West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex
Abstract
:1. Introduction
2. Materials and Methods
2.1. Viruses and Infection Procedures
2.2. Animals
2.3. Viral Burden Measurements
2.4. Leukocyte Isolation and Flow Cytometry
2.5. Flow Cytometry Antibodies and Tetramers
2.6. RNA Isolation and qRT-PCR
2.7. RNA Sequencing
2.8. Multiplexed Error-Robust In Situ Hybridization (MERFISH): Sample Preparation and Imaging
2.9. MERFISH: Post-Imaging Data Processing and Analysis
2.10. Gene Module Score Calculation
2.11. Generation of Lgals3bp−/− C57BL6/J Mice
2.12. Lgals3bp−/− Mouse Genotyping
2.13. Statistical Analysis
3. Results
3.1. Microglia Activated by WNV Share Transcriptional Signatures with Aged/Senescent Microglia
3.2. Spatial Imaging Reveals Infection and Aging-Dependent Transcriptomic Changes in Mouse Brain
3.3. Lgals3bp mRNA Is Broadly Expressed in the CNS by Microglia, Astrocytes, Neurons and, Most Prominently, by Ependymal Cells and the Choroid Plexus
3.4. WNV Infection of Lgals3bp−/− C57BL6/J Mice Exhibits Increased Severity of Infection without Differences in Virologic Control or Survival
3.5. Lgals3bp−/− C57BL6/J Mice Exhibit More Microglia and CD4+ T Cells during WNV Infection
4. Discussion
5. Limitations of the Study
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Li, Y.; Jin, Y.; Zhang, Y.; Wu, J.; Xu, Z.; Huang, Y.; Cai, L.; Gao, S.; Liu, T.; et al. Transcriptional and Epigenetic Decoding of the Microglial Aging Process. Nat. Aging 2023, 3, 1288–1311. [Google Scholar] [CrossRef] [PubMed]
- Milora, K.A.; Rall, G.F. Interferon Control of Neurotropic Viral Infections. Trends Immunol. 2019, 40, 842–856. [Google Scholar] [CrossRef] [PubMed]
- McNab, F.; Mayer-Barber, K.; Sher, A.; Wack, A.; O’Garra, A. Type I Interferons in Infectious Disease. Nat. Rev. Immunol. 2015, 15, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Sorgeloos, F.; Kreit, M.; Hermant, P.; Lardinois, C.; Michiels, T. Antiviral Type I and Type III Interferon Responses in the Central Nervous System. Viruses 2013, 5, 834–857. [Google Scholar] [CrossRef] [PubMed]
- Blackhurst, B.M.; Funk, K.E. Viral Pathogens Increase Risk of Neurodegenerative Disease. Nat. Rev. Neurol. 2023, 19, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Wongchitrat, P.; Chanmee, T.; Govitrapong, P. Molecular Mechanisms Associated with Neurodegeneration of Neurotropic Viral Infection. Mol. Neurobiol. 2024, 61, 2881–2903. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Becher, P.; Bukh, J.; Gould, E.A.; Meyers, G.; Monath, T.; Muerhoff, S.; Pletnev, A.; Rico-Hesse, R.; Smith, D.B.; et al. ICTV Virus Taxonomy Profile: Flaviviridae. J. Gen. Virol. 2017, 98, 2–3. [Google Scholar] [CrossRef] [PubMed]
- Hart, J.; Tillman, G.; Kraut, M.A.; Chiang, H.-S.; Strain, J.F.; Li, Y.; Agrawal, A.G.; Jester, P.; Gnann, J.W.; Whitley, R.J.; et al. West Nile Virus Neuroinvasive Disease: Neurological Manifestations and Prospective Longitudinal Outcomes. BMC Infect. Dis. 2014, 14, 248. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Sander, B.; Nelder, M.P. Long-Term Sequelae of West Nile Virus-Related Illness: A Systematic Review. Lancet Infect. Dis. 2015, 15, 951–959. [Google Scholar] [CrossRef]
- Szretter, K.J.; Daniels, B.P.; Cho, H.; Gainey, M.D.; Yokoyama, W.M.; Gale, M., Jr.; Virgin, H.W.; Klein, R.S.; Sen, G.C.; Diamond, M.S. 2′-O Methylation of the Viral mRNA Cap by West Nile Virus Evades Ifit1-Dependent and -Independent Mechanisms of Host Restriction In Vivo. PLOS Pathog. 2012, 8, e1002698. [Google Scholar] [CrossRef]
- Vasek, M.J.; Garber, C.; Dorsey, D.; Durrant, D.M.; Bollman, B.; Soung, A.; Yu, J.; Perez-Torres, C.; Frouin, A.; Wilton, D.K.; et al. A Complement–Microglial Axis Drives Synapse Loss during Virus-Induced Memory Impairment. Nature 2016, 534, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Rosen, S.F.; Soung, A.L.; Yang, W.; Ai, S.; Kanmogne, M.; Davé, V.A.; Artyomov, M.; Magee, J.A.; Klein, R.S. Single-Cell RNA Transcriptome Analysis of CNS Immune Cells Reveals CXCL16/CXCR6 as Maintenance Factors for Tissue-Resident T Cells That Drive Synapse Elimination. Genome Med. 2022, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Garber, C.; Soung, A.; Vollmer, L.L.; Kanmogne, M.; Last, A.; Brown, J.; Klein, R.S. T Cells Promote Microglia-Mediated Synaptic Elimination and Cognitive Dysfunction during Recovery from Neuropathogenic Flaviviruses. Nat. Neurosci. 2019, 22, 1276–1288. [Google Scholar] [CrossRef] [PubMed]
- Capone, E.; Iacobelli, S.; Sala, G. Role of Galectin 3 Binding Protein in Cancer Progression: A Potential Novel Therapeutic Target. J. Transl. Med. 2021, 19, 405. [Google Scholar] [CrossRef] [PubMed]
- Dufrusine, B.; Capone, E.; Ponziani, S.; Lattanzio, R.; Lanuti, P.; Giansanti, F.; De Laurenzi, V.; Iacobelli, S.; Ippoliti, R.; Mangiola, A.; et al. Extracellular LGALS3BP: A Potential Disease Marker and Actionable Target for Antibody–Drug Conjugate Therapy in Glioblastoma. Mol. Oncol. 2023, 17, 1460–1473. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Xia, Z.; Deng, F.; Liu, L.; Wang, Q.; Yu, Y.; Wang, F.; Zhu, C.; Liu, W.; Cheng, Z.; et al. Inducible LGALS3BP/90K Activates Antiviral Innate Immune Responses by Targeting TRAF6 and TRAF3 Complex. PLoS Pathog. 2019, 15, e1008002. [Google Scholar] [CrossRef] [PubMed]
- Grassadonia, A.; Graziano, V.; Pagotto, S.; Veronese, A.; Giuliani, C.; Marchisio, M.; Lanuti, P.; De Tursi, M.; D’Egidio, M.; Di Marino, P.; et al. Tgf-Β1 Transcriptionally Promotes 90K Expression: Possible Implications for Cancer Progression. Cell Death Discov. 2021, 7, 86. [Google Scholar] [CrossRef]
- Costa, J.; Pronto-Laborinho, A.; Pinto, S.; Gromicho, M.; Bonucci, S.; Tranfield, E.; Correia, C.; Alexandre, B.M.; de Carvalho, M. Investigating LGALS3BP/90 K Glycoprotein in the Cerebrospinal Fluid of Patients with Neurological Diseases. Sci. Rep. 2020, 10, 5649. [Google Scholar] [CrossRef] [PubMed]
- Kyrousi, C.; O’Neill, A.C.; Brazovskaja, A.; He, Z.; Kielkowski, P.; Coquand, L.; Di Giaimo, R.; D’ Andrea, P.; Belka, A.; Forero Echeverry, A.; et al. Extracellular LGALS3BP Regulates Neural Progenitor Position and Relates to Human Cortical Complexity. Nat. Commun. 2021, 12, 6298. [Google Scholar] [CrossRef]
- Shi, P.-Y.; Tilgner, M.; Lo, M.K.; Kent, K.A.; Bernard, K.A. Infectious cDNA Clone of the Epidemic West Nile Virus from New York City. J. Virol. 2002, 76, 5847–5856. [Google Scholar] [CrossRef]
- Zhou, Y.; Ray, D.; Zhao, Y.; Dong, H.; Ren, S.; Li, Z.; Guo, Y.; Bernard, K.A.; Shi, P.-Y.; Li, H. Structure and Function of Flavivirus NS5 Methyltransferase. J. Virol. 2007, 81, 3891–3903. [Google Scholar] [CrossRef] [PubMed]
- Brien, J.D.; Lazear, H.M.; Diamond, M.S. Propagation, Quantification, Detection, and Storage of West Nile Virus. Curr. Protoc. Microbiol. 2013, 31, 15D.3.1–15D.3.18. [Google Scholar] [CrossRef] [PubMed]
- Funk, K.E.; Arutyunov, A.D.; Desai, P.; White, J.P.; Soung, A.L.; Rosen, S.F.; Diamond, M.S.; Klein, R.S. Decreased Antiviral Immune Response within the Central Nervous System of Aged Mice Is Associated with Increased Lethality of West Nile Virus Encephalitis. Aging Cell 2021, 20, e13412. [Google Scholar] [CrossRef] [PubMed]
- Sentmanat, M.F.; White, J.M.; Kouranova, E.; Cui, X. Highly Reliable Creation of Floxed Alleles by Electroporating Single-Cell Embryos. BMC Biol. 2022, 20, 31. [Google Scholar] [CrossRef] [PubMed]
- Pease, S.; Saunders, T.L. (Eds.) Advanced Protocols for Animal Transgenesis: An ISTT Manual; Springer Protocols Handbooks; Springer: Berlin/Heidelberg, Germany, 2011; ISBN 978-3-642-20791-4. [Google Scholar]
- Manipulating the Mouse Embryo: A Laboratory Manual—NLM Catalog—NCBI. Available online: https://www.ncbi.nlm.nih.gov/nlmcatalog/101622901 (accessed on 22 May 2024).
- Garber, C.; Vasek, M.J.; Vollmer, L.L.; Sun, T.; Jiang, X.; Klein, R.S. Astrocytes Decrease Adult Neurogenesis during Virus-Induced Memory Dysfunction via Interleukin-1. Nat. Immunol. 2018, 19, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Keane, L.; Antignano, I.; Riechers, S.-P.; Zollinger, R.; Dumas, A.A.; Offermann, N.; Bernis, M.E.; Russ, J.; Graelmann, F.; McCormick, P.N.; et al. mTOR-Dependent Translation Amplifies Microglia Priming in Aging Mice. J. Clin. Investig. 2021, 131, 132727. [Google Scholar] [CrossRef] [PubMed]
- Arutyunov, A.; Klein, R.S. Microglia at the Scene of the Crime: What Their Transcriptomics Reveal about Brain Health. Curr. Opin. Neurol. 2023, 36, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Gómez Morillas, A.; Besson, V.C.; Lerouet, D. Microglia and Neuroinflammation: What Place for P2RY12? Int. J. Mol. Sci. 2021, 22, 1636. [Google Scholar] [CrossRef]
- Saul, D.; Kosinsky, R.L.; Atkinson, E.J.; Doolittle, M.L.; Zhang, X.; LeBrasseur, N.K.; Pignolo, R.J.; Robbins, P.D.; Niedernhofer, L.J.; Ikeno, Y.; et al. A New Gene Set Identifies Senescent Cells and Predicts Senescence-Associated Pathways across Tissues. Nat. Commun. 2022, 13, 4827. [Google Scholar] [CrossRef]
- Antignano, I.; Liu, Y.; Offermann, N.; Capasso, M. Aging Microglia. Cell Mol. Life Sci. 2023, 80, 126. [Google Scholar] [CrossRef]
- Sams, E.C. Oligodendrocytes in the Aging Brain. Neuronal Signal. 2021, 5, NS20210008. [Google Scholar] [CrossRef]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A New Immune–Metabolic Viewpoint for Age-Related Diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Breen, E.C.; Sehl, M.E.; Shih, R.; Langfelder, P.; Wang, R.; Horvath, S.; Bream, J.H.; Duggal, P.; Martinson, J.; Wolinsky, S.M.; et al. Accelerated Aging with HIV Occurs at the Time of Initial HIV Infection. iScience 2022, 25, 104488. [Google Scholar] [CrossRef] [PubMed]
- Durso, D.F.; Silveira-Nunes, G.; Coelho, M.M.; Camatta, G.C.; Ventura, L.H.; Nascimento, L.S.; Caixeta, F.; Cunha, E.H.M.; Castelo-Branco, A.; Fonseca, D.M.; et al. Living in Endemic Area for Infectious Diseases Accelerates Epigenetic Age. Mech. Ageing Dev. 2022, 207, 111713. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Li, W.; Wang, T.; Ran, D.; Davalos, V.; Planas-Serra, L.; Pujol, A.; Esteller, M.; Wang, X.; Yu, H. Accelerated Biological Aging in COVID-19 Patients. Nat. Commun. 2022, 13, 2135. [Google Scholar] [CrossRef] [PubMed]
- Jarrard, L.E. On the Role of the Hippocampus in Learning and Memory in the Rat. Behav. Neural Biol. 1993, 60, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.-J.; Kwon, M.-S. Aged Microglia in Neurodegenerative Diseases: Microglia Lifespan and Culture Methods. Front. Aging Neurosci. 2022, 13, 766267. [Google Scholar] [CrossRef] [PubMed]
- Malvaso, A.; Gatti, A.; Negro, G.; Calatozzolo, C.; Medici, V.; Poloni, T.E. Microglial Senescence and Activation in Healthy Aging and Alzheimer’s Disease: Systematic Review and Neuropathological Scoring. Cells 2023, 12, 2824. [Google Scholar] [CrossRef] [PubMed]
- Soung, A.L.; Davé, V.A.; Garber, C.; Tycksen, E.D.; Vollmer, L.L.; Klein, R.S. IL-1 Reprogramming of Adult Neural Stem Cells Limits Neurocognitive Recovery after Viral Encephalitis by Maintaining a Proinflammatory State. Brain Behav. Immun. 2022, 99, 383–396. [Google Scholar] [CrossRef]
- Allen, W.E.; Blosser, T.R.; Sullivan, Z.A.; Dulac, C.; Zhuang, X. Molecular and Spatial Signatures of Mouse Brain Aging at Single-Cell Resolution. Cell 2023, 186, 194–208.e18. [Google Scholar] [CrossRef]
- Hong, C.-S.; Park, M.-R.; Sun, E.-G.; Choi, W.; Hwang, J.-E.; Bae, W.-K.; Rhee, J.H.; Cho, S.-H.; Chung, I.-J. Gal-3BP Negatively Regulates NF-κB Signaling by Inhibiting the Activation of TAK1. Front. Immunol. 2019, 10, 1760. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-H.; Shim, H.-J.; Park, M.-R.; Choi, J.-N.; Akanda, M.R.; Hwang, J.-E.; Bae, W.-K.; Lee, K.-H.; Sun, E.-G.; Chung, I.-J. Lgals3bp Suppresses Colon Inflammation and Tumorigenesis through the Downregulation of TAK1-NF-κB Signaling. Cell Death Discov. 2021, 7, 65. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Fan, Y.; Zhou, K.; Blomgren, K.; Harris, R.A. Uncovering Sex Differences of Rodent Microglia. J. Neuroinflamm. 2021, 18, 74. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.A. Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Front. Aging Neurosci. 2022, 14, 868448. [Google Scholar] [CrossRef] [PubMed]
Gene | Fold Change (Old/Young) [28] | p Value [28] | Fold Change (WNV/Mock) [12] | p Value [12] |
---|---|---|---|---|
Apoe | 3.56 | 5.8 × 10−18 | 4.46 | 2.93 × 10−38 |
H2-D1 | 3.29 | 1.8 × 10−20 | 8.29 | 1.46 × 10−170 |
Fth1 | 2.74 | 3.0 × 10−18 | 1.41 | 8.71 × 10−11 |
Lgals3bp | 2.24 | 5.7 × 10−23 | 5.65 | 2.20 × 10−121 |
H2-Q6 | 2.23 | 1.1 × 10−10 | 2.29 | 0.00 |
Oasl2 | 1.89 | 1.9 × 10−5 | 15.52 | 1.08 × 10−85 |
Ifi204 | 1.79 | 1.0 × 10−4 | 12.84 | 4.66 × 10−76 |
Fcgr4 | 1.75 | 2.6 × 10−4 | 7.22 | 7.98 × 10−53 |
C1qa | 1.75 | 4.5 × 10−6 | −1.27 | 1.73 × 10−46 |
Ifitm3 | 1.72 | 4.0 × 10−13 | 10.02 | 8.85 × 10−232 |
ltm2b | 1.63 | 6.4 × 10−5 | −1.06 | 0.01 |
Ftl1 | 1.51 | 0.022 | 1.28 | 0.759 |
Tyrobp | 1.50 | 0.002 | −1.40 | 3.63 × 10−44 |
Ctsb | 1.47 | 1.8 × 10−4 | 1.15 | 1.27 × 10−9 |
Rps29 | 1.39 | 0.212 | 1.68 | 1.92 × 10−17 |
C1qb | 1.37 | 0.026 | 1.01 | 0.327 |
Fau | 1.36 | 0.213 | 2.30 | 4.64 × 10−48 |
Fcer1g | 1.35 | 0.010 | −1.14 | 1.36 × 10−37 |
H2-Ab1 | 1.34 | 0.002 | 9.06 | 2.17 × 10−166 |
Ctss | 1.32 | 0.002 | 1.23 | 2.40 × 10−8 |
Ly6e | 1.26 | 0.005 | 1.97 | 3.54 × 10−24 |
H2-Eb1 | 1.25 | 0.014 | 7.52 | 3.96 × 10−176 |
H2-Aa | 1.15 | 0.326 | 8.92 | 5.82 × 10−180 |
CD74 | 1.14 | 0.404 | 11.45 | 3.51 × 10−213 |
Cxcl9 | 1.12 | 0.722 | 261.85 | 2.15 × 10−27 |
Psap | 0.93 | 0.846 | −1.03 | 6.49 × 10−23 |
Selplg | 1.11 | 0.652 | −2.50 | 2.40 × 10−25 |
Fscn1 | 1.04 | 0.917 | -5.40 | 8.67 × 10−207 |
Hexb | 1.00 | 0.986 | −2.41 | 3.23 × 10−606 |
Cst3 | 0.99 | 0.964 | −3.03 | 1.52 × 10−127 |
Hpgd | 0.88 | 0.326 | −2.57 | 1.65 × 10−80 |
Pmp22 | 0.86 | 0.149 | −5.41 | 2.97 × 10−166 |
Selenop | 0.85 | 0.242 | −2.60 | 5.19 × 10−87 |
Csf1r | 0.84 | 0.241 | −2.58 | 5.73 × 10−88 |
Sparc | 0.82 | 0.237 | −2.96 | 5.21 × 10−11 |
Rnase4 | 0.80 | 0.007 | −2.78 | 2.80 × 10−85 |
Golm1 | 0.74 | 0.091 | −3.32 | 1.35 × 10−98 |
Siglech | 0.73 | 0.002 | −2.85 | 3.28 × 10−112 |
Cx3cr1 | 0.73 | 0.157 | −3.07 | 3.42 × 10−99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arutyunov, A.; Durán-Laforet, V.; Ai, S.; Ferrari, L.; Murphy, R.; Schafer, D.P.; Klein, R.S. West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules 2024, 14, 808. https://doi.org/10.3390/biom14070808
Arutyunov A, Durán-Laforet V, Ai S, Ferrari L, Murphy R, Schafer DP, Klein RS. West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules. 2024; 14(7):808. https://doi.org/10.3390/biom14070808
Chicago/Turabian StyleArutyunov, Artem, Violeta Durán-Laforet, Shenjian Ai, Loris Ferrari, Robert Murphy, Dorothy P. Schafer, and Robyn S. Klein. 2024. "West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex" Biomolecules 14, no. 7: 808. https://doi.org/10.3390/biom14070808
APA StyleArutyunov, A., Durán-Laforet, V., Ai, S., Ferrari, L., Murphy, R., Schafer, D. P., & Klein, R. S. (2024). West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules, 14(7), 808. https://doi.org/10.3390/biom14070808