Anti-Biofilm Perspectives of Propolis against Staphylococcus epidermidis Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Analysis of EESP
2.1.1. Liquid Chromatography Mass Spectrometry (LC–MS)
2.1.2. Method Validation and Quantification of Marker Compounds
2.1.3. Gas Chromatography Mass Spectrometry (GC–MS)
2.2. Propolis Sample Preparation for Bacterial Assays
2.3. Bacterial Strains and Culture Conditions
2.4. EESP Antibacterial Activity and Effect on Bacterial Growth Curves
2.5. Anti-Adhesion and Anti-Biofilm Activity of EESP
2.6. Physicochemical Surface Properties of Bacterial Cells
2.7. Biofilm Architecture: Fluorescence and Scanning Electron Microscopy
2.8. Statistical Analysis
3. Results and Discussion
3.1. Method Validation and Chemical Analysis of EESP by LC-MS and GS-MS
3.2. Influence of Sub-Inhibitory Concentrations on Cell Growth
3.3. Cell Surface Physicochemical Properties
3.4. Influence of Sub-Inhibitory Concentrations on Adhesion and Biofilm Formation
3.5. Effect of Propolis Extract on the Architecture of the Biofilm
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug. Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, Z.; McTiernan, C.D.; Suuronen, E.J.; Mah, T.F.; Alarcon, E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018, 4, e01067. [Google Scholar] [CrossRef] [PubMed]
- Pontes, J.T.C.; Toledo-Borges, A.B.; Roque-Borda, C.A.; Pavan, F.R. Antimicrobial peptides as an alternative for the eradication of bacterial biofilms of multi-drug resistant bacteria. Pharmaceutics 2022, 15, 642. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Luo, J.; Deng, F.; Huang, Y.; Zhou, H. Antibiotic combination therapy: A strategy to overcome bacterial resistance to aminoglycoside antibiotics. Front. Pharmacol. 2022, 23, 839808. [Google Scholar] [CrossRef] [PubMed]
- Mhlongo, J.T.; Waddad, A.Y.; Albericio, F.; de la Torre, B.G. Antimicrobial peptide synergies for fighting infectious diseases. Adv. Sci. 2023, 10, 2300472. [Google Scholar] [CrossRef] [PubMed]
- Haji, S.H.; Ali, F.A.; Aka, S.T.H. Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Sci. Rep. 2022, 12, 15254. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, J.D.; Friedman, N.D.; Kirkland, K.B.; Richardson, W.J.; Sexton, D.J. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: Adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp. Epidemiol. 2002, 23, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Sblano, S.; Salvagno, L.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Anti-biofilm inhibitory synergistic effects of combinations of essential oils and antibiotics. Antibiotics 2020, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Jardak, M.; Mnif, S.; Ben Ayed, R.; Rezgui, F.; Aifa, S. Chemical composition, antibiofilm activities of Tunisian spices essential oils and combinatorial effect against Staphylococcus epidermidis biofilm. LWT 2021, 140, 110691. [Google Scholar] [CrossRef]
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef]
- Hossain, R.; Quispe, C.; Khan, R.A.; Saikat, A.S.M.; Ray, P.; Ongalbek, D.; Yeskaliyeva, B.; Jain, D.; Smeriglio, A.; Trombetta, D.; et al. Propolis: An update on its chemistry and pharmacological applications. Chin. Med. 2022, 17, 100. [Google Scholar] [CrossRef]
- Fernández-Calderón, M.C.; Navarro-Pérez, M.L.; Blanco-Roca, M.T.; Gómez-Navia, C.; Pérez-Giraldo, C.; Vadillo-Rodríguez, V. Chemical profile and antibacterial activity of a novel Spanish propolis with new polyphenols also found in olive oil and high amounts of flavonoids. Molecules 2020, 25, 3318. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Pérez, M.L.; Vadillo-Rodriguez, V.; Fernandez-Babiano, I.; Perez-Giraldo, C.; Fernandez-Calderon, M.C. Antimicrobial activity of a novel Spanish propolis against planktonic and sessile oral Streptococcus spp. Sci. Rep. 2021, 11, 23860. [Google Scholar] [CrossRef]
- Stepanović, S.; Antić, N.; Dakić, I.; Svabić-Vlahović, M. In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs. Microbiol. Res. 2003, 158, 353–357. [Google Scholar] [CrossRef]
- Fernandez-Calderon, M.C.; Hernandez-Gonzalez, L.; Gomez-Navia, C.; Blanco-Blanco, M.T.; Sanchez-Silos, R.; Lucio, L.; Perez-Giraldo, C. Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata. BMC Complement. Med. Ther. 2021, 21, 147. [Google Scholar] [CrossRef]
- Bufalo, M.C.; Figueiredo, A.S.; de Sousa, J.P.; Candeias, J.M.; Bastos, J.K.; Sforcin, J.M. Anti-poliovirus activity of Baccharis dracunculifolia and propolis by cell viability determination and real-time PCR. J. Appl. Microbiol. 2009, 107, 1669–1680. [Google Scholar] [CrossRef]
- Freitas, S.F.; Shinohara, L.; Sforcin, J.M.; Guimaraes, S. In vitro effects of propolis on Giardia duodenalis trophozoites. Phytomedicine 2006, 13, 170–175. [Google Scholar] [CrossRef]
- Ji, X.; Yu, R.; Zhu, M.; Zhang, C.; Zhou, L.; Cai, T.; Li, W. Diadenosine tetraphosphate modulated quorum sensing in bacteria treated with kanamycin. BMC Microbiol. 2023, 23, 353. [Google Scholar] [CrossRef] [PubMed]
- Bouchelaghem, S.; Das, S.; Naorem, R.S.; Czuni, L.; Papp, G.; Kocsis, M. Evaluation of total phenolic and flavonoid contents, antibacterial and antibiofilm activities of hungarian propolis ethanolic extract against Staphylococcus aureus. Molecules 2022, 27, 574. [Google Scholar] [CrossRef] [PubMed]
- Fontanot, A.; Ellinger, I.; Unger, W.W.J.; Hays, J.P. A comprehensive review of recent research into the effects of antimicrobial peptides on biofilms—January 2020 to September 2023. Antibiotics 2024, 13, 343. [Google Scholar] [CrossRef]
- Vadillo-Rodríguez, V.; Cavagnola, M.A.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. A physico-chemical study of the interaction of ethanolic extracts of propolis with bacterial cells. Colloids Surf. B Biointerfaces 2021, 200, 111571. [Google Scholar] [CrossRef] [PubMed]
- Kiokias, S.; Oreopoulou, V. A review of the health protective effects of phenolic acids against a range of severe pathologic conditions (including coronavirus-based infections). Molecules 2021, 26, 5405. [Google Scholar] [CrossRef]
- Schilcher, K.; Horswill, A.R. Staphylococcal biofilm development: Structure, regulation, and treatment strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef] [PubMed]
- Scazzocchio, F.; D’Auria, F.D.; Alessandrini, D.; Pantanella, F. Multifactorial aspects of antimicrobial activity of propolis. Microbiol. Res. 2006, 161, 327–333. [Google Scholar] [CrossRef]
- Wang, F.; Liu, H.; Li, J.; Zhang, W.; Jiang, B.; Xuan, H. Australian propolis ethanol extract exerts antibacterial activity against methicillin-resistant Staphylococcus aureus by mechanisms of disrupting cell structure, reversing resistance, and resisting biofilm. Braz. J. Microbiol. 2021, 52, 1651–1664. [Google Scholar] [CrossRef] [PubMed]
- Christensen, G.D.; Barker, L.P.; Mawhinney, T.P.; Baddour, L.M.; Simpson, W.A. Identification of an antigenic marker of slime production for Staphylococcus epidermidis. Infect. Immun. 1990, 58, 2906–2911. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically, 11th ed.; CLSI standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Valencia, D.; Alday, E.; Robles-Zepeda, R.; Garibay-Escobar, A.; Galvez-Ruiz, J.C.; Salas-Reyes, M.; Jiménez-Estrada, M.; Velazquez-Contreras, E.; Hernandez, J.; Velazquez, C. Seasonal effect on chemical composition and biological activities of Sonoran propolis. Food. Chem. 2012, 131, 645–651. [Google Scholar] [CrossRef]
- Sforcin, J.M.; Fernandes, A.J.; Lopes, C.A.; Bankova, V.; Funari, S.R. Seasonal effect on Brazilian propolis antibacterial activity. J. Ethnopharmacol. 2000, 73, 243–249. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Olmo-García, L.; Reboredo-Rodríguez, P.; Serrano-García, I.; Leuyacc-del Carpio, G.; Cancho-Grande, B.; Carrasco-Pancorbo, A.; González-Barreiro, C. Singular olive oils from a recently discovered spanish north-western cultivar: An exhaustive 3-year study of their chemical composition and in-vitro antidiabetic potential. Antioxidants 2022, 11, 1233. [Google Scholar] [CrossRef]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2024, 3, 1–23. [Google Scholar] [CrossRef]
- Miguel, M.G. Chemical and biological properties of propolis from the western countries of the Mediterranean basin and Portugal. Int. J. Pharm. Pharm. Sci. 2013, 5, 403–409. [Google Scholar]
- Pyrgioti, E.; Graikou, K. Assessment of antioxidant and antimicrobial properties of selected greek propolis samples (North East Aegean Region Islands). Molecules 2022, 27, 8198. [Google Scholar] [CrossRef]
- Devesa Alcaraz, J.A. Vegetación y flora de Extremadura; Universitas Editoral: Oslo, Norway, 1995. [Google Scholar]
- Queiroga, M.C.; Laranjo, M.; Andrade, N.; Marques, M.; Costa, A.R.; Antunes, C.M. Antimicrobial, antibiofilm and toxicological assessment of propolis. Antibiotics 2023, 12, 347. [Google Scholar] [CrossRef]
- Navarro-Perez, M.L.; Fernandez-Calderon, M.C.; Vadillo-Rodriguez, V. Decomposition of growth curves into growth rate and acceleration: A novel procedure to monitor bacterial growth and the time-dependent effect of antimicrobials. Appl. Environ. Microbiol. 2022, 88, e0184921. [Google Scholar] [CrossRef]
- Nguyen, H.T.T.; Nguyen, T.H.; Otto, M. The staphylococcal exopolysaccharide PIA–Biosynthesis and role in biofilm formation, colonization, and infection. Comput. Struct. Biotechnol. J. 2020, 18, 3324–3334. [Google Scholar] [CrossRef]
- Van der Wal, A.; Norde, W.; Zehnder, A.J.B.; Lyklema, J. Determination of the total charge in the cell walls of Gram-positive bacteria. Colloids Surf. B Biointerfaces 1997, 9, 81–100. [Google Scholar] [CrossRef]
- Ong, T.H.; Chitra, E.; Ramamurthy, S.; Ling, C.C.S.; Ambu, S.P.; Davamani, F. Cationic chitosan-propolis nanoparticles alter the zeta potential of S. epidermidis, inhibit biofilm formation by modulating gene expression and exhibit synergism with antibiotics. PLoS ONE 2019, 14, e0213079. [Google Scholar] [CrossRef]
- Van der Mei, H.C.; Busscher, H.J. The use of X-ray photoelectron spectroscopy for the study of oral streptococcal cell surfaces. Adv. Dent. Res. 1997, 11, 388–394. [Google Scholar] [CrossRef]
- Guefack, M.G.F.; Ngangoue, M.O.; Mbaveng, A.T.; Nayim, P.; Kuete, J.R.N.; Ngaffo, C.M.N.; Chi, G.F.; Ngameni, B.; Ngadjui, B.T.; Kuete, V. Antibacterial and antibiotic-potentiation activity of the constituents from aerial part of Donella welwitshii (Sapotaceae) against multidrug resistant phenotypes. BMC Complement. Med. Ther. 2022, 22, 194. [Google Scholar] [CrossRef]
- Song, W.; Xin, J.; Yu, C.; Xia, C.; Pan, Y. Alkyl ferulic acid esters: Evaluating their structure and antibacterial properties. Front. Microbiol. 2023, 10, 1135308. [Google Scholar] [CrossRef]
- Dwivedi, M.K.; Sonter, S.; Mishra, S.; Patel, D.K.; Singh, P.K. Antioxidant, antibacterial activity, and phytochemical characterization of Carica papaya flowers. Beni-Suef. Univ. J. Basic Appl. Sci. 2020, 9, 23. [Google Scholar] [CrossRef]
- Wijaya, G.Y.A.; Cuffaro, D.; Bertini, S.; Digiacomo, M.; Macchia, M. 1-Acetoxypinoresinol, a Lignan from Olives: Insight into Its Characterization, Identification, and Nutraceutical Properties. Nutrients 2024, 16, 1474. [Google Scholar] [CrossRef] [PubMed]
- Wojtyczka, R.D.; Kępa, M.; Idzik, D.; Kubina, R.; Kabała-Dzik, A.; Dziedzic, A.; Wąsik, T.J. In vitro antimicrobial activity of ethanolic extract of polish propolis against biofilm forming Staphylococcus epidermidis strains. Evid. Based Complement. Altern. Med. 2013, 590703. [Google Scholar] [CrossRef]
- Bryan, J.; Redden, P.; Traba, C. The mechanism of action of Russian propolis ethanol extracts against two antibiotic-resistant biofilm-forming bacteria. Lett. Appl. Microbiol. 2016, 62, 192–198. [Google Scholar] [CrossRef] [PubMed]
- de Souza Silva, T.; Silva, J.M.B.; Braun, G.H.; Mejia, J.A.A.; Ccapatinta, G.V.C.; Santos, M.F.C.; Tanimoto, M.H.; Bastos, J.K.; Parreira, R.L.T.; Orenha, R.P.; et al. Green and red Brazilian propolis: Antimicrobial potential and anti-virulence against ATCC and dlinically isolated multidrug-resistant bacteria. Chem. Biodivers. 2021, 18, e2100307. [Google Scholar] [CrossRef] [PubMed]
- Grecka, K.; Xiong, Z.R.; Chen, H.; Pełka, K.; Worobo, R.W.; Szweda, P. Effect of Ethanol Extracts of Propolis (EEPs) against Staphylococcal biofilm—Microscopic Studies. Pathogens 2020, 9, 646. [Google Scholar] [CrossRef]
- Song, M.; Liu, Y.; Li, T.; Liu, X.; Hao, Z.; Ding, S.; Panichayupakaranant, P.; Zhu, K.; Shen, J. Plant natural flavonoids against multidrug resistant pathogens. Adv. Sci. 2021, 8, 2100749. [Google Scholar] [CrossRef]
Compound | Linear Range (µg/mL) | Calibration Curve | R2 | Amount (µg/mL) |
---|---|---|---|---|
Vanillic acid | 0.1–5 | y = 36,508x – 689.8 | 0.9990 | 18.81 |
Trans-ferulic acid | 0.1–5 | y = 207,867x + 624.4 | 0.9993 | 224.97 |
Quercetin | 0.1–5 | y = 866,860x + 26,682 | 0.9993 | 45.88 |
Compounds Identified by LC-MS | ||||||
---|---|---|---|---|---|---|
Peak | RT (min) | Proposed Structure | Class | Formula | Mw | m/z |
1 | 1845 | Hydroxycaffeic acid † | PA | C9H8O5 | 196.0372 | 196.0377 |
2 | 2740 | Vanillic acid †* | PA | C8H8O4 | 168.0423 | 168.0412 |
3 | 3138 | 3,4-Dihydroxyphenylacetic acid † | PA | C8H8O4 | 168.0423 | 168.0413 |
4 | 4067 | Homovanillic acid † | PA | C9H10O4 | 182.0579 | 182.0568 |
5 | 4249 | Sesamol | L | C7H6O3 | 138.0317 | 138.0306 |
6 | 4581 | Caffeic acid † | PA | C9H8O4 | 180.0423 | 180.0419 |
7 | 5045 | p-HPEA-EA †* | OP | C19H22O7 | 362.1366 | 362.1355 |
8 | 6206 | Methoxyphenylacetic acid †* | PA | C9H10O3 | 166.063 | 166.0616 |
9 | 6916 | p-Coumaric acid † | PA | C9H8O3 | 164.0473 | 164.0465 |
10 | 7616 | Ferulic acid † | PA | C10H10O4 | 194.0579 | 194.0569 |
11 | 8097 | Isoferulic acid | PA | C10H10O4 | 194.0579 | 194.0569 |
12 | 9540 | Cinnamic acid † | PA | C9H8O2 | 148.0524 | 148.0514 |
13 | 10,253 | Resveratrol 5-O-glucoside | S | C20H22O8 | 390.1315 | 390.1293 |
14 | 10,833 | Quercetin 3-O-rhamnoside † | F | C21H20O11 | 448.1006 | 448.0977 |
15 | 11,215 | Apigenin 6-C-glucoside | F | C21H20O10 | 432.1056 | 432.1032 |
16 | 11,928 | Isohydroxymatairesinol | L | C20H22O7 | 374.1366 | 374.1337 |
17 | 12,442 | 3,4-dimethyl-caffeic acid | PA | C11H12O4 | 208.0736 | 208.0733 |
18 | 12,823 | Quercetin 3-O-rutinoside † | F | C27H30O16 | 610.1534 | 610.1521 |
19 | 13,719 | Vanillic acid-glucoside | PA | C14H18O9 | 330.0951 | 330.0948 |
20 | 15,046 | Luteolin † | F | C15H10O6 | 286.0477 | 286.05 |
21 | 15,427 | Quercetin | F | C15H10O7 | 302.0354 | 302.0331 |
22 | 15,775 | Kaempferol | F | C15H10O6 | 286.0477 | 286.0467 |
23 | 16,455 | Sinapinaldehyde | OP | C11H12O4 | 208.0736 | 208.0724 |
24 | 16,920 | Quercetin-3-methyl ether | F | C16H12O7 | 316.0583 | 316.0533 |
25 | 20,419 | Apigenin | F | C16H14O4 | 270.0896 | 270.0886 |
26 | 21,198 | Pinobanksin | OP | C15H12O5 | 272.0685 | 272.0675 |
27 | 24,183 | Kaempferol-methyl ether | F | C16H12O6 | 300.0634 | 300.0624 |
28 | 25,096 | Kaempferol-methoxy-methyl ether | F | C19H18O8 | 374.1002 | 374.1019 |
29 | 28,788 | Galanin-5-methyl ether | OP | C16H12O5 | 284.0685 | 284.079 |
30 | 30,270 | Rhamnetin | F | C16H12O7 | 316.0583 | 316.0544 |
31 | 33,271 | Quercetin-dimethyl ether | F | C17H14O7 | 330.074 | 330.0742 |
32 | 36,439 | Caffeic acid isoprenyl ester | PA | C14H14O4 | 246.0982 | 246.0972 |
33 | 37,998 | Caffeic acid isoprenyl ester (isomer) | PA | C14H14O4 | 246.0982 | 246.0972 |
34 | 38,529 | Caffeic acid benzyl ester | PA | C16H14O4 | 270.0892 | 270.0845 |
35 | 41,215 | Pinocembrin | F | C15H12O4 | 256.0736 | 256.0737 |
36 | 43,603 | Caffeic acid phenyethyl ester | PA | C17H16O4 | 284.1049 | 284.1039 |
37 | 44,698 | Pinobanksin-3-O-acetate | OP | C17H14O6 | 314.079 | 314,0781 |
38 | 47,102 | Matairesinol †* | L | C20H22O6 | 358.1416 | 358.1389 |
39 | 50,336 | Caffeic acid cinnamyl ester | PA | C18H16O4 | 296.1049 | 296.1149 |
40 | 53,326 | 1-Acetoxypinoresinol †* | L | C22H24O8 | 416.1471 | 415.1363 |
41 | 56,140 | Arbutin | OP | C12H16O7 | 272.0896 | 272.0892 |
42 | 63,604 | Pinobanksin-3-0-pentanoate or 2-methylbutyrate | OP | C20H20O6 | 356.126 | 356.1282 |
43 | 65,531 | Quercetin 4’-O-glucoside | F | C21H20O12 | 464.0955 | 464.0924 |
44 | 67,531 | Sesaminol | L | C20H18O7 | 370.1053 | 370.1052 |
Compounds Identified by GC-MS | ||
---|---|---|
RT (min) | Compound | Math Result |
8.605 | Benzyl Alcohol | 938 |
9.988 | Phenylethyl Alcohol | 948 |
11.172 | Benzoic acid | 925 |
13.693 | Vanillin † | 929 |
27.699 | 4H-1-Benzopyran-4-one, 5-hydroxy-7-metho | 913 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadillo-Rodríguez, V.; Fernández-Babiano, I.; Pérez-Giraldo, C.; Fernández-Calderón, M.C. Anti-Biofilm Perspectives of Propolis against Staphylococcus epidermidis Infections. Biomolecules 2024, 14, 779. https://doi.org/10.3390/biom14070779
Vadillo-Rodríguez V, Fernández-Babiano I, Pérez-Giraldo C, Fernández-Calderón MC. Anti-Biofilm Perspectives of Propolis against Staphylococcus epidermidis Infections. Biomolecules. 2024; 14(7):779. https://doi.org/10.3390/biom14070779
Chicago/Turabian StyleVadillo-Rodríguez, Virginia, Irene Fernández-Babiano, Ciro Pérez-Giraldo, and María Coronada Fernández-Calderón. 2024. "Anti-Biofilm Perspectives of Propolis against Staphylococcus epidermidis Infections" Biomolecules 14, no. 7: 779. https://doi.org/10.3390/biom14070779
APA StyleVadillo-Rodríguez, V., Fernández-Babiano, I., Pérez-Giraldo, C., & Fernández-Calderón, M. C. (2024). Anti-Biofilm Perspectives of Propolis against Staphylococcus epidermidis Infections. Biomolecules, 14(7), 779. https://doi.org/10.3390/biom14070779