Advances in Platelet-Dysfunction Diagnostic Technologies
Abstract
:1. Introduction
2. Current Platelet-Function Tests
2.1. Bleeding Time (BT) Test
2.2. Platelet Aggregation Test: Light Transmission Aggregometry (LTA)
2.3. Platelet Adhesion in Platelet-Function Analyzers
2.4. Impedance Aggregometry
2.5. Viscoelastic Properties in Clot Assessment
2.6. Other Techniques
Categorize | Monitoring Types | Advantage | Disadvantage | Principle of Test | Ref. |
---|---|---|---|---|---|
Bleeding time test | Ivy | Physiological test, fast monitoring | High risk of scarring, risk of infection and bleeding, invasive poorly standardized, dependent on many variables | Creates a wound to assess platelet function through measuring the time taken for the bleeding to stop | [12,75,76] |
Duke | |||||
Template | |||||
Platelet Aggregation Test | Light transmission aggregation (LTA) | High flexibility, high sensitivity to anti-platelet therapy, analysis of various platelet function disorder, investigation of various platelet pathways | Time-consuming, difficult to sample preparation, required skilled laboratory personnel, pre-analytical and procedural variability | Measures platelet aggregation in blood through tracking changes in light transmission as platelets clump together. (LTA uses PRP, VerifyNow uses whole blood). | [41,75,77,78] |
VerifyNow | User-friendly, simple and rapid result generation | Inflexible, high cost, monitoring anti-platelet therapy, limited hematocrit (HCT) and platelet count | |||
Lumi-aggregometry | Dual measurement, enhanced sensitivity, better diagnosis, therapy monitoring | Expensive, complex setup, time-consuming, skilled personnel | Measures both platelet aggregation and the release of adenosine triphosphate (ATP) form platelet dense granules | ||
Platelet Adhesion in Platelet-function Analyzers | Platelet function analyzer (PFA-100/200) | Whole blood test, required small blood volumes, simple and rapid, investigating severe platelet defects | Inflexible, HCT-dependent not sensitive to platelet secretion defects | Mimics platelet adhesion and aggregation under high shear stress in a membrane-coated system. Measures closure time | [78,79,80] |
Cone and platelet analyzer | Small blood volume, simple and rapid | Expensive, lack of clinical studies, required skilled laboratory personnel | Measures blood coagulation and platelet aggregation through applying shear stress through a rotating cone | ||
Electrical conductance | Impedance platelet aggregation | Flexible, no sample processing simple diagnostic method, sensitive to anti-platelet therapy | Insensitive, limited HCT and platelet count range | Uses impaired electrical conductance to assess platelet aggregation in whole blood | [55,56] |
Multiplate | Whole blood samples, simple and rapid, standardized activators, bedside monitoring | Susceptibility to interference from certain medications and substances | |||
Viscoelastic Properties in Clot Assessment | Rotational thromboelastometry (ROTEM) | Real-time monitoring | Measures clot properties only, lack of clinical studies, limited HCT and platelet count range | Evaluates the viscoelastic properties of blood during clotting to assess overall hemostasis, including platelet function. Similar to ROTEM, measures the viscoelastic properties of clot formation for a comprehensive assessment of coagulation and platelet function | [60,81,82] |
Thromboelastography (TEG) | Measures clot properties only, lack of clinical trial, low shear-induced | ||||
Other techniques | Platetletworks | Low cost, small blood volume required, simple and rapid, platelet count measurement | Indirect test, scarce data | All methods analyze platelet function and blood coagulation processes to provide insights into thrombosis, coagulation, platelet activation, and platelet–blood interactions | [83,84] |
Global thrombosis test (GTT) | Whole blood samples, small blood volume required | Lack of clinical studies | [85,86] | ||
Sonoclot | Effective clinical hemostasis management comprehensive clot assessment, rapid output, POC convenience, versatility in sample types | Measures clot properties only | [87,88] |
3. Advanced Technologies for Platelet-Function Testing
3.1. Microfluidics and Lab on a Chip
3.2. Digital Microfluidics for Platelet Research
3.3. Flow Cytometry
4. Other Special Techniques for Platelet Analysis
5. Supporting Technologies in Platelet Research
5.1. High-Throughput Sequencing (HTS)
5.2. Mass Spectrometry in Platelet Function Analysis
5.3. Advances in Platelet Research Using AI
6. Conclusions and Outlook
Funding
Conflicts of Interest
References
- George, J.N. Platelets. Lancet 2000, 355, 1531–1539. [Google Scholar] [CrossRef]
- Smyth, S.; McEver, R.; Weyrich, A.; Morrell, C.; Hoffman, M.; Arepally, G.; French, P.; Dauerman, H.; Becker, R.; THE, F. Platelet functions beyond hemostasis. J. Thromb. Haemost. 2009, 7, 1759–1766. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.K.; Kim, S.; Kim, S. An insight into recent advances on platelet function in health and disease. Int. J. Mol. Sci. 2022, 23, 6022. [Google Scholar] [CrossRef] [PubMed]
- Michelson, A.D. How platelets work: Platelet function and dysfunction. J. Thromb. Thrombolysis 2003, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.; Onishi, K.; Jayaram, P.; Lana, J.F.; Mautner, K. Platelet-rich plasma: New performance understandings and therapeutic considerations in 2020. Int. J. Mol. Sci. 2020, 21, 7794. [Google Scholar] [CrossRef] [PubMed]
- Broos, K.; Feys, H.B.; De Meyer, S.F.; Vanhoorelbeke, K.; Deckmyn, H. Platelets at work in primary hemostasis. Blood Rev. 2011, 25, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Barale, C.; Russo, I. Influence of cardiometabolic risk factors on platelet function. Int. J. Mol. Sci. 2020, 21, 623. [Google Scholar] [CrossRef] [PubMed]
- Bryckaert, M.; Rosa, J.-P.; Denis, C.V.; Lenting, P.J. Of von Willebrand factor and platelets. Cell. Mol. Life Sci. 2015, 72, 307–326. [Google Scholar] [CrossRef] [PubMed]
- Scopelliti, F.; Cattani, C.; Dimartino, V.; Mirisola, C.; Cavani, A. Platelet derivatives and the immunomodulation of wound healing. Int. J. Mol. Sci. 2022, 23, 8370. [Google Scholar] [CrossRef]
- Jurk, K. Analysis of platelet function and dysfunction. Hamostaseologie 2015, 35, 60–72. [Google Scholar] [CrossRef]
- Huong, P.T.; Nguyen, L.T.; Nguyen, X.-B.; Lee, S.K.; Bach, D.-H. The role of platelets in the tumor-microenvironment and the drug resistance of cancer cells. Cancers 2019, 11, 240. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, R.; Priora, R.; Liotta, A.A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Le Blanc, J.; Mullier, F.; Vayne, C.; Lordkipanidze, M. Advances in Platelet Function Testing-Light Transmission Aggregometry and Beyond. J. Clin. Med. 2020, 9, 2636. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-J.; Qureshi, M.M.; Lee, S.Y.; Chung, E. Optofluidic laser speckle image decorrelation analysis for the assessment of red blood cell storage. PLoS ONE 2019, 14, e0224036. [Google Scholar] [CrossRef] [PubMed]
- Dovlatova, N. Current status and future prospects for platelet function testing in the diagnosis of inherited bleeding disorders. Br. J. Haematol. 2015, 170, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-J.; Lee, H.; Yoon, D.S.; Kim, B.-M. Dielectrophoretic force measurement of red blood cells exposed to oxidative stress using optical tweezers and a microfluidic chip. Biomed. Eng. Lett. 2017, 7, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Braune, S.; Küpper, J.-H.; Jung, F. Effect of prostanoids on human platelet function: An overview. Int. J. Mol. Sci. 2020, 21, 9020. [Google Scholar] [CrossRef] [PubMed]
- Kehrel, B.E.; Brodde, M.F. State of the art in platelet function testing. Transfus. Med. Hemother. 2013, 40, 73–86. [Google Scholar] [CrossRef] [PubMed]
- Rubak, P.; Nissen, P.H.; Kristensen, S.D.; Hvas, A.M. Investigation of platelet function and platelet disorders using flow cytometry. Platelets 2016, 27, 66–74. [Google Scholar] [CrossRef]
- Brunet, J.; Badin, M.; Chong, M.; Iyer, J.; Tasneem, S.; Graf, L.; Rivard, G.E.; Paterson, A.D.; Pare, G.; Hayward, C.P.M. Bleeding risks for uncharacterized platelet function disorders. Res. Pr. Thromb. Haemost. 2020, 4, 799–806. [Google Scholar] [CrossRef]
- Collet, J.P.; Hulot, J.S.; Cuisset, T.; Range, G.; Cayla, G.; Van Belle, E.; Elhadad, S.; Rousseau, H.; Sabouret, P.; O’Connor, S.A.; et al. Genetic and platelet function testing of antiplatelet therapy for percutaneous coronary intervention: The ARCTIC-GENE study. Eur. J. Clin. Pharmacol. 2015, 71, 1315–1324. [Google Scholar] [CrossRef] [PubMed]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Harker, L.A.; Slichter, S.J. The bleeding time as a screening test for evaluation of platelet function. N. Engl. J. Med. 1972, 287, 155–159. [Google Scholar] [CrossRef] [PubMed]
- De Caterina, R.; Lanza, M.; Manca, G.; Strata, G.B.; Maffei, S.; Salvatore, L. Bleeding time and bleeding: An analysis of the relationship of the bleeding time test with parameters of surgical bleeding. Blood 1994, 84, 3363–3370. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, R.C.; Levin, J. A critical reappraisal of the bleeding time. Semin. Thromb. Hemost. 2024, 50, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Steiner, R.; Coggins, C.; Carvalho, A.C. Bleeding time in uremia: A useful test to assess clinical bleeding. Am. J. Hematol. 1979, 7, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Mielke, C., Jr.; Kaneshiro, M.; Maher, I.; Weiner, J.; Rapaport, S. The standardized normal Ivy bleeding time and its prolongation by aspirin. Blood 1969, 34, 204–215. [Google Scholar] [CrossRef]
- Duke, W. The relation of blood platelets to hemorrhagic disease: Description of a method for determining the bleeding time and coagulation time and report of three cases of hemorrhagic disease relieved by transfusion. J. Am. Med. Assoc. 1910, 55, 1185–1192. [Google Scholar] [CrossRef]
- Cattaneo, M. Light transmission aggregometry and ATP release for the diagnostic assessment of platelet function. Semin. Thromb. Hemost. 2009, 35, 158–167. [Google Scholar] [CrossRef]
- Frontroth, J.P. Light transmission aggregometry. In Haemostasis: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2013; pp. 227–240. [Google Scholar]
- Sugawara, E.; Shimizu, M.; Yamamoto, M.; Kudo, Y.; Tanaka, F.; Johkura, K. Pitfall of Light Transmission Aggregometry-Based Assessment of Platelet Function in Acute Ischemic Stroke Patients. J. Stroke Cerebrovasc. Dis. 2020, 29, 104496. [Google Scholar] [CrossRef]
- Hvas, A.-M.; Favaloro, E.J. Platelet function analyzed by light transmission aggregometry. In Hemostasis and Thrombosis: Methods and Protocols; Humana Press: New York, NY, USA, 2017; pp. 321–331. [Google Scholar]
- Koltai, K.; Kesmarky, G.; Feher, G.; Tibold, A.; Toth, K. Platelet Aggregometry Testing: Molecular Mechanisms, Techniques and Clinical Implications. Int. J. Mol. Sci. 2017, 18, 1803. [Google Scholar] [CrossRef]
- Ling, L.-Q.; Liao, J.; Niu, Q.; Wang, X.; Jia, J.; Zuo, C.-H.; Jiang, H.; Zhou, J. Evaluation of an automated light transmission aggregometry. Platelets 2017, 28, 712–719. [Google Scholar] [CrossRef]
- Platton, S.; McCormick, Á.; Bukht, M.; Gurney, D.; Holding, I.; Moore, G.W. A multicenter study to evaluate automated platelet aggregometry on Sysmex CS-series coagulation analyzers—Preliminary findings. Res. Pract. Thromb. Haemost. 2018, 2, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, A.; Kobayashi, K.; Lane, P.; Mackie, I.; Machin, S. The automation of routine light transmission platelet aggregation. Int. J. Lab. Hematol. 2014, 36, 431–438. [Google Scholar] [CrossRef]
- Smith, J.W.; Steinhubl, S.R.; Lincoff, A.M.; Coleman, J.C.; Lee, T.T.; Hillman, R.S.; Coller, B.S. Rapid platelet-function assay: An automated and quantitative cartridge-based method. Circulation 1999, 99, 620–625. [Google Scholar] [CrossRef]
- Brass, L. Understanding and evaluating platelet function. Hematol. 2010 Am. Soc. Hematol. Educ. Progr. Book 2010, 2010, 387–396. [Google Scholar] [CrossRef]
- Kim, C.J.; Kim, J.; Sabate Del Rio, J.; Ki, D.Y.; Kim, J.; Cho, Y.K. Fully automated light transmission aggregometry on a disc for platelet function tests. Lab Chip 2021, 21, 4707–4715. [Google Scholar] [CrossRef] [PubMed]
- Rosengart, T.K.; Romeiser, J.L.; White, L.J.; Fratello, A.; Fallon, E.; Senzel, L.; Shroyer, A.L. Platelet activity measured by a rapid turnaround assay identifies coronary artery bypass grafting patients at increased risk for bleeding and transfusion complications after clopidogrel administration. J. Thorac. Cardiovasc. Surg. 2013, 146, 1259–1266.e1251. [Google Scholar] [CrossRef] [PubMed]
- van Werkum, J.W.; Harmsze, A.M.; Elsenberg, E.H.; Bouman, H.J.; ten Berg, J.M.; Hackeng, C.M. The use of the Verify Now system to monitor antiplatelet therapy: A review of the current evidence. Platelets 2008, 19, 479–488. [Google Scholar] [CrossRef]
- Dichiara, J.; Bliden, K.P.; Tantry, U.S.; Chaganti, S.K.; Kreutz, R.P.; Gesheff, T.B.; Geshefe, T.A.; Kreutz, Y.; Gurbel, P.A. Platelet function measured by VerifyNow™ identifies generalized high platelet reactivity in aspirin treated patients. Platelets 2007, 18, 414–423. [Google Scholar] [CrossRef]
- Lordkipanidzé, M.; Pharand, C.; Nguyen, T.A.; Schampaert, E.; Diodati, J.G. Assessment of VerifyNow P2Y12 assay accuracy in evaluating clopidogrel-induced platelet inhibition. Ther. Drug Monit. 2008, 30, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Malinin, A.; Pokov, A.; Swaim, L.; Kotob, M.; Serebruany, V. Validation of a VerifyNow-P2Y12 cartridge for monitoring platelet inhibition with clopidogrel. Methods Find. Exp. Clin. Pharmacol. 2006, 28, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Sharan, S.; Gandhi, A.; Kapoor, P.M. Utility of Platelet Function Tests: A Recent Review Round Up. J. Card. Crit. Care TSS 2020, 3, 24–27. [Google Scholar] [CrossRef]
- Mammen, E.F.; Gosselin, R.; Greenberg, C.; Hoots, W.K.; Kessler, C.M.; Larkin, E.C.; Liles, D.; Nugent, D.J. PFA-100 system: A new method for assessment of platelet dysfunction. Semin. Thromb. Hemost. 2024, 50, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Moenen, F.C.; Vries, M.J.; Nelemans, P.J.; van Rooy, K.J.; Vranken, J.R.; Verhezen, P.W.; Wetzels, R.J.; Ten Cate, H.; Schouten, H.C.; Beckers, E.A. Screening for platelet function disorders with Multiplate and platelet function analyzer. Platelets 2019, 30, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J. Clinical utility of closure times using the platelet function analyzer-100/200. Am. J. Hematol. 2017, 92, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Schultz-Lebahn, A.; Skipper, M.T.; Hvas, A.M.; Larsen, O.H. Optimized tool for evaluation of platelet function measured by impedance aggregometry. Platelets 2021, 32, 842–845. [Google Scholar] [CrossRef] [PubMed]
- McGlasson, D.L.; Fritsma, G.A. Whole blood platelet aggregometry and platelet function testing. Semin. Thromb. Hemost. 2009, 35, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Ignatova, A.A.; Suntsova, E.V.; Pshonkin, A.V.; Martyanov, A.A.; Ponomarenko, E.A.; Polokhov, D.M.; Fedorova, D.V.; Voronin, K.A.; Kotskaya, N.N.; Trubina, N.M.; et al. Platelet function and bleeding at different phases of childhood immune thrombocytopenia. Sci. Rep. 2021, 11, 9401. [Google Scholar] [CrossRef]
- Kalbantner, K.; Baumgarten, A.; Mischke, R. Measurement of platelet function in dogs using a novel impedance aggregometer. Vet. J. 2010, 185, 144–151. [Google Scholar] [CrossRef]
- Wagner, M.; Uzun, G.; Bakchoul, T.; Althaus, K. Diagnosis of Platelet Function Disorders: A Challenge for Laboratories. Hamostaseologie 2022, 42, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Scavone, M.; Podda, G.M.; Tripodi, A.; Cattaneo, M. Whole blood platelet aggregation measurement by Multiplate: Potential diagnostic inaccuracy of correcting the results for the sample platelet count. Platelets 2023, 34, 2156493. [Google Scholar] [CrossRef] [PubMed]
- Heringer, S.; Kabelitz, L.; Kramer, M.; Nikoubashman, O.; Brockmann, M.A.; Kirschner, S.; Wiesmann, M. Platelet function testing in pigs using the Multiplate(R) Analyzer. PLoS ONE 2019, 14, e0222010. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.; Hartmann, M. Multiplate® Platelet Aggregation Findings Are Dependent on Platelet Count but Can Be Corrected by Use of a Ratio. Appl. Sci. 2020, 10, 7971. [Google Scholar] [CrossRef]
- Kong, R.; Trimmings, A.; Hutchinson, N.; Gill, R.; Agarwal, S.; Davidson, S.; Arcari, M. Consensus recommendations for using the Multiplate((R)) for platelet function monitoring before cardiac surgery. Int. J. Lab. Hematol. 2015, 37, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Larsen, P.D.; Holley, A.S.; Sasse, A.; Al-Sinan, A.; Fairley, S.; Harding, S.A. Comparison of Multiplate and VerifyNow platelet function tests in predicting clinical outcome in patients with acute coronary syndromes. Thromb. Res. 2017, 152, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Kjellberg, G.; Holm, M.; Lindvall, G.; Gryfelt, G.; van der Linden, J.; Wikman, A. Platelet function analysed by ROTEM platelet in cardiac surgery after cardiopulmonary bypass and platelet transfusion. Transfus. Med. 2020, 30, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Wikkelsø, A.; Wetterslev, J.; Møller, A.; Afshari, A. Thromboelastography (TEG) or rotational thromboelastometry (ROTEM) to monitor haemostatic treatment in bleeding patients: A systematic review with meta-analysis and trial sequential analysis. Anaesthesia 2017, 72, 519–531. [Google Scholar] [CrossRef] [PubMed]
- Hunt, H.; Stanworth, S.; Curry, N.; Woolley, T.; Cooper, C.; Ukoumunne, O.; Zhelev, Z.; Hyde, C. Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for trauma induced coagulopathy in adult trauma patients with bleeding. Cochrane Database Syst. Rev. 2015, 2, CD010438. [Google Scholar] [CrossRef]
- Da Luz, L.T.; Nascimento, B.; Shankarakutty, A.K.; Rizoli, S.; Adhikari, N.K. Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: Descriptive systematic review. Crit. Care 2014, 18, 518. [Google Scholar] [CrossRef]
- Samos, M.; Skornova, I.; Bolek, T.; Stanciakova, L.; Korpallova, B.; Galajda, P.; Stasko, J.; Kubisz, P.; Mokan, M. Viscoelastic Hemostatic Assays and Platelet Function Testing in Patients with Atherosclerotic Vascular Diseases. Diagnostics 2021, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Sankarankutty, A.; Nascimento, B.; Teodoro da Luz, L.; Rizoli, S. TEG® and ROTEM® in trauma: Similar test but different results? World J. Emerg. Surg. 2012, 7, S3. [Google Scholar] [CrossRef] [PubMed]
- Dias, J.D.; Pottgiesser, T.; Hartmann, J.; Duerschmied, D.; Bode, C.; Achneck, H.E. Comparison of three common whole blood platelet function tests for in vitro P2Y12 induced platelet inhibition. J. Thromb. Thrombolysis 2020, 50, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Le Quellec, S.; Bordet, J.C.; Negrier, C.; Dargaud, Y. Comparison of current platelet functional tests for the assessment of aspirin and clopidogrel response. A review of the literature. Thromb. Haemost. 2016, 116, 638–650. [Google Scholar] [CrossRef] [PubMed]
- Hvas, A.M.; Grove, E.L. Platelet Function Tests: Preanalytical Variables, Clinical Utility, Advantages, and Disadvantages. Methods Mol. Biol. 2017, 1646, 305–320. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.W.X.; Lim, N.A.; Sim, M.A.; Lean, L.L.; Loh, N.W.; Ng, K.T.; Chua, V.T.Y.; Chew, S.T.H.; Ti, L.K. Point-of-care platelet function testing for guided transfusion in neurosurgical management of intracranial hemorrhage: A systematic review. Eur. J. Med. Res. 2022, 27, 191. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cho, C.H.; Jung, B.K.; Nam, J.; Seo, H.S.; Shin, S.; Lim, C.S. Comparative evaluation of Plateletworks, Multiplate analyzer and Platelet function analyzer-200 in cardiology patients. Clin. Hemorheol. Microcirc. 2018, 70, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A.; Primignani, M.; Chantarangkul, V.; Lemma, L.; Jovani, M.; Rebulla, P.; Mannucci, P.M. Global hemostasis tests in patients with cirrhosis before and after prophylactic platelet transfusion. Liver Int. 2013, 33, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Lipets, E.N.; Ataullakhanov, F.I. Global assays of hemostasis in the diagnostics of hypercoagulation and evaluation of thrombosis risk. Thromb. J. 2015, 13, 4. [Google Scholar] [CrossRef]
- Yadav, P.; Beura, S.K.; Panigrahi, A.R.; Singh, S.K. Quantification and optimization of clot retraction in washed human platelets by Sonoclot coagulation analysis. Int. J. Lab. Hematol. 2022, 44, 177–185. [Google Scholar] [CrossRef]
- Hayward, C.P.M.; Moffat, K.A.; Brunet, J.; Carlino, S.A.; Plumhoff, E.; Meijer, P.; Zehnder, J.L. Update on diagnostic testing for platelet function disorders: What is practical and useful? Int. J. Lab. Hematol. 2019, 41 (Suppl. S1), 26–32. [Google Scholar] [CrossRef] [PubMed]
- Aluvilu, A.; Ferro, A. Role of platelet function testing in acute coronary syndromes: A meta-analysis. Open Heart 2022, 9, e002129. [Google Scholar] [CrossRef] [PubMed]
- Sakariassen, K.; Bolhuis, P.; Blombäck, M.; Thorell, L.; Blombäck, B.; Sixma, J. Association between bleeding time and platelet adherence to artery subendothelium. Thromb. Haemost. 1984, 52, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Zeidan, A.M.; Kouides, P.A.; Tara, M.A.; Fricke, W.A. Platelet function testing: State of the art. Expert. Rev. Cardiovasc. Ther. 2007, 5, 955–967. [Google Scholar] [CrossRef] [PubMed]
- Alessi, M.-C.; Sié, P.; Payrastre, B. Strengths and weaknesses of light transmission aggregometry in diagnosing hereditary platelet function disorders. J. Clin. Med. 2020, 9, 763. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P. Platelet function analysis. Blood Rev. 2005, 19, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J. Clinical application of the PFA-100®. Curr. Opin. Hematol. 2002, 9, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Favaloro, E.J. Clinical utility of the PFA-100. Semin. Thromb. Hemost. 2008, 34, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.A.; Bolliger, D.; Vadlamudi, R.; Nimmo, A. Rotational thromboelastometry (ROTEM)-based coagulation management in cardiac surgery and major trauma. J. Cardiothorac. Vasc. Anesth. 2012, 26, 1083–1093. [Google Scholar] [CrossRef]
- Whiting, D.; DiNardo, J.A. TEG and ROTEM: Technology and clinical applications. Am. J. Hematol. 2014, 89, 228–232. [Google Scholar] [CrossRef]
- Hamel-Jolette, A.; Dunn, M.; Bédard, C. Plateletworks: A screening assay for clopidogrel therapy monitoring in healthy cats. Can. J. Vet. Res. 2009, 73, 73. [Google Scholar] [PubMed]
- Campbell, J.; Ridgway, H.; Carville, D. Plateletworks®: A novel point of care platelet function screen. Mol. Diagn. Ther. 2008, 12, 253–258. [Google Scholar] [CrossRef]
- Otsui, K.; Gorog, D.A.; Yamamoto, J.; Yoshioka, T.; Iwata, S.; Suzuki, A.; Ozawa, T.; Takei, A.; Inoue, N. Global Thrombosis Test—A possible monitoring system for the effects and safety of dabigatran. Thromb. J. 2015, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Shioyama, W.; Ikarugi, H.; Ijiri, Y.; Shimizu, M.; Takashima, T.; Kikukawa, H.; Murakami, M.; Otsui, K.; Zwaginga, J.J. Investigations into the Pathomechanism of thrombotic Disorders with an Ex Vivo Global Test Performed from Non-Anticoagulated Blood: From Animal Experiments to Bedside Application. Acta Sci. Nutr. Health 2023, 7, 119–129. [Google Scholar]
- Miyashita, T.; Kuro, M. Evaluation of platelet function by Sonoclot analysis compared with other hemostatic variables in cardiac surgery. Anesth. Analg. 1998, 87, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Tucci, M.A.; Ganter, M.T.; Hamiel, C.R.; Klaghofer, R.; Zollinger, A.; Hofer, C.K. Platelet function monitoring with the Sonoclot analyzer after in vitro tirofiban and heparin administration. J. Thorac. Cardiovasc. Surg. 2006, 131, 1314–1322. [Google Scholar] [CrossRef] [PubMed]
- Mokhtar, G.M.; Ibrahim, W.E.; Kassim, N.A.; Ragab, I.A.; Saad, A.A.; Abdel Raheem, H.G. Alterations of platelet functions in children and adolescents with iron-deficiency anemia and response to therapy. Platelets 2015, 26, 448–452. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, O.H.; Nissen, P.H.; Hvas, A.M. Platelet function investigation by flow cytometry: Sample volume, needle size, and reference intervals. Platelets 2018, 29, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Munnix, I.C.A.; Van Oerle, R.; Verhezen, P.; Kuijper, P.; Hackeng, C.M.; Hopman-Kerkhoff, H.I.J.; Hudig, F.; Van De Kerkhof, D.; Leyte, A.; De Maat, M.P.M.; et al. Harmonizing light transmission aggregometry in the Netherlands by implementation of the SSC-ISTH guideline. Platelets 2021, 32, 516–523. [Google Scholar] [CrossRef]
- Corredor, C.; Wasowicz, M.; Karkouti, K.; Sharma, V. The role of point-of-care platelet function testing in predicting postoperative bleeding following cardiac surgery: A systematic review and meta-analysis. Anaesthesia 2015, 70, 715–731. [Google Scholar] [CrossRef]
- Deharo, P.; Cuisset, T. Monitoring platelet function: What have we learned from randomized clinical trials? Cardiovasc. Diagn. Ther. 2018, 8, 621–629. [Google Scholar] [CrossRef]
- Jain, A.; Graveline, A.; Waterhouse, A.; Vernet, A.; Flaumenhaft, R.; Ingber, D.E. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat. Commun. 2016, 7, 10176. [Google Scholar] [CrossRef] [PubMed]
- Hesselbarth, D.; Gjermeni, D.; Szabo, S.; Siegel, P.M.; Diehl, P.; Moser, M.; Bode, C.; Olivier, C.B. Time from blood draw to multiple electrode aggregometry and association with platelet reactivity. J. Thromb. Thrombolysis 2023, 55, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Van Oosterom, N.; Barras, M.; Cottrell, N.; Bird, R. Platelet Function Assays for the Diagnosis of Aspirin Resistance. Platelets 2022, 33, 329–338. [Google Scholar] [CrossRef]
- Jeon, H.J.; Qureshi, M.M.; Lee, S.Y.; Badadhe, J.D.; Cho, H.; Chung, E. Laser speckle decorrelation time-based platelet function testing in microfluidic system. Sci. Rep. 2019, 9, 16514. [Google Scholar] [CrossRef]
- Yoon, I.; Han, J.H.; Park, B.U.; Jeon, H.-J. Blood-inspired random bit generation using microfluidics system. Sci. Rep. 2024, 14, 7474. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Lu, J.; Zhang, C.; Hsia, I.; Yu, X.; Marecki, L.; Marecki, E.; Asmani, M.; Jain, S.; Neelamegham, S.; et al. Microclot array elastometry for integrated measurement of thrombus formation and clot biomechanics under fluid shear. Nat. Commun. 2019, 10, 2051. [Google Scholar] [CrossRef]
- Ting, L.H.; Feghhi, S.; Taparia, N.; Smith, A.O.; Karchin, A.; Lim, E.; John, A.S.; Wang, X.; Rue, T.; White, N.J.; et al. Contractile forces in platelet aggregates under microfluidic shear gradients reflect platelet inhibition and bleeding risk. Nat. Commun. 2019, 10, 1204. [Google Scholar] [CrossRef]
- Chen, L.; Li, D.; Liu, X.; Xie, Y.; Shan, J.; Huang, H.; Yu, X.; Chen, Y.; Zheng, W.; Li, Z. Point-of-care blood coagulation assay based on dynamic monitoring of blood viscosity using droplet microfluidics. ACS Sens. 2022, 7, 2170–2177. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Michaelsen, K.; Estergreen, J.K.; Sabath, D.E.; Gollakota, S. Micro-mechanical blood clot testing using smartphones. Nat. Commun. 2022, 13, 831. [Google Scholar] [CrossRef] [PubMed]
- Kaikita, K.; Hosokawa, K.; Dahlen, J.R.; Tsujita, K. Total Thrombus-Formation Analysis System (T-TAS): Clinical application of quantitative analysis of thrombus formation in cardiovascular disease. Thromb. Haemost. 2019, 119, 1554–1562. [Google Scholar] [CrossRef]
- Al Ghaithi, R.; Mori, J.; Nagy, Z.; Maclachlan, A.; Hardy, L.; Philippou, H.; Hethershaw, E.; Morgan, N.V.; Senis, Y.A.; Harrison, P. Evaluation of the Total Thrombus-Formation System (T-TAS): Application to human and mouse blood analysis. Platelets 2019, 30, 893–900. [Google Scholar] [CrossRef]
- Luna, D.J.; Pandian, N.K.R.; Mathur, T.; Bui, J.; Gadangi, P.; Kostousov, V.V.; Hui, S.-K.R.; Teruya, J.; Jain, A. Tortuosity-powered microfluidic device for assessment of thrombosis and antithrombotic therapy in whole blood. Sci. Rep. 2020, 10, 5742. [Google Scholar] [CrossRef] [PubMed]
- Sista, R.; Hua, Z.; Thwar, P.; Sudarsan, A.; Srinivasan, V.; Eckhardt, A.; Pollack, M.; Pamula, V. Development of a digital microfluidic platform for point of care testing. Lab Chip 2008, 8, 2091–2104. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, O.; Ermek, E.; Kilinc, N.; Bulut, S.; Baris, I.; Kavakli, I.; Yaralioglu, G.; Urey, H. A cartridge based sensor array platform for multiple coagulation measurements from plasma. Lab Chip 2015, 15, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, X.; Chai, Y.; Shan, J.; Xie, Y.; Liang, Y.; Huang, S.; Zheng, W.; Li, Z. Point-of-care blood coagulation assay enabled by printed circuit board-based digital microfluidics. Lab Chip 2022, 22, 709–716. [Google Scholar] [CrossRef] [PubMed]
- He, J.-L.; Chen, A.-T.; Lee, J.-H.; Fan, S.-K. Digital microfluidics for manipulation and analysis of a single cell. Int. J. Mol. Sci. 2015, 16, 22319–22332. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Fu, R.; Yang, F.; Gao, W.; Hou, J.; Li, H.; Zhang, S. Functional platelet aggregation analysis using digital optofluidic scattering quantitation. In Proceedings of the Optics in Health Care and Biomedical Optics XIII, Beijing, China, 4–17 October 2023; pp. 116–121. [Google Scholar]
- Spurgeon, B.E.; Naseem, K.M. Platelet flow cytometry: Instrument setup, controls, and panel performance. Cytom. Part. B Clin. Cytom. 2020, 98, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Navred, K.; Martin, M.; Ekdahl, L.; Zetterberg, E.; Andersson, N.G.; Strandberg, K.; Norstrom, E. A simplified flow cytometric method for detection of inherited platelet disorders—A comparison to the gold standard light transmission aggregometry. PLoS ONE 2019, 14, e0211130. [Google Scholar] [CrossRef]
- Van Asten, I.; Schutgens, R.; Baaij, M.; Zandstra, J.; Roest, M.; Pasterkamp, G.; Huisman, A.; Korporaal, S.; Urbanus, R. Validation of flow cytometric analysis of platelet function in patients with a suspected platelet function defect. J. Thromb. Haemost. 2018, 16, 689–698. [Google Scholar] [CrossRef]
- van Asten, I.; Blaauwgeers, M.; Granneman, L.; Heijnen, H.F.; Kruip, M.J.; Beckers, E.A.; Coppens, M.; Eikenboom, J.; Tamminga, R.Y.; Pasterkamp, G. Flow cytometric mepacrine fluorescence can be used for the exclusion of platelet dense granule deficiency. J. Thromb. Haemost. 2020, 18, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Mullier, F.; Frotscher, B.; Briquel, M.-E.; Toussaint, M.; Massin, F.; Lecompte, T.; Latger-Cannard, V. Usefulness of flow cytometric mepacrine uptake/release combined with CD63 assay in diagnosis of patients with suspected platelet dense granule disorder. Semin. Thromb. Hemost. 2016, 42, 282–291. [Google Scholar] [CrossRef] [PubMed]
- Dovlatova, N.; Lordkipanidzé, M.; Lowe, G.C.; Dawood, B.; May, J.; Heptinstall, S.; Watson, S.P.; Fox, S.C.; Group, U.G.S. Evaluation of a whole blood remote platelet function test for the diagnosis of mild bleeding disorders. J. Thromb. Haemost. 2014, 12, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Halliez, M.; Fouassier, M.; Robillard, N.; Ternisien, C.; Sigaud, M.; Trossaert, M.; Bene, M.C. Detection of phosphatidyl serine on activated platelets’ surface by flow cytometry in whole blood: A simpler test for the diagnosis of Scott syndrome. Br. J. Haematol. 2015, 171, 290–292. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Dejean, S.; Savy, N.; Bordet, J.C.; Series, J.; Cadot, S.; Ribes, A.; Voisin, S.; Rugeri, L.; Payrastre, B.; et al. Multicolor flow cytometry in clinical samples for platelet signaling assessment. Res. Pr. Thromb. Haemost. 2023, 7, 100180. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, M.; Zhao, G. Point-of-care assessment of hemostasis with a love-mode surface acoustic wave sensor. ACS Sens. 2020, 5, 282–291. [Google Scholar] [CrossRef]
- Biswas, D.; Heo, J.; Sang, P.; Dey, P.; Han, K.; Ko, J.H.; Won, S.M.; Son, D.; Suh, M.; Kim, H.S. Micro-ultrasonic assessment of early stage clot formation and whole blood coagulation using an all-optical ultrasound transducer and adaptive signal processing algorithm. ACS Sens. 2022, 7, 2940–2950. [Google Scholar] [CrossRef]
- Jeon, H.-J.; Kim, S.; Park, S.; Jeong, I.-K.; Kang, J.; Kim, Y.R.; Lee, D.Y.; Chung, E. Optical assessment of tear glucose by smart biosensor based on nanoparticle embedded contact lens. Nano Lett. 2021, 21, 8933–8940. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Nam, D.Y.; Jeon, H.-J.; Han, J.H.; Jang, D.; Hwang, J.; Park, Y.-S.; Han, Y.-G.; Choy, Y.B.; Lee, D.Y. Chromophoric cerium oxide nanoparticle-loaded sucking disk-type strip sensor for optical measurement of glucose in tear fluid. Biomater. Res. 2023, 27, 135. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Pramanik, M. Combined ultrasound and photoacoustic imaging of blood clot during microbubble-assisted sonothrombolysis. J. Biomed. Opt. 2019, 24, 121902. [Google Scholar] [CrossRef]
- Andres, O.; Henning, K.; Strauß, G.; Pflug, A.; Manukjan, G.; Schulze, H. Diagnosis of platelet function disorders: A standardized, rational, and modular flow cytometric approach. Platelets 2018, 29, 347–356. [Google Scholar] [CrossRef]
- Luo, D.; Chelales, E.M.; Beard, M.M.; Kasireddy, N.; Khismatullin, D.B. Drop-of-blood acoustic tweezing technique for integrative turbidimetric and elastometric measurement of blood coagulation. Anal. Bioanal. Chem. 2021, 413, 3369–3379. [Google Scholar] [CrossRef]
- Knöfler, R.; Streif, W. Strategies in clinical and laboratory diagnosis of inherited platelet function disorders in children. Transfus. Med. Hemother. 2010, 37, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Streif, W.; Knöfler, R.; Eberl, W.; Andres, O.; Bakchoul, T.; Bergmann, F.; Beutel, K.; Dittmer, R.; Gehrisch, S.; Gottstein, S. Therapy of inherited diseases of platelet function. Interdisciplinary S2K guideline of the Permanent Paediatric Committee of the Society of Thrombosis and Haemostasis Research (GTH e. V.). Hamostaseologie 2014, 34, 269–275, quiz 276. [Google Scholar] [CrossRef]
- Gresele, P.; Harrison, P.; Gachet, C.; Hayward, C.; Kenny, D.; Mezzano, D.; Mumford, A.; Nugent, D.; Nurden, A.; Cattaneo, M. Diagnosis of inherited platelet function disorders: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2015, 13, 314–322. [Google Scholar] [CrossRef]
- Bourguignon, A.; Tasneem, S.; Hayward, C.P. Screening and diagnosis of inherited platelet disorders. Crit. Rev. Clin. Lab. Sci. 2022, 59, 405–444. [Google Scholar] [CrossRef]
- Sivapalaratnam, S.; Collins, J.; Gomez, K. Diagnosis of inherited bleeding disorders in the genomic era. Br. J. Haematol. 2017, 179, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Weiss, L.J.; Drayss, M.; Mott, K.; Beck, S.; Unsin, D.; Just, B.; Speer, C.P.; Härtel, C.; Andres, O.; Schulze, H. Ontogenesis of functional platelet subpopulations from preterm and term neonates to adulthood: The PLINIUS study. Blood Adv. 2023, 7, 4334–4348. [Google Scholar] [CrossRef] [PubMed]
- Knöfler, R.; Eberl, W.; Schulze, H.; Bakchoul, T.; Bergmann, F.; Gehrisch, S.; Geisen, C.; Gottstein, S.; Halimeh, S.; Harbrecht, U. Diagnosis of inherited diseases of platelet function. Interdisciplinary S2K guideline of the Permanent Paediatric Committee of the Society of Thrombosis and Haemostasis Research (GTH e. V.). Hamostaseologie 2014, 34, 201–212. [Google Scholar] [CrossRef]
- Downes, K.; Megy, K.; Duarte, D.; Vries, M.; Gebhart, J.; Hofer, S.; Shamardina, O.; Deevi, S.V.; Stephens, J.; Mapeta, R. Diagnostic high-throughput sequencing of 2396 patients with bleeding, thrombotic, and platelet disorders. Blood J. Am. Soc. Hematol. 2019, 134, 2082–2091. [Google Scholar] [CrossRef]
- García, A.; Prabhakar, S.; Brock, C.J.; Pearce, A.C.; Dwek, R.A.; Watson, S.P.; Hebestreit, H.F.; Zitzmann, N. Extensive analysis of the human platelet proteome by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004, 4, 656–668. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, J.M.; Vaudel, M.; Gambaryan, S.; Radau, S.; Walter, U.; Martens, L.; Geiger, J.; Sickmann, A.; Zahedi, R.P. The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood J. Am. Soc. Hematol. 2012, 120, e73–e82. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, J.M.; Gambaryan, S.; Watson, S.P.; Jurk, K.; Walter, U.; Sickmann, A.; Heemskerk, J.W.; Zahedi, R.P. What can proteomics tell us about platelets? Circ. Res. 2014, 114, 1204–1219. [Google Scholar] [CrossRef] [PubMed]
- Malchow, S.; Loosse, C.; Sickmann, A.; Lorenz, C. Quantification of cardiovascular disease biomarkers in human platelets by targeted mass spectrometry. Proteomes 2017, 5, 31. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, S.T.; Pinckard, R.N.; Hail, M.; Gaskell, S. Electrospray ionization for analysis of platelet-activating factor. Rapid Commun. Mass. Spectrom. 1991, 5, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Shevchuk, O.; Begonja, A.J.; Gambaryan, S.; Totzeck, M.; Rassaf, T.; Huber, T.B.; Greinacher, A.; Renne, T.; Sickmann, A. Proteomics: A tool to study platelet function. Int. J. Mol. Sci. 2021, 22, 4776. [Google Scholar] [CrossRef] [PubMed]
- Flamm, M.H.; Colace, T.V.; Chatterjee, M.S.; Jing, H.; Zhou, S.; Jaeger, D.; Brass, L.F.; Sinno, T.; Diamond, S.L. Multiscale prediction of patient-specific platelet function under flow. Blood J. Am. Soc. Hematol. 2012, 120, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.; Ashraf, M.Z. Using artificial intelligence to manage thrombosis research, diagnosis, and clinical management. Semin. Thromb. Hemost. 2020, 46, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yasumoto, A.; Lei, C.; Huang, C.-J.; Kobayashi, H.; Wu, Y.; Yan, S.; Sun, C.-W.; Yatomi, Y.; Goda, K. Intelligent classification of platelet aggregates by agonist type. eLife 2020, 9, e52938. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, Y.; Tang, G.; Huang, Y.; Kang, J.; Wang, D. Artificial intelligence and its applications in digital hematopathology. Blood Sci. 2022, 4, 136–142. [Google Scholar] [CrossRef]
- Slotman, J.; Swinkels, M.; Burgisser, P.E.; Bestebroer, J.; Klei, T.R.; Houtsmuller, A.B.; Leebeek, F.W.; Bierings, R.; Jansen, A. Predicting Platelet Age Using Artificial Intelligence Techniques. Blood 2022, 140, 2656–2657. [Google Scholar] [CrossRef]
- Rashidi, H.H.; Bowers, K.A.; Gil, M.R. Machine learning in the coagulation and hemostasis arena: An overview and evaluation of methods, review of literature, and future directions. J. Thromb. Haemost. 2023, 21, 728–743. [Google Scholar] [CrossRef] [PubMed]
- Kitsios, F.; Kamariotou, M.; Syngelakis, A.I.; Talias, M.A. Recent advances of artificial intelligence in healthcare: A systematic literature review. Appl. Sci. 2023, 13, 7479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, I.; Han, J.H.; Jeon, H.-J. Advances in Platelet-Dysfunction Diagnostic Technologies. Biomolecules 2024, 14, 714. https://doi.org/10.3390/biom14060714
Yoon I, Han JH, Jeon H-J. Advances in Platelet-Dysfunction Diagnostic Technologies. Biomolecules. 2024; 14(6):714. https://doi.org/10.3390/biom14060714
Chicago/Turabian StyleYoon, Inkwon, Jong Hyeok Han, and Hee-Jae Jeon. 2024. "Advances in Platelet-Dysfunction Diagnostic Technologies" Biomolecules 14, no. 6: 714. https://doi.org/10.3390/biom14060714
APA StyleYoon, I., Han, J. H., & Jeon, H. -J. (2024). Advances in Platelet-Dysfunction Diagnostic Technologies. Biomolecules, 14(6), 714. https://doi.org/10.3390/biom14060714