Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe fedtschenkoi: Characterization and Bioactivities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Extract Obtention, and Preparation of AgNPs
2.2. Characterization of AgNPs
2.3. Strains and Culture Media
2.4. Microdilution Assay
2.5. Antioxidant Assay
2.6. Statistical Analysis
3. Results
3.1. Synthesis and Formation of Kf1-, Kf2-, and Kf3-AgNPs
3.2. Characterization of Kf1-, Kf2-, and Kf3-AgNPs
3.2.1. UV-Vis Spectroscopy Analysis
3.2.2. FTIR Spectroscopy Analysis
3.2.3. DLS Analysis
3.2.4. SEM and EDS Analysis of Kf1-, Kf2-, and Kf3-AgNPs
3.3. Antibacterial Activity of Kf1-, Kf2-, and Kf3-AgNPs
3.4. Antioxidant Activity of Kf1-, Kf2-, and Kf3-AgNPs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bashir, N.; Dablool, A.S.; Khan, M.I.; Almalki, M.G.; Ahmed, A.; Mir, M.A.; Hamdoon, A.A.E.; Elawad, M.A.; Mosa, O.F.; Niyazov, L.N.; et al. Antibiotics Resistance as a Major Public Health Concern: A Pharmaco-Epidemiological Study to Evaluate Prevalence and Antibiotics Susceptibility-Resistance Pattern of Bacterial Isolates from Multiple Teaching Hospitals. J. Infect. Public Health 2023, 16, 61–68. [Google Scholar] [CrossRef]
- Song, L.; Li, H.; Fu, X.; Cen, M.; Wu, J. Association of the Oxidative Balance Score and Cognitive Function and the Mediating Role of Oxidative Stress: Evidence from the National Health and Nutrition Examination Survey (NHANES) 2011–2014. J. Nutr. 2023, 153, 1974–1983. [Google Scholar] [CrossRef]
- Tchekalarova, J.; Tzoneva, R. Oxidative Stress and Aging as Risk Factors for Alzheimer’s Disease and Parkinson’s Disease: The Role of the Antioxidant Melatonin. Int. J. Mol. Sci. 2023, 24, 3022. [Google Scholar] [CrossRef]
- Aremu, T.O.; Oluwole, O.E.; Adeyinka, K.O. An Understanding of the Drivers of Infectious Diseases in the Modern World Can Aid Early Control of Future Pandemics. Pharmacy 2021, 9, 181. [Google Scholar] [CrossRef]
- Helmy, A.K.; Sidkey, N.M.; El-Badawy, R.E.; Hegazi, A.G. Emergence of Microbial Infections in Some Hospitals of Cairo, Egypt: Studying Their Corresponding Antimicrobial Resistance Profiles. BMC Infect. Dis. 2023, 23, 424. [Google Scholar] [CrossRef]
- Vairo, C.; Villar Vidal, M.; Maria Hernandez, R.; Igartua, M.; Villullas, S. Colistin- and Amikacin-Loaded Lipid-Based Drug Delivery Systems for Resistant Gram-Negative Lung and Wound Bacterial Infections. Int. J. Pharm. 2023, 635, 122739. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, R.; Wang, B.; Song, S.; Zhang, F. Evaluation of Penicillin-Resistance and Probiotic Traits in Lactobacillus Plantarum during Laboratory Evolution. Gene 2024, 891, 147823. [Google Scholar] [CrossRef]
- Andrades-Lagos, J.; Campanini-Salinas, J.; Sabadini, G.; Andrade, V.; Mella, J.; Vásquez-Velásquez, D. QSAR Studies, Synthesis, and Biological Evaluation of New Pyrimido-Isoquinolin-Quinone Derivatives against Methicillin-Resistant Staphylococcus aureus. Pharmaceuticals 2023, 16, 1621. [Google Scholar] [CrossRef]
- Aiesh, B.M.; Nazzal, M.A.; Abdelhaq, A.I.; Abutaha, S.A.; Zyoud, S.H.; Sabateen, A. Impact of an Antibiotic Stewardship Program on Antibiotic Utilization, Bacterial Susceptibilities, and Cost of Antibiotics. Sci. Rep. 2023, 13, 5040. [Google Scholar] [CrossRef]
- García-Sánchez, A.; Gómez-Hermosillo, L.; Casillas-Moreno, J.; Pacheco-Moisés, F.; Campos-Bayardo, T.I.; Román-Rojas, D.; Miranda-Díaz, A.G. Prevalence of Hypertension and Obesity: Profile of Mitochondrial Function and Markers of Inflammation and Oxidative Stress. Antioxidants 2023, 12, 165. [Google Scholar] [CrossRef]
- Nahar, J.; Boopathi, V.; Rupa, E.J.; Awais, M.; Valappil, A.K.; Morshed, M.N.; Murugesan, M.; Akter, R.; Yang, D.U.; Mathiyalagan, R.; et al. Protective Effects of Aquilaria Agallocha and Aquilaria Malaccensis Edible Plant Extracts against Lung Cancer, Inflammation, and Oxidative Stress—In Silico and In Vitro Study. Appl. Sci. 2023, 13, 6321. [Google Scholar] [CrossRef]
- Yu, T.-J.; Shiau, J.-P.; Tang, J.-Y.; Farooqi, A.A.; Cheng, Y.-B.; Hou, M.-F.; Yen, C.-H.; Chang, H.-W. Physapruin A Exerts Endoplasmic Reticulum Stress to Trigger Breast Cancer Cell Apoptosis via Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 8853. [Google Scholar] [CrossRef]
- Grossini, E.; De Marchi, F.; Venkatesan, S.; Mele, A.; Ferrante, D.; Mazzini, L. Effects of Acetyl-L-Carnitine on Oxidative Stress in Amyotrophic Lateral Sclerosis Patients: Evaluation on Plasma Markers and Members of the Neurovascular Unit. Antioxidants 2023, 12, 1887. [Google Scholar] [CrossRef]
- Roy, R.G.; Mandal, P.K.; Maroon, J.C. Oxidative Stress Occurs Prior to Amyloid Aβ Plaque Formation and Tau Phosphorylation in Alzheimer’s Disease: Role of Glutathione and Metal Ions. ACS Chem. Neurosci. 2023, 14, 2944–2954. [Google Scholar] [CrossRef]
- Zamani, B.; Taghvaee, F.; Akbari, H.; Mohtashamian, A.; Sharifi, N. Effects of Selenium Supplementation on the Indices of Disease Activity, Inflammation and Oxidative Stress in Patients with Rheumatoid Arthritis: A Randomized Clinical Trial. Biol. Trace Elem. Res. 2024, 202, 1457–1467. [Google Scholar] [CrossRef]
- Abdelmawgood, I.A.; Mahana, N.A.; Badr, A.M.; Mohamed, A.S. Echinochrome Exhibits Anti-Asthmatic Activity through the Suppression of Airway Inflammation, Oxidative Stress, and Histopathological Alterations in Ovalbumin-Induced Asthma in BALB/c Mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 1803–1815. [Google Scholar] [CrossRef]
- Ke, Z.; Fan, C.; Li, J.; Wang, L.; Li, H.; Tian, W.; Yu, Q. Nobiletin Intake Attenuates Hepatic Lipid Profiling and Oxidative Stress in HFD-Induced Nonalcoholic-Fatty-Liver-Disease Mice. Molecules 2023, 28, 2570. [Google Scholar] [CrossRef]
- Kobi, J.B.B.S.; Matias, A.M.; Gasparini, P.V.F.; Torezani-Sales, S.; Madureira, A.R.; da Silva, D.S.; Correa, C.R.; Garcia, J.L.; Haese, D.; Nogueira, B.V.; et al. High-Fat, High-Sucrose, and Combined High-Fat/High-Sucrose Diets Effects in Oxidative Stress and Inflammation in Male Rats under Presence or Absence of Obesity. Physiol. Rep. 2023, 11, e15635. [Google Scholar] [CrossRef]
- Amiri, E.; Sheikholeslami-Vatani, D. The Role of Resistance Training and Creatine Supplementation on Oxidative Stress, Antioxidant Defense, Muscle Strength, and Quality of Life in Older Adults. Front. Public Health 2023, 11, 1062832. [Google Scholar] [CrossRef]
- Hajinejad, M.; Ebrahimzadeh, M.H.; Ebrahimzadeh-bideskan, A.; Rajabian, A.; Gorji, A.; Sahab Negah, S. Exosomes and Nano-SDF Scaffold as a Cell-Free-Based Treatment Strategy Improve Traumatic Brain Injury Mechanisms by Decreasing Oxidative Stress, Neuroinflammation, and Increasing Neurogenesis. Stem Cell Rev. Rep. 2023, 19, 1001–1018. [Google Scholar] [CrossRef]
- Cirillo, M.; Argento, F.R.; Attanasio, M.; Becatti, M.; Ladisa, I.; Fiorillo, C.; Coccia, M.E.; Fatini, C. Atherosclerosis and Endometriosis: The Role of Diet and Oxidative Stress in a Gender-Specific Disorder. Biomedicines 2023, 11, 450. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Sousa, J.; Pais, A.; Vitorino, C. Nanomedicine: Principles, Properties, and Regulatory Issues. Front. Chem. 2018, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Méndez, J.L.; López-Mena, E.R.; Sánchez-Arreola, E. Activities against Lung Cancer of Biosynthesized Silver Nanoparticles: A Review. Biomedicines 2023, 11, 389. [Google Scholar] [CrossRef] [PubMed]
- Rezić, I. Nanoparticles for Biomedical Application and Their Synthesis. Polymers 2022, 14, 4961. [Google Scholar] [CrossRef] [PubMed]
- Syed, S. Silver Recovery Aqueous Techniques from Diverse Sources: Hydrometallurgy in Recycling. Waste Manag. 2016, 50, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Tristán-López, J.-D.; Niño-Martínez, N.; Kolosovas-Machuca, E.-S.; Patiño-Marín, N.; De Alba-Montero, I.; Bach, H.; Martínez-Castañón, G.-A. Application of Silver Nanoparticles to Improve the Antibacterial Activity of Orthodontic Adhesives: An In Vitro Study. Int. J. Mol. Sci. 2023, 24, 1401. [Google Scholar] [CrossRef] [PubMed]
- Benyettou, F.; Rezgui, R.; Ravaux, F.; Jaber, T.; Blumer, K.; Jouiad, M.; Motte, L.; Olsen, J.-C.; Platas-Iglesias, C.; Magzoub, M.; et al. Synthesis of Silver Nanoparticles for the Dual Delivery of Doxorubicin and Alendronate to Cancer Cells. J. Mater. Chem. B 2015, 3, 7237–7245. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambaye, T.G. Synthesis Paradigm and Applications of Silver Nanoparticles (AgNPs), a Review. Sustain. Mater. Technol. 2017, 13, 18–23. [Google Scholar] [CrossRef]
- Habibullah, G.; Viktorova, J.; Ruml, T. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett. 2021, 16, 47. [Google Scholar] [CrossRef]
- Odongo, E.A.; Mutai, P.C.; Amugune, B.K.; Mungai, N.N.; Akinyi, M.O.; Kimondo, J. Evaluation of the Antibacterial Activity of Selected Kenyan Medicinal Plant Extract Combinations against Clinically Important Bacteria. BMC Complement. Med. Ther. 2023, 23, 100. [Google Scholar] [CrossRef]
- Mohlala, K.; Offor, U.; Monageng, E.; Takalani, N.B.; Opuwari, C.S. Overview of the Effects of Moringa Oleifera Leaf Extract on Oxidative Stress and Male Infertility: A Review. Appl. Sci. 2023, 13, 4387. [Google Scholar] [CrossRef]
- Nascimento, L.B.d.S.; Casanova, L.M.; Costa, S.S. Bioactive Compounds from Kalanchoe Genus Potentially Useful for the Development of New Drugs. Life 2023, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Aryan; Ruby; Mehata, M.S. Green Synthesis of Silver Nanoparticles Using Kalanchoe Pinnata Leaves (Life Plant) and Their Antibacterial and Photocatalytic Activities. Chem. Phys. Lett. 2021, 778, 138760. [Google Scholar] [CrossRef]
- Vergara-Castañeda, H.; Granados-Segura, L.O.; Luna-Bárcenas, G.; McClements, D.J.; Herrera-Hernández, M.G.; Arjona, N.; Hernández-Martínez, A.R.; Estevez, M.; Pool, H. Gold Nanoparticles Bioreduced by Natural Extracts of Arantho (Kalanchoe daigremontiana) for Biological Purposes: Physicochemical, Antioxidant and Antiproliferative Evaluations. Mater. Res. Express 2019, 6, 055010. [Google Scholar] [CrossRef]
- Bhatt, N.; Mehata, M.S. A Sustainable Approach to Develop Gold Nanoparticles with Kalanchoe Fedtschenkoi and Their Interaction with Protein and Dye: Sensing and Catalytic Probe. Plasmonics 2023, 18, 845–858. [Google Scholar] [CrossRef]
- Mejía-Méndez, J.L.; Bach, H.; Lorenzo-Leal, A.C.; Navarro-López, D.E.; López-Mena, E.R.; Hernández, L.R.; Sánchez-Arreola, E. Biological Activities and Chemical Profiles of Kalanchoe Fedtschenkoi Extracts. Plants 2023, 12, 1943. [Google Scholar] [CrossRef]
- Cruz Paredes, C.; Bolívar Balbás, P.; Gómez-Velasco, A.; Juárez, Z.N.; Sánchez Arreola, E.; Hernández, L.R.; Bach, H. Antimicrobial, Antiparasitic, Anti-Inflammatory, and Cytotoxic Activities of Lopezia Racemosa. Sci. World J. 2013, 2013, 237438. [Google Scholar] [CrossRef]
- Bazylyak, L.I.; Kytsya, A.R.; Lyutyy, P.Y.; Korets’ka, N.I.; Pilyuk, Y.V.; Kuntyi, O.I. Silver Nanoparticles Produced via a Green Synthesis Using the Rhamnolipid as a Reducing Agent and Stabilizer. Appl. Nanosci. 2023, 13, 5251–5263. [Google Scholar] [CrossRef]
- Ain, Q.U.; Alkadi, M.; Munir, J.; Qaid, S.M.H.; Ahmed, A.A.A. Green Synthesis of Silver Nano Particles Using Dracaena Trifasciata Plant Extract and Comparison of Fatty Acids and Amides Capping Agents. Phys. Scr. 2023, 98, 125969. [Google Scholar] [CrossRef]
- Pungle, R.; Nile, S.H.; Kharat, A.S. Green Synthesis and Characterization of Solanum xanthocarpum Capped Silver Nanoparticles and Its Antimicrobial Effect on Multidrug-Resistant Bacterial (MDR) Isolates. Chem. Biol. Drug Des. 2023, 101, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Dejen, K.D.; Kibret, D.Y.; Mengesha, T.H.; Bekele, E.T.; Tedla, A.; Bafa, T.A.; Derib, F.T. Green Synthesis and Characterisation of Silver Nanoparticles from Leaf and Bark Extract of Croton Macrostachyus for Antibacterial Activity. Mater. Technol. 2023, 38, 2164647. [Google Scholar] [CrossRef]
- Morales, G.; Campillo, G.; Vélez, E.; Urquijo, J.; Hincapié, C.; Osorio, J. Kalanchoe Daigremontiana Leaf Extract: A Green Stabilizing Agent in Synthesis of Silver Nanoparticles. J. Phys. Conf. Ser. 2019, 1247, 012019. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnology 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Clayton, K.N.; Salameh, J.W.; Wereley, S.T.; Kinzer-Ursem, T.L. Physical Characterization of Nanoparticle Size and Surface Modification Using Particle Scattering Diffusometry. Biomicrofluidics 2016, 10, 054107. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.U.; Wu, Y.; Tran, H.D.N.; Vazquez-Prada, K.; Liu, Y.; Adelnia, H.; Kurniawan, N.D.; Anjum, M.N.; Moonshi, S.S.; Ta, H.T. Silver/Iron Oxide Nano-Popcorns for Imaging and Therapy. ACS Appl. Nano Mater. 2021, 4, 10136–10147. [Google Scholar] [CrossRef]
- Molina, G.A.; Esparza, R.; López-Miranda, J.L.; Hernández-Martínez, A.R.; España-Sánchez, B.L.; Elizalde-Peña, E.A.; Estevez, M. Green Synthesis of Ag Nanoflowers Using Kalanchoe Daigremontiana Extract for Enhanced Photocatalytic and Antibacterial Activities. Colloids Surf. B Biointerfaces 2019, 180, 141–149. [Google Scholar] [CrossRef]
- Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review. Crit. Rev. Anal. Chem. 2018, 48, 503–516. [Google Scholar] [CrossRef]
- Saeb, A.T.M.; Alshammari, A.S.; Al-Brahim, H.; Al-Rubeaan, K.A. Production of Silver Nanoparticles with Strong and Stable Antimicrobial Activity against Highly Pathogenic and Multidrug Resistant Bacteria. Sci. World J. 2014, 2014, 704708. [Google Scholar] [CrossRef] [PubMed]
- Fadlelmoula, A.; Pinho, D.; Carvalho, V.H.; Catarino, S.O.; Minas, G. Fourier Transform Infrared (FTIR) Spectroscopy to Analyse Human Blood over the Last 20 Years: A Review towards Lab-on-a-Chip Devices. Micromachines 2022, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Barar, J. Bioimpacts of Nanoparticle Size: Why It Matters? Bioimpacts 2015, 5, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Chapter 3—Lipid-Based Nanoparticles for Drug Delivery Systems. In Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–76. ISBN 978-0-12-814031-4. [Google Scholar]
- Al-Zahrani, S.A.; Bhat, R.S.; Al-Onazi, M.A.; Alwhibi, M.S.; Soliman, D.A.; Aljebrin, N.A.; Al-Suhaibani, L.S.; Daihan, S.A. Anticancer Potential of Biogenic Silver Nanoparticles Using the Stem Extract of Commiphora Gileadensis against Human Colon Cancer Cells. Green Process. Synth. 2022, 11, 435–444. [Google Scholar] [CrossRef]
- Gopikrishnan, M.; Haryini, S.; Doss C, G.P. Emerging Strategies and Therapeutic Innovations for Combating Drug Resistance in Staphylococcus Aureus Strains: A Comprehensive Review. J. Basic Microbiol. 2024, 64, 2300579. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, J.; Wei, J.; Jiang, L.; Jiang, L.; Sun, Y.; Zeng, Z.; Wang, Z. Phage-Inspired Strategies to Combat Antibacterial Resistance. Crit. Rev. Microbiol. 2024, 50, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Abu-Sini, M.K.; Maharmah, R.A.; Abulebdah, D.H.; Al-Sabi, M.N.S. Isolation and Identification of Coliform Bacteria and Multidrug-Resistant Escherichia Coli from Water Intended for Drug Compounding in Community Pharmacies in Jordan. Healthcare 2023, 11, 299. [Google Scholar] [CrossRef] [PubMed]
- García, V.; Lestón, L.; Parga, A.; García-Meniño, I.; Fernández, J.; Otero, A.; Olsen, J.E.; Herrero-Fresno, A.; Mora, A. Genomics, Biofilm Formation and Infection of Bladder Epithelial Cells in Potentially Uropathogenic Escherichia coli (UPEC) from Animal Sources and Human Urinary Tract Infections (UTIs) Further Support Food-Borne Transmission. One Health 2023, 16, 100558. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Aziz, M.; Park, D.E.; Wu, Z.; Stegger, M.; Li, M.; Wang, Y.; Schmidlin, K.; Johnson, T.J.; Koch, B.J.; et al. Using Source-Associated Mobile Genetic Elements to Identify Zoonotic Extraintestinal E. coli Infections. One Health 2023, 16, 100518. [Google Scholar] [CrossRef]
- Wood, S.J.; Kuzel, T.M.; Shafikhani, S.H. Pseudomonas Aeruginosa: Infections, Animal Modeling, and Therapeutics. Cells 2023, 12, 199. [Google Scholar] [CrossRef]
- Horikian, A.; Jeanvoine, A.; Amarache, A.; Tourtet, M.; Ory, J.; Boulestreau, H.; Van der Mee Marquet, N.; Lemaitre, N.; Eveillard, M.; Lepelletier, D.; et al. High-Risk Clones of Pseudomonas Aeruginosa Contaminate the Drinking Water Networks of French Cities. NPJ Clean Water 2024, 7, 35. [Google Scholar] [CrossRef]
- Bastien, S.; Meyers, S.; Salgado-Pabón, W.; Giulieri, S.G.; Rasigade, J.-P.; Liesenborghs, L.; Kinney, K.J.; Couzon, F.; Martins-Simoes, P.; Moing, V.L.; et al. All Staphylococcus aureus Bacteraemia-Inducing Strains Can Cause Infective Endocarditis: Results of GWAS and Experimental Animal Studies. J. Infect. 2023, 86, 123–133. [Google Scholar] [CrossRef]
- Vittorakis, E.; Vică, M.L.; Zervaki, C.O.; Vittorakis, E.; Maraki, S.; Mavromanolaki, V.E.; Schürger, M.E.; Neculicioiu, V.S.; Papadomanolaki, E.; Sinanis, T.; et al. Examining the Prevalence and Antibiotic Susceptibility of S. Aureus Strains in Hospitals: An Analysis of the Pvl Gene and Its Co-Occurrence with Other Virulence Factors. Microorganisms 2023, 11, 841. [Google Scholar] [CrossRef] [PubMed]
- Sadat, A.; Farag, A.M.M.; Elhanafi, D.; Awad, A.; Elmahallawy, E.K.; Alsowayeh, N.; El-khadragy, M.F.; Elshopakey, G.E. Immunological and Oxidative Biomarkers in Bovine Serum from Healthy, Clinical, and Sub-Clinical Mastitis Caused by Escherichia coli and Staphylococcus aureus Infection. Animals 2023, 13, 892. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra Maillard, A.P.V.; Bordón, A.; Cutro, A.C.; Dalmasso, P.R.; Hollmann, A. Green One-Step Synthesis of Silver Nanoparticles Obtained from Schinus Areira Leaf Extract: Characterization and Antibacterial Mechanism Analysis. Appl. Biochem. Biotechnol. 2024, 196, 1104–1121. [Google Scholar] [CrossRef]
- Slade-Vitković, M.; Batarilo, I.; Bielen, L.; Maravić-Vlahoviček, G.; Bedenić, B. In Vitro Antibiofilm Activity of Fosfomycin Alone and in Combination with Other Antibiotics against Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas Aeruginosa. Pharmaceuticals 2024, 17, 769. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhao, F.; Lin, J.; Li, P.; Yu, Y. Antibiotic Susceptibility Patterns and Trends of the Gram-Negative Bacteria Isolated from the Patients in the Emergency Departments in China: Results of SMART 2016–2019. BMC Infect. Dis. 2024, 24, 501. [Google Scholar] [CrossRef]
- Pardo, L.; Mota, M.I.; Parnizari, A.; Varela, A.; Algorta, G.; Varela, G. Detection of Vancomycin Resistance among Methicillin-Resistant Staphylococcus aureus Strains Recovered from Children with Invasive Diseases in a Reference Pediatric Hospital. Antibiotics 2024, 13, 298. [Google Scholar] [CrossRef]
- Khakbiz, M.; Shakibania, S.; Ghazanfari, L.; Zhao, S.; Tavakoli, M.; Chen, Z. Engineered Nanoflowers, Nanotrees, Nanostars, Nanodendrites, and Nanoleaves for Biomedical Applications. Nanotechnol. Rev. 2023, 12, 20220523. [Google Scholar] [CrossRef]
- Jeevanantham, V.; Tamilselvi, D.; Rathidevi, K.; Bavaji, S.R. Greener Microwave Synthesized Se Nanospheres for Antioxidant, Cell Viability, and Antibacterial Effect. J. Mater. Res. 2023, 38, 1909–1918. [Google Scholar] [CrossRef]
- Khojasteh-Taheri, R.; Ghasemi, A.; Meshkat, Z.; Sabouri, Z.; Mohtashami, M.; Darroudi, M. Green Synthesis of Silver Nanoparticles Using Salvadora Persica and Caccinia Macranthera Extracts: Cytotoxicity Analysis and Antimicrobial Activity Against Antibiotic-Resistant Bacteria. Appl. Biochem. Biotechnol. 2023, 195, 5120–5135. [Google Scholar] [CrossRef] [PubMed]
- Menichetti, A.; Mavridi-Printezi, A.; Mordini, D.; Montalti, M. Effect of Size, Shape and Surface Functionalization on the Antibacterial Activity of Silver Nanoparticles. J. Funct. Biomater. 2023, 14, 244. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, R.; Nurkolis, F.; Taslim, N.A.; Subali, D.; Surya, R.; Gunawan, W.B.; Alisaputra, D.; Mayulu, N.; Salindeho, N.; Kim, B. Carotenoids Composition of Green Algae Caulerpa Racemosa and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties. Molecules 2023, 28, 3267. [Google Scholar] [CrossRef] [PubMed]
- Himel, M.A.R.; Ahmed, T.; Hossain, M.A.; Moazzem, M.S. Response Surface Optimization to Extract Antioxidants from Freeze-Dried Seeds and Peel of Pomegranate (Punica granatum L.). Biomass Conv. Bioref. 2024, 14, 9707–9722. [Google Scholar] [CrossRef]
- Geng, M.; Feng, X.; Wu, X.; Tan, X.; Liu, Z.; Li, L.; Huang, Y.; Teng, F.; Li, Y. Encapsulating Vitamins C and E Using Food-Grade Soy Protein Isolate and Pectin Particles as Carrier: Insights on the Vitamin Additive Antioxidant Effects. Food Chem. 2023, 418, 135955. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, S.C.; Moldão-Martins, M.; Alves, V.D. Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules 2019, 24, 4132. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Subban, M.; Chinnasamy, R.; Chinnaperumal, K.; Nakouti, I.; El-Sheikh, M.A.; Shaik, J.P. Green Synthesized Silver Nanoparticles Using Andrographis macrobotrys Nees Leaf Extract and Its Potential to Antibacterial, Antioxidant, Anti-Inflammatory and Lung Cancer Cells Cytotoxicity Effects. Inorg. Chem. Commun. 2023, 153, 110787. [Google Scholar] [CrossRef]
- Moosavy, M.-H.; de la Guardia, M.; Mokhtarzadeh, A.; Khatibi, S.A.; Hosseinzadeh, N.; Hajipour, N. Green Synthesis, Characterization, and Biological Evaluation of Gold and Silver Nanoparticles Using Mentha spicata Essential Oil. Sci. Rep. 2023, 13, 7230. [Google Scholar] [CrossRef]
- Tavan, M.; Hanachi, P.; Mirjalili, M.H.; Dashtbani-Roozbehani, A. Comparative Assessment of the Biological Activity of the Green Synthesized Silver Nanoparticles and Aqueous Leaf Extract of Perilla frutescens (L.). Sci. Rep. 2023, 13, 6391. [Google Scholar] [CrossRef]
- Viswanathan, S.; Palaniyandi, T.; Shanmugam, R.; Karunakaran, S.; Pandi, M.; Wahab, M.R.A.; Baskar, G.; Rajendran, B.K.; Sivaji, A.; Moovendhan, M. Synthesis, Characterization, Cytotoxicity, and Antimicrobial Studies of Green Synthesized Silver Nanoparticles Using Red Seaweed Champia Parvula. Biomass Conv. Bioref. 2024, 14, 7387–7400. [Google Scholar] [CrossRef]
- Suresh, P.; Doss, A.; Praveen Pole, R.P.; Devika, M. Green Synthesis, Characterization and Antioxidant Activity of Bimetallic (Ag-ZnO) Nanoparticles Using Capparis Zeylanica Leaf Extract. Biomass Convers. Biorefinery 2023, 1–9. [Google Scholar] [CrossRef]
- Abdulazeem, L.; Alasmari, A.F.; Alharbi, M.; Alshammari, A.; Muhseen, Z.T. Utilization of Aqueous Broccoli Florets Extract for Green Synthesis and Characterization of Silver Nanoparticles, with Potential Biological Applications. Heliyon 2023, 9, e19723. [Google Scholar] [CrossRef] [PubMed]
- Rezagholizade-shirvan, A.; Masrournia, M.; Fathi Najafi, M.; Behmadi, H. Synthesis and Characterization of Nanoparticles Based on Chitosan-Biopolymers Systems as Nanocarrier Agents for Curcumin: Study on Pharmaceutical and Environmental Applications. Polym. Bull. 2023, 80, 1495–1517. [Google Scholar] [CrossRef]
- Khan, M.; Sohail; Raja, N.I.; Asad, M.J.; Mashwani, Z.-R. Antioxidant and Hypoglycemic Potential of Phytogenic Cerium Oxide Nanoparticles. Sci. Rep. 2023, 13, 4514. [Google Scholar] [CrossRef]
- Sivasankarapillai, V.S.; Krishnamoorthy, N.; Eldesoky, G.E.; Wabaidur, S.M.; Islam, M.A.; Dhanusuraman, R.; Ponnusamy, V.K. One-Pot Green Synthesis of ZnO Nanoparticles Using Scoparia Dulcis Plant Extract for Antimicrobial and Antioxidant Activities. Appl. Nanosci. 2023, 13, 6093–6103. [Google Scholar] [CrossRef]
Sample | E. coli | P. aeruginosa | S. aureus |
---|---|---|---|
Kf1 | 1149.26 | 438.41 | 365.48 |
Kf2 | 2297.70 | 425.36 | 395.24 |
Kf3 | 1454.30 | 254.27 | 1055.16 |
Kf1-AgNPs | 1022.63 | 2282.87 | 298.16 |
Kf2-AgNPs | 844.26 | 2579.91 | 421.77 |
Kf3-AgNPs | 1219.09 | 366.21 | 352.92 |
Sample | DPPH Assay | H2O2 Assay |
---|---|---|
Kf1 | 164.54 | 197.52 |
Kf2 | 153.64 | 1.02 |
Kf3 | 1.92 | 3.54 |
Kf1-AgNPs | 57.02 | 3.15 |
Kf2-AgNPs | 119.38 | 2.80 |
Kf3-AgNPs | 2.09 | 3.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mejía-Méndez, J.L.; Sánchez-Ante, G.; Cerro-López, M.; Minutti-Calva, Y.; Navarro-López, D.E.; Lozada-Ramírez, J.D.; Bach, H.; López-Mena, E.R.; Sánchez-Arreola, E. Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe fedtschenkoi: Characterization and Bioactivities. Biomolecules 2024, 14, 782. https://doi.org/10.3390/biom14070782
Mejía-Méndez JL, Sánchez-Ante G, Cerro-López M, Minutti-Calva Y, Navarro-López DE, Lozada-Ramírez JD, Bach H, López-Mena ER, Sánchez-Arreola E. Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe fedtschenkoi: Characterization and Bioactivities. Biomolecules. 2024; 14(7):782. https://doi.org/10.3390/biom14070782
Chicago/Turabian StyleMejía-Méndez, Jorge L., Gildardo Sánchez-Ante, Mónica Cerro-López, Yulianna Minutti-Calva, Diego E. Navarro-López, J. Daniel Lozada-Ramírez, Horacio Bach, Edgar R. López-Mena, and Eugenio Sánchez-Arreola. 2024. "Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe fedtschenkoi: Characterization and Bioactivities" Biomolecules 14, no. 7: 782. https://doi.org/10.3390/biom14070782
APA StyleMejía-Méndez, J. L., Sánchez-Ante, G., Cerro-López, M., Minutti-Calva, Y., Navarro-López, D. E., Lozada-Ramírez, J. D., Bach, H., López-Mena, E. R., & Sánchez-Arreola, E. (2024). Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe fedtschenkoi: Characterization and Bioactivities. Biomolecules, 14(7), 782. https://doi.org/10.3390/biom14070782