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Abstract: Angiogenesis is a normal physiological process that also contributes to diabetic retinopathy-
related complications and facilitates tumor metastasis by promoting the hematogenic dissemination
of malignant cells from solid tumors. Here, we investigated the in vitro, ex vivo, and in vivo anti-
angiogenic activity of phloridzin docosahexaenoate (PZ-DHA), a novel w-3 fatty acid ester of a
flavonoid precursor. Human umbilical vein endothelial cells (HUVEC) and human dermal microvas-
cular endothelial cells (HMVEC) treated with a sub-cytotoxic concentration of PZ-DHA to assess
in vitro anti-angiogenic activity showed impaired tubule formation on a Matrigel matrix. Ex vivo
angiogenesis was measured using rat thoracic aortas, which exhibited reduced vessel sprouting and
tubule formation in the presence of PZ-DHA. Female BALB/c mice bearing VEGF;¢5- and basic
fibroblast growth factor-containing Matrigel plugs showed a significant reduction in blood vessel
development following PZ-DHA treatment. PZ-DHA inhibited HUVEC and HMVEC proliferation,
as well as the migration of HUVECs in gap closure and trans-well cell migration assays. PZ-DHA in-
hibited upstream and downstream components of the Akt pathway and vascular endothelial growth
factor (VEGF¢5)-induced overexpression of small molecular Rho GTPases in HUVECsS, suggesting a
decrease in actin cytoskeletal-mediated stress fiber formation and migration. Taken together, these
findings reveal the potential of combined food biomolecules in PZ-DHA to inhibit angiogenesis.

Keywords: angiogenesis; flavonoid; fatty acid; esterification; signal transduction

1. Introduction

Angiogenesis, which is the formation of new blood vessels and capillaries from existing
vasculature, depends on a complex and well-maintained balance between pro-angiogenic
and anti-angiogenic factors. Angiogenesis occurs during wound healing, embryogenesis,
and cyclic changes in the female reproductive system [1-3]. However, angiogenesis is also
involved in disease states such as diabetic retinopathy, and the progression and metastasis
of solid tumors [4,5].

Diabetic retinopathy is a secondary microvascular complication of diabetes mellitus
caused by abnormal growth of retinal blood vessels, which is associated with multiple
intraocular complications such as macular edema and choroidal neovascularization [6].
Cancer is another major disease that depends largely on angiogenesis for its progression.
The supply of oxygen and nutrients is vital for the continuous growth and metastatic
spread of solid tumors. In fact, without supporting vasculature, the size of a solid tumor
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is restricted to 1-2 mm? [7]. The interior of a solid tumor is hypoxic as a result of the
tumor vasculature being located, for the most part, around the tumor. This leads to the
stabilization of the transcription factor, hypoxia-inducible factor-1 alpha (HIF-1¢), leading
to the activation of target genes such as vascular endothelial growth factor (VEGF) [8,9].
Although tumor hypoxia does not contribute to the unusual elevation of interstitial pressure
in the tumor microenvironment [10], hypoxia-induced VEGF activation induces the growth
of new blood vessels in the tumor interior [8,9]. Although the exact mechanisms and
pathways that regulate the increased interstitial pressure in the tumor interior are not
clearly delineated, current knowledge suggests that VEGF-induced formation of large
numbers of leaky blood vessels with an irregular shape, as well as fibroblast-mediated
tumor contractility, play a significant role [11,12]. In addition, many studies suggest that
increased interstitial pressure within solid tumors restricts the delivery of chemotherapeutic
drugs [11,13]. The formation of new blood vessels also serves as the main mechanism
by which tumor cells enter the systemic circulation and travel to other sites in the body.
Therefore, inhibition of angiogenesis is predicted to suppress cancer progression by limiting
the metastatic spread of cancer cells [7,14].

Blocking receptors such as VEGFR2 prevents the binding of principal pro-angiogenic
signaling molecules and is a common approach to inhibit angiogenesis [15]. Endothelial cell
survival pathways such as Akt signaling have also been researched as therapeutic targets
in the development of anti-angiogenic drugs [16]. Flavonoids demonstrate anti-angiogenic
activity through the inhibition of Akt signaling and VEGFR2-mediated angiogenic signaling
in endothelial cells [17,18]. Dietary w-3 fatty acids such as docosahexaenoic acid (DHA) and
its metabolites have proven to have anti-angiogenic activity [19,20]. Moreover, flavonoid-
fatty acid conjugates show at least comparable, if not improved, anti-angiogenic activity
when compared to parent flavonoids [21].

PZ-DHA combines a flavonoid precursor found in apple peels, known as phloridzin
(PZ), with DHA through an enzyme-catalyzed acylation reaction. Supplementary Figure
51 shows the chemical structure of PZ-DHA. In our previous studies, we have shown that
PZ-DHA possesses selective cytotoxic activity toward breast cancer cells, while sparing
normal epithelial cells [22], and inhibits breast cancer cell metastasis in mice [23]. PZ-
DHA also inhibits the growth of liver cancer cells [24] and T-cell acute lymphoblastic
leukemia cells [25]. In this study, to investigate a potential mechanism for PZ-DHA-
induced anti-metastatic activity, the impact of PZ-DHA on in vitro proliferation, migration,
and tubule formation by human umbilical vein endothelial cells (HUVECs) and human
microvascular vein endothelial cells (HMVECSs) was tested. In addition, ex vivo anti-
angiogenic activity was determined using thoracic aortic sections harvested from male
Wistar rats. Furthermore, BALB/c female mice implanted with VEGF- and basic fibroblast
growth factor (bFGF)-containing Matrigel plugs were used to evaluate the in vivo anti-
angiogenic activity of systemically administered PZ-DHA. Finally, western blot analysis
was employed to determine the effect of PZ-DHA on small molecular Rho GTPase signaling
and phosphoinositide-dependent protein kinase 1 (PDK1), cyclin D3, and mammalian target
of rapamycin (mTOR) activation.

2. Materials and Methods
2.1. Reagents and Chemicals

The horse radish peroxidase (HRP)/3,3’-Diaminobenzidine (DAB) detection system
was purchased from Agilent Technologies (Mississauga, ON, Canada). Phenol red-free
Matrigel was obtained from Corning Life Sciences (Tewkbury, MA, USA). The ECMa-
trix™ assay kit (EMD Millipore, Temecula, CA, USA) and endothelial basal medium
(EBM)/supplements were purchased from Lonza Inc. (Walkersville, MD, USA). DHA
was purchased from Nu-Chek Prep Inc. (Elysian, MN, USA). Human bFGF and human
VEGE-165 were purchased from PeproTech (Rocky Hill, NJ, USA). RNase was obtained
from Qiagen Inc. (Mississauga, ON, Canada). The Diff-Quik staining kit was purchased
from Siemens Healthcare Diagnostics (Los Angeles, CA, USA). Aprotinin, 30% Brij 23 solu-
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tion, Dulbecco’s Modified Eagle Medium (DMEM), Drabkin’s reagent, human hemoglobin,
leupeptin, mitomycin C from Streptomyces caespitosus, Nonidet P-40 (NP-40), pepstatin A,
phenazine methosulfate (PMS), phenylmethylsulfonyl fluoride (PMSF), PZ, porcine gelatin,
sodium deoxycholate, and sodium fluoride (NaF) were purchased from Sigma-Aldrich
(Oakville, ON, Canada).

2.2. Antibodies

Anti-CDK4 rabbit monoclonal Ab, anti-cyclinD3 rabbit monoclonal Ab, anti-total-
PDK1 rabbit monoclonal antibody (Ab), anti-phospho-PDK1 (Ser241) rabbit monoclonal Ab,
anti-total-mTOR rabbit monoclonal Ab, anti-phospho-mTOR (Ser2448) rabbit monoclonal
Ab, anti-RhoA rabbit monoclonal Ab, anti-Rac1/2/3 rabbit monoclonal Ab, anti-Cdc42
rabbit monoclonal Ab, HRP-conjugated rabbit anti-3-actin, and HRP-conjugated donkey
anti-rabbit Ab were purchased from Cell Signaling Technology Inc. (Danvers, MA, USA).

2.3. Cells and Cell Culture Conditions

HUVECs and HMVECs purchased from Lonza Inc. (Walkersville, MD, USA) were
maintained in EBM, supplemented with fetal bovine serum, recombinant human bFGF,
ascorbic acid, recombinant long R3-insulin-like growth factor 1, recombinant human epider-
mal growth factor, recombinant human VEGF, heparin, hydrocortisone, gentamicin sulfate,
and amphotericin B, according to the supplier’s instructions. The cells were maintained at
37 °C in a humidified incubator containing 5% carbon dioxide. Cells were sub-cultured
every 4-5 days.

2.4. Animals

Ethics approval for animal use was obtained from the Dalhousie University Committee
on Laboratory Animals in accordance with Canadian Council for Animal Care guidelines.
Six-to-eight-week-old female BALB/c female mice were purchased from Charles River
Canada (Lasalle, QC, Canada). Mice were fed a regular rodent diet and water was supplied
ad libitum.

2.5. Oregon Green 488 Staining

HUVECs and HMVECs were seeded into culture and synchronized. Adherent cells
were stained with 1.25 uM Oregon Green 488 in serum-free DMEM for 45 min. The in-
cubation was continued in a complete growth medium for 2 h to promote cell recovery.
Cells were treated with sub-cytotoxic concentrations (10 or 20 uM) of PZ, DHA, PZ-DHA,
vehicle, or medium alone and cultured in the dark for 72 h. Oregon Green 488 fluores-
cence of treated cells was measured using a FACSCalibur instrument (BD Biosciences,
Mississauga, ON, Canada) in comparison to vehicle control and a non-proliferating con-
trol. The number of cell divisions (n) that took place was calculated using the formula:
MCPF ontrol = 2™ X MCFyeatment where MCF is the mean channel fluorescence.

2.6. Cell Cycle Analysis

Synchronized cells were seeded, and adherent cells were treated with a sub-cytotoxic
concentration (10 uM) of PZ, DHA, PZ-DHA, vehicle, or medium alone, and cultured for
72 h. Cells were harvested, rinsed, and resuspended in ice-cold PBS. While vortexing,
ice-cold 70% ethanol was added drop-by-drop and tube contents were incubated for at least
24 h at —20 °C to allow fixing. Fixed cells were washed with PBS and resuspended in cell
cycle staining solution (0.1% v/v Triton-X-100 and 2 uL/mL DNA-free Rnase A in 1 x PBS)
containing 20 uL/mL propidium iodide and incubated for 30 min at room temperature.
Flow cytometric analysis was performed using a FACSCalibur instrument.

2.7. Gap Closure Assays

HUVECs and HMVECs (10,000 cells /100 nL) were seeded in 2-well culture inserts
(Ibidi GmbH, Martinsried, Germany) placed in 6-well plates and adherent cells were treated
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with 10 pg/mL mitomycin C in serum-free DMEM medium for 2 h at 37 °C to inhibit cell
proliferation. Cells were allowed to recover for 12 h in EBM-containing serum and treated
with PZ, DHA, PZ-DHA (10 uM), vehicle, or medium alone for 24 h. Culture inserts were
removed, and the gaps were periodically photographed, starting at t = 0 h, until completely
closed by medium-treated cells (t = 20 h).

2.8. Trans-Well Cell Migration Assay

HUVECs were seeded and treated with 10 uM of PZ, DHA, PZ-DHA, vehicle, or
medium alone for 24 h, and treatments were continued in serum-free medium for another
6 h. Cells (50,000) were resuspended in 50 pL. warm serum-free medium and loaded into
the wells of the top chamber of co-culture inserts (Thermo Fisher Scientific, Mississauga,
ON, Canada). Cells were allowed to migrate through an 8 um porous membrane for 22 h.
Migrated cells were stained using a Diff-Quik™ staining set.

2.9. Western Blot Analysis

Adherent HUVECs were treated with 10 uM of PZ, DHA, PZ-DHA, vehicle, or medium
alone for 72 h. Cells were harvested and incubated in ice-cold lysis buffer [50 mM Tris
(pH 7.5), 150 mM sodium chloride, 50 mM disodium hydrogen phosphate, 0.25% sodium
deoxycholate (w/v), 0.1% NP-40 (v/v), 100 uM sodium orthovanadate, 10 mM NaF, 5 mM
ethylenediaminetetraacetic acid, and 5 mM ethylene glycol tetraacetic acid containing
freshly added protease inhibitors (1 mM PMSF, 10 pg/mL aprotinin, 5 ug/mL leupeptin,
10 uM phenylarsine oxide, 1 mM dithiothreitol, and 5 ng/mL pepstatin) for 15 min. Cell
lysates were clarified by centrifugation and the protein concentration was determined by
Bradford assay. After electrophoresis, proteins were transferred to nitrocellulose mem-
branes and blots were incubated in 5% non-fat milk or 5% BSA for 1 h at room temperature
to block nonspecific binding. Blots were probed overnight at 4 °C with primary Ab against
the protein of interest. Then, the blots were washed thoroughly with Tween-TBS and
probed with HRP-conjugated donkey anti-rabbit or goat anti-mouse IgG Ab for 1 h at RT.
Even protein loading was confirmed by probing the blots with HRP-conjugated rabbit
anti-} actin Ab or HRP-conjugated rabbit anti-« tubulin Ab. The proteins of interest were
visualized by a ChemidocTouch™ imaging system (Bio-Rad Laboratories, Mississauga,
ON, Canada).

2.10. In Vitro Angiogenesis Assay

In vitro angiogenesis was studied using a commercially available in vitro angiogenesis
ECMatrix™ assay kit (EMD Millipore, Temecula, CA, USA), according to the manufac-
turer’s instructions. Briefly, 9 parts of ECMatrix were mixed with one part of the diluent
buffer and 10 pL of the mixture was added to the inner well of the p-slide angiogenesis
plate (Ibidi GmbH, Martinsried, Germany). The plate was incubated at 37 °C for 1 h.
HUVECs or HMVECs (7500 cells) treated with 10 uM (HMVECsS) or 20 uM (HUVECs) PZ,
DHA, PZ-DHA, vehicle, or medium alone for 72 h were resuspended in 50 puL of EGM
and seeded onto polymerized ECMatrix. Tubule formation by HMVECs and HUVECs
was monitored and photographed after 4 h and 6 h, respectively. Supplementary Table S1
shows the scoring scheme.

2.11. Ex Vivo Angiogenesis Assay

Aortas from adult male Wistar rats were cleaned using sterile saline and cut into
1 mm x 3 mm sections. Aorta sections were then embedded in 200 uL Matrigel and
incubated at 37 °C for 1 h. Matrigel was covered with 200 pL. EBM and incubated overnight
at 37 °C (day 0). On Day 1, aorta sections embedded in Matrigel were treated with PZ,
DHA, PZ-DHA (20 uM), vehicle, or medium alone for 8 days. Medium/treatment was
changed on Day 4. The development of tubules from aortic endothelium was monitored
and photographed on Days 5 and 8.
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2.12. Matrigel Plug Assay

Phenol red-free Matrigel (300 puL) containing human VEGFj¢5 (2 ug/mL) and bFGF
(2 ng/mL) was implanted by subcutaneous injection on both the left and right sides along
the mid-dorsal line of the lower posterior area of BALB/c female mice (Day 0). On Day 1,
mice were randomly assigned into two groups (11 mice/group) and 5 doses of saline or
PZ-DHA (100 mg/kg) were administered by intraperitoneal injection every second day
for 9 days. After 9 days, Matrigel plugs were harvested and photographed. Hemoglobin
concentration in Matrigel plugs was determined using the cyanmethemoglobin method.
Briefly, a human hemoglobin (0.717 mg/mL) solution made in Drabkin’s reagent (Sigma-
Aldrich, Oakville, ON, Canada) containing 0.0005% v/v 30% Brij 23 solution was used
to generate the standard curve of cyanmethemoglobin (R? = 1.00). Matrigel plugs were
homogenized in 500 pL of Drabkin’s reagent and homogenates were centrifuged at 9600 g
at 4 °C for 6 min. The supernatant was collected and transferred into 96-well plates in
triplicate. Absorbance was measured at 540 nm and cyanmethemoglobin concentration in
Matrigel plugs was calculated.

2.13. Statistical Analysis

Three independent experiments were performed for each assay and the mean of the
three experiments was calculated. A one-way ANOVA multiple means comparison method
was performed and the differences between means were compared using Tukey’s post-
mean comparison method. The analysis was considered significant at the following levels:
*p <0.05,*p <0.01, *** p <0.001.

3. Results
3.1. PZ-DHA Inhibits Angiogenesis In Vitro and Ex Vivo

The concentrations of PZ, DHA, and PZ-DHA for HUVECs and HMVECs used in this
study were confirmed to be sub-cytotoxic using 7AAD cell viability assays (Supplementary
Figure S2). This was to ensure that there would be no inadvertent activation of cell death
pathways while determining the impact of PZ-DHA on angiogenesis. In vitro angiogenesis
was scored according to the stage/complexity of the tubule formation by HUVECs and
HMVECs treated with vehicle, PZ, DHA, or PZ-DHA. Treatment with PZ-DHA (20 uM)
decreased the in vitro HUVEC angiogenesis by 6.5-fold; however, PZ alone did not inhibit
tubule formation by HUVECs (Figure 1A). The inhibitory effect of PZ-DHA was signifi-
cantly greater than either PZ or DHA alone. PZ-DHA (10 pM), as well as DHA, significantly
attenuated the in vitro tubule formation by HMVECs by 2.8-fold and 1.8-fold, respectively
(Figure 1B). Again, PZ-DHA had a greater impact on tubule formation than PZ or DHA
alone. In preliminary experiments, PZ-DHA also suppressed ex vivo angiogenesis. As
shown in Supplementary Figure S3, the sprouting of microvessels from rat aorta endothe-
lium embedded in a Matrigel matrix was reduced in the presence of 20 uM PZ-DHA. Upon
extended incubation, PZ-DHA-treated cells aligned on the Matrigel matrix but did not
differentiate to form tubules.

3.2. PZ-DHA Inhibits In Vivo Angiogenesis in BALB/c Female Mice

The impact of PZ-DHA on in vivo angiogenesis was investigated using a Matrigel
plug assay performed in BALB/c female mice. VEGF- and bFGF-induced angiogenesis in
Matrigel plugs was inhibited by intraperitoneal administration of PZ-DHA (Figure 2A).
Hemoglobin in Matrigel plugs was converted into a cyanmethemoglobin complex by a
reaction with cyanide ions in Drabkin’s reagent. A 2.3-fold reduction in the formation of
cyanmethemoglobin complex was noted in Matrigel plugs excised from PZ-DHA-treated
mice (Figure 2B). PZ-DHA-induced reduction in the growth of blood vessels in the body
wall (around the Matrigel plugs) was also observed (Figure 2C).



Biomolecules 2024, 14, 769

6 of 15

Angiogenesis score

Vehicle PZ DHA PZ-DHA

Angiogenesis score
i

Vehicle PZ DHA PZ-DHA

Figure 1. PZ-DHA inhibits angiogenesis in vitro. PZ, DHA, PZ-DHA (HUVECs: 20 uM, HMVECs:
10 uM), vehicle-, or medium-treated HMVECs or HUVECs were harvested, and 7500 cells were
resuspended in 50 pL of EGM and seeded onto a polymerized ECMatrix. (A) HMVEC and
(B) HUVEC tubule formation were monitored and photographed after 4 h and 6 h, respectively.
Images were analyzed and tube formation was quantified according to the complexity of the tube
network. Mean angiogenesis scores &+ SEM were calculated from 3 independent experiments. Statisti-
cal analysis was performed using the ANOVA multiple means comparison method and differences
among means were compared using Tukey’s post-mean comparison method; * p < 0.05, ** p < 0.01,
and ** p < 0.001.

3.3. PZ-DHA Inhibits the Proliferation of HUVECs and HMVECs

We next determined the mechanism(s) that might account for the inhibitory effect of
PZ-DHA on in vitro, ex vivo, and in vivo angiogenesis. As shown in Figure 3A, 10 uM
PZ-DHA decreased HUVEC proliferation by 1.7-fold, and by 2.8-fold when HUVECS
were treated with 20 uM PZ-DHA. DHA alone also had an antiproliferative effect on
HUVECs. PZ-DHA at 10 uM suppressed HMVEC proliferation by 3.4-fold (Figure 3B).
Neither DHA nor PZ alone affected HMVEC proliferation. Figure 3C shows that 10 uM
PZ-DHA arrested the HUVEC cell cycle at G /Gy while significantly decreasing the number
of cells progressing to the G,/M phase. The progression of a cell through G1 phase of
the cell cycle is regulated by several cyclins and CDKs, including cyclin D and CDK4.
PZ-DHA (10 uM) significantly decreased cyclin D3 levels in HUVECs by 28% (Figure 3D),
and the expression of CDK4 (Figure 3E) was suppressed by both DHA and PZ-DHA by
47% and 72%, respectively; however, PZ by itself had no effect on HUVEC and HMVEC
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proliferation or expression of any of the cell cycle regulatory proteins tested. These findings
suggest that the antiproliferative effect of PZ-DHA on endothelial cells contributes to its
anti-angiogenic activity.

Control 2 pg/mL VEGF, 2 pyg/mL bFGF
¢ Oe8 reDee e s
(C)
* Saline PZ-DHA
r 1 | ]
1500 oo
1200
(o}
900' [
5
600' —_— ]
1 °
oo
w50 e
o LS
0 T T
Saline PZ-DHA

Figure 2. PZ-DHA inhibits in vivo angiogenesis in female BALB/c mice. Phenol red-free Matrigel
(300 pL) mixed with/without human VEGFi¢5 (2 ug/mL) and bFGF (2 pg/mL) were subcutaneously
implanted on both the left and right sides along the mid-dorsal line of the lower posterior area of
BALB/c female mice (Day 0). On Day 1, mice were randomly assigned into 2 groups (11 mice/group)
and saline or PZ-DHA (100 mg/kg) was administered by intraperitoneal injection. Altogether, saline
or PZ-DHA was administered every second day (Days 1, 3, 5, 7, and 9) for 9 days. Mice were
euthanized. (A) Matrigel plugs were harvested and photographed. Control Matrigel plugs are
shown to confirm that angiogenesis did not occur in the absence of VEGFj45 and bFGEF. (B) Mean
hemoglobin concentration £ SEM of VEGF;¢5- and bFGF-containing Matrigel plugs from saline- and
PZ-DHA-treated mice was determined using the cyanmethemoglobin method. Statistical differences
between means were compared using Student’s t-test; * p < 0.05. (C) Growth of blood vessels on the
body wall, toward the Matrigel plugs, was also photographed.

3.4. PZ-DHA Inhibits the Migration of HUVECs and HMVECs

Endothelial cell migration is important during early angiogenesis and subsequent
tubule formation [26,27]. PZ-DHA (10 uM) reduced the migration of HUVECs and
HMVECs by 59% (Figure 4A) and 56% (Figure 4B), respectively, in a gap closure assay.
PZ-DHA-induced inhibition of HUVEC migration was further investigated using a trans-
well cell migration assay. The migration of serum-starved-HUVECs showed a significant
40% inhibition in the presence of 10 uM PZ-DHA. This inhibitory effect of PZ-DHA was
significantly greater than that of either parent compound; however, the polygonal en-
dothelial cellular shape was restored by vehicle-, PZ-, and DHA-treated HUVEC following
migration. In contrast, the shape of PZ-DHA-treated HUVECs was still distorted after
migration (Figure 4C). These data suggest the inhibitory effect of PZ-DHA on endothelial
cell migration is a factor in its anti-angiogenic activity.
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Figure 3. PZ-DHA inhibits the in vitro proliferation of HUVECs and HMVECs. Oregon Green
488-stained (A) HUVECs and (B) HMVECs were treated with PZ, DHA, PZ-DHA (HUVECs: 10
or 20 uM, HMVECs: 10 uM), vehicle, or medium and cultured for 72 h at 37 °C. At the end of
incubation, cells were harvested and analyzed by flow cytometry. Data shown are representative
histograms and mean number of cell divisions £+ SEM. (C) HUVECs were treated with PZ, DHA,
PZ-DHA (10 uM), vehicle, or medium alone and cultured for 72 h at 37 °C. Cells were fixed and
stained with PI in the presence of RNase for analysis by flow cytometry. Representative histograms
were generated and the mean % number 3+ SEM of cells in each phase of the cell cycle was calculated.
(D) Cyclin D3 and (E) CDK4 expression were determined using western blot analysis of protein-rich
cell lysates HUVECs that were treated with PZ, DHA, PZ-DHA (10 uM), vehicle, or medium alone for
72 h. Statistical analysis of data from 3 independent experiments was performed using the one-way
ANOVA multiple means comparison method, and differences among means were compared using
Tukey’s post-mean comparison method. * p < 0.05, ** p < 0.01. (Original Western Blot Images see
supplementary Figure S4).
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Figure 4. PZ-DHA inhibits the in vitro migration of HUVECs and HMVECs. (A) HMVECs and
(B) HUVECs in cell culture inserts were treated with PZ, DHA, PZ-DHA (10 uM), vehicle, or medium
alone and cultured for 24 h. Inserts were removed and the number of cells that migrated into the
gap was quantified. Representative pictures of cells in the gap and mean % migrated cells = SEM
are shown. (C) HUVECs were seeded and treated with PZ, DHA, PZ-DHA (10 uM), vehicle, or
medium alone and cultured for 24 h. Treated cells were serum-starved and migration toward serum
through a porous membrane was determined. Representative pictures of migrated cells and mean %
migration & SEM are shown. Statistical analysis of data from 3 independent experiments was carried
out using the ANOVA multiple means comparison statistical method and differences among means
were compared using Tukey’s test; * p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. PZ-DHA Inhibits PDK1 and mTOR Activation and VEGF1g5-Induced Small Molecular Rho
GTPase Signaling in HUVECs

The PDK1-activated phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR pathway is
involved in blood vessel growth and maintenance, which also involves Rho GTPase sig-
naling, which is often activated by VEGF45 [28-30]. PZ-DHA inhibited upstream (PDK1)
and downstream (mTOR) components of the Akt signaling pathway in HUVECs. As
shown in Figure 5A, 10 uM PZ-DHA inhibited the phosphorylation of PDK1 at Ser241. The
downstream phosphorylation of mTOR at Ser2448 was also decreased in the presence of
10 uM PZ-DHA (Figure 5B).

Figure 6A shows that 10 uM PZ-DHA, as well as the same concentration of DHA,
significantly inhibited RhoA expression in HUVECs (Figure 6A). Cdc42 expression was
also decreased following 10 uM PZ-DHA or DHA treatment (Figure 6B). In contrast,
Racl/2/3 expression remained unchanged in the presence of 10 uM PZ-DHA (Figure 6C).
VEGF;45-induced RhoA activation was not reduced in the presence of 10 uM PZ, DHA, or
PZ-DHA (Figure 6D); however, VEGF;¢45-induced Cdc42 overexpression was reduced by
10 pM PZ-DHA (Figure 6E). VEGFj45-induced Racl/2/3 expression was also significantly
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inhibited in the presence of 10 uM PZ-DHA, although there was no effect by either parent
compound alone (Figure 6F). These findings suggest that PZ-DHA-mediated inhibition
of key angiogenesis-associated signal transduction pathways is associated with its anti-
angiogenic activity.
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Figure 5. PZ-DHA inhibits PDK1 and mTOR phosphorylation in HUVECs. HUVECs were treated
with PZ, DHA, PZ-DHA (10 uM), or vehicle alone and cultured for 72 h. Cells were harvested and
protein-rich cell lysates were prepared for western blot analysis of (A) phospho-PDK1 (Ser241)/total-
PDK1 expression or (B) phospho-mTOR (Ser2448)/total-mTOR expression. Equal protein loading
was confirmed by B-actin expression. Data shown are mean % relative expression = SEM from 3 in-
dependent experiments. The ANOVA multiple means comparison statistical method was performed
and differences among means were compared using Tukey’s test; ** p < 0.01, *** p < 0.001. (Original
Western Blot Images see supplementary Figure S5).
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Figure 6. PZ-DHA inhibits endogenous and VEGF-induced small GTPase signaling in HU-
VECs. HUVECs were treated with PZ, DHA, PZ-DHA (10 uM), or vehicle alone and cultured
for 72 h in the presence or absence of VEGF45. Cells were harvested and protein-rich cell lysates
were prepared for western blot analysis of (A,D) RhoA expression, (B,E) Cdc42 expression, and
(CF) Racl/2/3 expression. Equal protein loading was confirmed by -actin expression. Data shown
are mean % relative expression & SEM from 3 independent experiments. The ANOVA multiple
means comparison statistical method was performed and differences among means were compared
using Tukey’s test; * p < 0.05. (Original Western Blot Images see supplementary Figure S6).
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4. Discussion

Angiogenesis plays an important role in several pathological conditions including
chronic inflammation and cancer [4,5]. In the current study, the effects of PZ-DHA on
different aspects of angiogenesis, including endothelial cell proliferation, migration, and
differentiation, were tested in vitro, ex vivo, and in vivo. PZ-DHA attenuated in vitro
tubule formation by HUVECs and HMVECs, microvessel sprouting from rat aortic en-
dothelium, and VEGEF- and bFGF-induced angiogenesis in Matrigel plugs implanted in
BALB/c mice. These findings are consistent with anti-angiogenic effects of other flavonoids
such as quercetin [31], apigenin [32], and epigallocatechin gallate [33], which suppress
angiogenesis via their inhibition of Akt phosphorylation, HIF-1« signaling, and expression
of cell adhesion molecules.

The proliferation of HUVECs and HMVECs was attenuated by sub-cytotoxic concen-
trations of PZ-DHA, causing inhibition of S phase entry of HUVECs because of Gy /G cell
cycle arrest. At a molecular level, the expression of cyclin D3 and CDK4 was inhibited by
PZ-DHA, suggesting a decreased formation of cyclin D/CDK4 complex. This observation
was in line with the increased accumulation of HUVECs in the Gy /G; phase. DHA, one
of the parent compounds, did not alter the expression of cyclin D3 or the number of HU-
VECs passing the G1 checkpoint to enter the S phase; however, the expression of CDK4
was downregulated by DHA. In contrast, Kim and colleagues showed that DHA induces
Go/Gq cell cycle arrest, causes an increase in the sub-G; peak, and increases staining with
Annexin-V-FITC/P], all of which are consistent with HUVEC apoptosis [34]. Our findings
differ, possibly because an apoptosis-inducing concentration (40 uM) of DHA was used
by Kim et al., whereas our study was conducted using sub-cytotoxic concentrations of
DHA (10-20 pM). The fate of a cell during stress conditions is determined by an interplay
of cell cycle regulators and pro-apoptotic factors [35,36]. Induction of apoptotic signals
vis p53 activation may have played a partial role through the p53-p21 axis in the Gy/ G
cell cycle arrest [34]. G /S transition is also regulated by a type of GTPase family protein
known as Rho [37], which was inhibited by PZ-DHA. Furthermore, the accumulation of
p21WAFL/CIPL jnhibits CDK activity, which negatively regulates the G; /S transition [38]. In
summary, both the inhibition of cell cycle regulatory proteins and small molecular Rho
GTPase molecules have been attributed to PZ-DHA-induced anti-proliferative activity in
endothelial cells.

Rho GTPase signaling regulates endothelial cell rearrangement and organization dur-
ing angiogenesis [39,40]. VEGF;¢5-dependent Rac activation via Racl guanine nucleotide
exchange factor DOCK4 is necessary for Cdc42 activation, filopodia, and lumen forma-
tion [41]. PZ-DHA down-regulated VEGF45-induced Cdc42 and Racl/2/3 expression
by HUVECs but did not affect the expression of RhoA in response to VEGF;45. However,
PZ-DHA significantly decreased tubule formation by HUVECs and HMVECs in vitro. Pre-
liminary experiments suggest that PZ-DHA also inhibited VEGF;¢5-induced sprouting of
tubules from rat aortic sections ex vivo. These findings indicate that PZ-DHA-induced
anti-angiogenic activity was not necessarily mediated solely through RhoA-dependent
mechanisms, but possibly in combination with inhibition of VEGF;¢5-stimulated Cdc42
and Racl/2/3.

PZ-DHA inhibited the migration and expression of RhoA and Cdc42, butnot Rac1/2/3,
in HUVECSs, suggesting inhibition of filopodia-driven HUVEC migration. PZ-DHA sig-
nificantly and more effectively suppressed the migration of HUVECsS in trans-well cell
migration assays, compared to its parent compounds. The polygonal cellular shape was
restored following the migration of vehicle-, PZ-, and DHA-treated HUVEC; but not in
PZ-DHA-treated cells. The process of angiogenesis is composed of multiple steps that
include changes in the integrity of the endothelial cell barrier, basement membrane degrada-
tion, endothelial cell proliferation and migration, morphogenesis, and capillary formation,
all of which involve distinct roles by RhoA, Cdc42, and Racl/2/3 [42]. Well-known cell
survival and proliferation pathways such as the PDK1-activated PI3K/Akt/mTOR path-
way and mitogen-activated protein kinase signaling pathways regulate endothelial cell
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proliferation and assembly [43,44]. Crosstalk between cell survival pathways and other
signaling cascades, such as Rho GTPase and matrix metalloproteinase signaling, regulate
angiogenesis [45,46].

Induction of the PDK1-activated PI3K/Akt/mTOR pathway impacts multiple down-
stream signal transduction pathways involved in endothelial cell proliferation (cell cycle
regulators), migration through actin reorganization (small molecular RhoGTPases), and
eventual blood vessel development [47-49]. At a sub-cytotoxic concentration, PZ-DHA
suppressed PDK1 phosphorylation upstream of Akt and cyclin D3 and mTOR phospho-
rylation downstream from Akt. Currently, it is not known whether the phosphorylation
of endothelial cell Akt is directly inhibited by PZ-DHA. However, the DHA component
of PZ-DHA inhibits the phosphorylation of Akt at ser473 and thr308, as well as mTOR
phosphorylation, in human prostate cancer cells [50].

Figure 7 depicts a model for the impact of PZ-DHA on angiogenesis-associated signal
transduction that is consistent with our findings. The effect of PZ-DHA at the receptor
binding level is yet to be understood.
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Figure 7. Proposed scheme for the anti-angiogenic activities of PZ-DHA. PZ-DHA inhibits angio-
genesis by inhibiting endothelial cell proliferation, migration, and tubule formation. The antiprolif-
erative effects of PZ-DHA on endothelial cells are mediated through Rho GTPase-driven G; arrest
through the p53-p21 axis, as well as inhibition of upstream and downstream components of the
PI3K/Akt/mTOR signaling pathway. PZ-DHA inhibits endothelial cell migration and differen-
tiation by inhibiting VEGF-induced activation of small molecular Rho GTPase and activation of
PDKI1, cyclin D3, and mTOR. Akt: protein kinase B; AP: activator protein; Cdc42, Racl/2/3, and
RhoA: Rho family small GTPases; CRE: cAMP (cyclic adenosine monophosphate) response element;
CREB: cAMP response element binding protein; GSK3-f: glycogen synthase kinase 3-f3; mTOR:
mammalian target of rapamycin; p21: cyclin-dependent kinase inhibitor 1; PDK1: phosphoinositide-
dependent kinase-1; PI3K: phosphoinositide 3-kinase; PIP2: phosphatidylinositol-4,5-bisphosphate;
PIP3: phosphatidylinositol-3,4,5-trisphosphate; PTEN: phosphatase and tensin homolog; PZ-DHA:
phloridzin docosahexaenoate; ROCK: Rho-associated protein kinase; RTK: receptor tyrosine kinase;
VEGE: vascular endothelial growth factor; VEGFR2: vascular endothelial growth factor receptor.
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Irregularity in shape, high permeability, and poorly supported pericytes are key
features of tumor-associated blood vessels [51,52]. This leads to the formation of leaky and
contorted vasculature, which is associated with the increased interstitial fluid pressure
within the tumor that facilitates passive migration of cancer cells and poor penetration
of the tumor by chemotherapeutic drugs [11,13]. Although it was initially thought that
angiogenesis blockade eliminates cancer cells by oxygen and nutrient starvation, recent
experience suggests that “normalization” of tumor-associated angiogenesis is more effective
than its inhibition since this approach corrects elevated interstitial fluid pressure, thereby
allowing chemotherapeutic drug penetration and reduced cancer cell metastasis [53]. PZ-
DHA-mediated inhibition of upstream (PDK1) and downstream (mTOR) components of
the Akt signaling pathway may correct the abnormal vasculature in tumors since inhibition
of PI3K/Akt/mTOR signaling promotes endothelial cell elongation associated with proper
regulation of angiogenesis [54]. However, confirmation awaits further investigation of the
effect of PZ-DHA on abnormal angiogenesis in tumors. We conclude that in addition to
targeting breast cancer cells [23], PZ-DHA may also interfere with the angiogenesis-related
hematogenic spread of breast cancer cells, thereby contributing to reduced metastasis of PZ-
DHA-treated mammary carcinoma cells in a mouse model of metastatic breast cancer [23].
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