions about the impact of targeting these metabolic
pathways when treating advanced HCC patients and suggest further investigation into the
potential use of these metabolic signatures as prognostic or predictive biomarkers. Addi-
tionally, this study underscores the need for transcriptomic data from patients undergoing
immunotherapy for a more comprehensive understanding of treatment responses when
using the current standard of care.
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