Zinc Protects against Swine Barn Dust-Induced Cilia Slowing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Organic Dust Extract (ODE) Preparation
2.3. In Vivo Mouse Intranasal Inoculation and Infection
2.4. Determination of Colony-Forming Units (CFUs)
2.5. Live Animal MicroCT
2.6. Measurement of Tissue Zinc Content
2.7. Cilia Beat Frequency Assay
2.8. Kinase Activity Assay
2.9. Statistical Analysis
3. Results
3.1. Repetitive Organic Dust Extract (ODE) Treatment Increases Lung Inflammation and Decreases Bacterial Clearance
3.2. ODE-Induced Slowing of Ciliary Beat Frequency (CBF) in Mouse Tracheal Epithelial Cells (MTECs) Is Prevented by Pretreatment with ZinPro
3.3. ODE-Induced Activation of Protein Kinase C Epsilon (PKCε) in Mouse Tracheal Epithelial Cells (MTECs) Is Prevented by Pretreatment with ZinPro
3.4. Intracellular Zinc Chelation Inhibits ZinPro Reversal of ODE-Induced Cilia Slowing
3.5. Intracellular Chelation of Zinc Blocks ZinPro Reversal of ODE-Induced PKCε Activation
3.6. Zinc Inhibits In Vitro Protein Kinase C Epsilon (PKCε) Activity
3.7. CBF Is Enhanced in Isolated Ciliary Axonemes but Not Intact Mouse Tracheal Cells or Tissue
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Heederik, D.; Sigsgaard, T.; Thorne, P.S.; Kline, J.N.; Avery, R.; Bonlokke, J.H.; Chrischilles, E.A.; Dosman, J.A.; Duchaine, C.; Kirkhorn, S.R.; et al. Health effects of airborne exposures from concentrated animal feeding operations. Environ. Health Perspect. 2007, 115, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.; Manrique, A.; Sabo-Attwood, T.; Coker, E.S. A Narrative Review of Occupational Air Pollution and Respiratory Health in Farmworkers. Int. J. Environ. Res. Public. Health 2021, 18, 4097. [Google Scholar] [CrossRef] [PubMed]
- Domingo, N.G.G.; Balasubramanian, S.; Thakrar, S.K.; Clark, M.A.; Adams, P.J.; Marshall, J.D.; Muller, N.Z.; Pandis, S.N.; Polasky, S.; Robinson, A.L.; et al. Air quality-related health damages of food. Proc. Natl. Acad. Sci. USA 2021, 118, 2013637118. [Google Scholar] [CrossRef]
- Boissy, R.J.; Romberger, D.J.; Roughead, W.A.; Weissenburger-Moser, L.; Poole, J.A.; LeVan, T.D. Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities. PLoS ONE 2014, 9, e95578. [Google Scholar] [CrossRef] [PubMed]
- Choinière, Y.; Munroe, J. Farm Workers Health Problems Related to Air Quality Inside Livestock Barns; Ministry of Agriculture and Food: Guelph, ON, Canada, 1993. [Google Scholar]
- Von Essen, S.G.; Auvermann, B.W. Health effects from breathing air near CAFOs for feeder cattle or hogs. J. Agromed. 2005, 10, 55–64. [Google Scholar] [CrossRef]
- Poole, J.A.; Zamora-Sifuentes, J.L.; De Las Vecillas, L.; Quirce, S. Respiratory Diseases Associated with Organic Dust Exposure. J. Allergy Clin. Immunol. Pract. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.C.; Fong, J.; Rosa Hernandez, A.M.; Pogreba-Brown, K. CAFOs, novel influenza, and the need for One Health approaches. One Health 2021, 13, 100246. [Google Scholar] [CrossRef]
- Wanner, A.; Salathe, M.; O’Riordan, T.G. Mucociliary clearance in the airways. Am. J. Respir. Crit. Care Med. 1996, 154, 1868–1902. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.A.; Wyatt, T.A.; Von Essen, S.G.; Hervert, J.; Parks, C.; Mathisen, T.; Romberger, D.J. Repeat organic dust exposure-induced monocyte inflammation is associated with protein kinase C activity. J. Allergy Clin. Immunol. 2007, 120, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, T.A.; Slager, R.E.; Heires, A.J.; Devasure, J.M.; Vonessen, S.G.; Poole, J.A.; Romberger, D.J. Sequential activation of protein kinase C isoforms by organic dust is mediated by tumor necrosis factor. Am. J. Respir. Cell Mol. Biol. 2010, 42, 706–715. [Google Scholar] [CrossRef]
- Wyatt, T.A.; Sisson, J.H.; Von Essen, S.G.; Poole, J.A.; Romberger, D.J. Exposure to hog barn dust alters airway epithelial ciliary beating. Eur. Respir. J. 2008, 31, 1249–1255. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, T.A.; Sisson, J.H.; Allen-Gipson, D.S.; McCaskill, M.L.; Boten, J.A.; DeVasure, J.M.; Bailey, K.L.; Poole, J.A. Co-exposure to cigarette smoke and alcohol decreases airway epithelial cell cilia beating in a protein kinase Cepsilon-dependent manner. Am. J. Pathol. 2012, 181, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ali, M.K.; Dua, K.; Xu, R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022, 14, 2115. [Google Scholar] [CrossRef] [PubMed]
- Lowe, N.M.; Hall, A.G.; Broadley, M.R.; Foley, J.; Boy, E.; Bhutta, Z.A. Preventing and Controlling Zinc Deficiency across the Life Course: A Call to Action. Adv. Nutr. 2024, 15, 100181. [Google Scholar] [CrossRef] [PubMed]
- Knoell, D.L.; Smith, D.A.; Sapkota, M.; Heires, A.J.; Hanson, C.K.; Smith, L.M.; Poole, J.A.; Wyatt, T.A.; Romberger, D.J. Insufficient zinc intake enhances lung inflammation in response to agricultural organic dust exposure. J. Nutr. Biochem. 2019, 70, 56–64. [Google Scholar] [CrossRef]
- Lonnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130, 1378S–1383S. [Google Scholar] [CrossRef]
- Simet, S.M.; Sisson, J.H.; Pavlik, J.A.; Devasure, J.M.; Boyer, C.; Liu, X.; Kawasaki, S.; Sharp, J.G.; Rennard, S.I.; Wyatt, T.A. Long-term cigarette smoke exposure in a mouse model of ciliated epithelial cell function. Am. J. Respir. Cell Mol. Biol. 2010, 43, 635–640. [Google Scholar] [CrossRef]
- Hastie, A.T.; Dicker, D.T.; Hingley, S.T.; Kueppers, F.; Higgins, M.L.; Weinbaum, G. Isolation of cilia from porcine tracheal epithelium and extraction of dynein arms. Cell Motil. Cytoskelet. 1986, 6, 25–34. [Google Scholar] [CrossRef]
- Poole, J.A.; Alexis, N.E.; Parks, C.; MacInnes, A.K.; Gentry-Nielsen, M.J.; Fey, P.D.; Larsson, L.; Allen-Gipson, D.; Von Essen, S.G.; Romberger, D.J. Repetitive organic dust exposure in vitro impairs macrophage differentiation and function. J. Allergy Clin. Immunol. 2008, 122, 375–382, 382.e371–374. [Google Scholar] [CrossRef]
- Poole, J.A.; Dooley, G.P.; Saito, R.; Burrell, A.M.; Bailey, K.L.; Romberger, D.J.; Mehaffy, J.; Reynolds, S.J. Muramic acid, endotoxin, 3-hydroxy fatty acids, and ergosterol content explain monocyte and epithelial cell inflammatory responses to agricultural dusts. J. Toxicol. Environ. Health A 2010, 73, 684–700. [Google Scholar] [CrossRef]
- Yang, X.; Haleem, N.; Osabutey, A.; Cen, Z.; Albert, K.L.; Autenrieth, D. Particulate Matter in Swine Barns: A Comprehensive Review. Atmosphere 2022, 13, 490. [Google Scholar] [CrossRef]
- Sisson, J.H.; Stoner, J.A.; Ammons, B.A.; Wyatt, T.A. All-digital image capture and whole-field analysis of ciliary beat frequency. J. Microsc. 2003, 211, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Hannun, Y.A.; Loomis, C.R.; Bell, R.M. Activation of protein kinase C by Triton X-100 mixed micelles containing diacylglycerol and phosphatidylserine. J. Biol. Chem. 1985, 260, 10039–10043. [Google Scholar] [CrossRef] [PubMed]
- Poole, J.A.; Wyatt, T.A.; Oldenburg, P.J.; Elliott, M.K.; West, W.W.; Sisson, J.H.; Von Essen, S.G.; Romberger, D.J. Intranasal organic dust exposure-induced airway adaptation response marked by persistent lung inflammation and pathology in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2009, 296, L1085–L1095. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, T.A.; Poole, J.A.; Nordgren, T.M.; DeVasure, J.M.; Heires, A.J.; Bailey, K.L.; Romberger, D.J. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 307, L643–L651. [Google Scholar] [CrossRef] [PubMed]
- Pilch, S.M.; Senti, F.R. Analysis of zinc data from the second National Health and Nutrition Examination Survey (NHANES II). J. Nutr. 1985, 115, 1393–1397. [Google Scholar] [CrossRef]
- Rink, L.; Kirchner, H. Zinc-altered immune function and cytokine production. J. Nutr. 2000, 130, 1407S–1411S. [Google Scholar] [CrossRef]
- Ibs, K.H.; Rink, L. Zinc-altered immune function. J. Nutr. 2003, 133, 1452S–1456S. [Google Scholar] [CrossRef]
- Fraker, P.J.; King, L.E.; Laakko, T.; Vollmer, T.L. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 2000, 130, 1399S–1406S. [Google Scholar] [CrossRef]
- Fraker, P.J.; King, L.E. Reprogramming of the immune system during zinc deficiency. Annu. Rev. Nutr. 2004, 24, 277–298. [Google Scholar] [CrossRef]
- Wessells, K.R.; Brown, K.H. Estimating the global prevalence of zinc deficiency: Results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 2012, 7, e50568. [Google Scholar] [CrossRef]
- Fischer Walker, C.; Black, R.E. Zinc and the risk for infectious disease. Annu. Rev. Nutr. 2004, 24, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Mocchegiani, E.; Giacconi, R.; Muzzioli, M.; Cipriano, C. Zinc, infections and immunosenescence. Mech. Ageing Dev. 2000, 121, 21–35. [Google Scholar] [CrossRef]
- Barnett, J.B.; Hamer, D.H.; Meydani, S.N. Low zinc status: A new risk factor for pneumonia in the elderly? Nutr. Rev. 2010, 68, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Girodon, F.; Galan, P.; Monget, A.L.; Boutron-Ruault, M.C.; Brunet-Lecomte, P.; Preziosi, P.; Arnaud, J.; Manuguerra, J.C.; Herchberg, S. Impact of trace elements and vitamin supplementation on immunity and infections in institutionalized elderly patients: A randomized controlled trial. MIN. VIT. AOX. geriatric network. Arch. Intern. Med. 1999, 159, 748–754. [Google Scholar] [CrossRef] [PubMed]
- Girodon, F.; Lombard, M.; Galan, P.; Brunet-Lecomte, P.; Monget, A.L.; Arnaud, J.; Preziosi, P.; Hercberg, S. Effect of micronutrient supplementation on infection in institutionalized elderly subjects: A controlled trial. Ann. Nutr. Metab. 1997, 41, 98–107. [Google Scholar] [CrossRef]
- Prasad, A.S.; Beck, F.W.; Bao, B.; Fitzgerald, J.T.; Snell, D.C.; Steinberg, J.D.; Cardozo, L.J. Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007, 85, 837–844. [Google Scholar] [CrossRef]
- Gopal, R.; Tutuncuoglu, E.; Bakalov, V.; Wasserloos, K.; Li, H.; Lemley, D.; DeVito, L.J.; Constantinesco, N.J.; Reed, D.S.; McHugh, K.J.; et al. Zinc deficiency enhances sensitivity to influenza A associated bacterial pneumonia in mice. Physiol. Rep. 2024, 12, e15902. [Google Scholar] [CrossRef]
- Woodworth, B.A.; Zhang, S.; Tamashiro, E.; Bhargave, G.; Palmer, J.N.; Cohen, N.A. Zinc increases ciliary beat frequency in a calcium-dependent manner. Am. J. Rhinol. Allergy 2010, 24, 6–10. [Google Scholar] [CrossRef]
- Truong-Tran, A.Q.; Ruffin, R.E.; Zalewski, P.D. Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. Am. J. Physiol. Lung Cell. Mol. Physiol. 2000, 279, L1172–L1183. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Knoell, D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006, 291, L1132–L1141. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.J.; Yeligar, S.M.; Elon, L.; Brown, L.A.; Guidot, D.M. Alcoholism causes alveolar macrophage zinc deficiency and immune dysfunction. Am. J. Respir. Crit. Care Med. 2013, 188, 716–723. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.J.; Joshi, P.C.; Fan, X.; Brown, L.A.; Ritzenthaler, J.D.; Roman, J.; Guidot, D.M. Zinc supplementation restores PU.1 and Nrf2 nuclear binding in alveolar macrophages and improves redox balance and bacterial clearance in the lungs of alcohol-fed rats. Alcohol. Clin. Exp. Res. 2011, 35, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.C.; Smith, D.R.; Dyavar, S.R.; Wyatt, T.A.; Samuelson, D.R.; Bailey, K.L.; Knoell, D.L. Critical Role of Zinc Transporter (ZIP8) in Myeloid Innate Immune Cell Function and the Host Response against Bacterial Pneumonia. J. Immunol. 2021, 207, 1357–1370. [Google Scholar] [CrossRef]
- Wilson, M.; Hogstrand, C.; Maret, W. Picomolar concentrations of free zinc(II) ions regulate receptor protein-tyrosine phosphatase beta activity. J. Biol. Chem. 2012, 287, 9322–9326. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, E.; Massarotti, A.; Hogstrand, C.; Maret, W. Zinc ions modulate protein tyrosine phosphatase 1B activity. Metallomics 2014, 6, 1229–1239. [Google Scholar] [CrossRef]
- Lehel, C.; Olah, Z.; Jakab, G.; Anderson, W.B. Protein kinase C epsilon is localized to the Golgi via its zinc-finger domain and modulates Golgi function. Proc. Natl. Acad. Sci. USA 1995, 92, 1406–1410. [Google Scholar] [CrossRef]
- Gomez, N.N.; Ojeda, M.S.; Gimenez, M.S. Lung lipid composition in zinc-deficient rats. Lipids 2002, 37, 291–296. [Google Scholar] [CrossRef]
- Gomez, N.N.; Biaggio, V.S.; Rozzen, E.J.; Alvarez, S.M.; Gimenez, M.S. Zn-limited diet modifies the expression of the rate-regulatory enzymes involved in phosphatidylcholine and cholesterol synthesis. Br. J. Nutr. 2006, 96, 1038–1046. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Takenaka, T.; Inoue, T.; Sato, M.; Miyajima, Y.; Nodera, M.; Hanyu, M.; Ohno, Y.; Shibazaki, S.; Suzuki, H. Lipopolysaccharide-induced overproduction of nitric oxide and overexpression of iNOS and interleukin-1beta proteins in zinc-deficient rats. Biol. Trace Elem. Res. 2012, 145, 375–381. [Google Scholar] [CrossRef] [PubMed]
- Price, M.E.; Case, A.J.; Pavlik, J.A.; DeVasure, J.M.; Wyatt, T.A.; Zimmerman, M.C.; Sisson, J.H. S-nitrosation of protein phosphatase 1 mediates alcohol-induced ciliary dysfunction. Sci. Rep. 2018, 8, 9701. [Google Scholar] [CrossRef]
- Urbach, V.; Helix, N.; Renaudon, B.; Harvey, B.J. Cellular mechanisms for apical ATP effects on intracellular pH in human bronchial epithelium. J. Physiol. 2002, 543, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Greger, M.; Koneswaran, G. The public health impacts of concentrated animal feeding operations on local communities. Fam. Community Health 2010, 33, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.K.; Fuentes, A.; Trinidad, N. Perception of Job-Related Risk, Training, and Use of Personal Protective Equipment (PPE) among Latino Immigrant Hog CAFO Workers in Missouri: A Pilot Study. Safety 2016, 2, 25. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bauer, C.D.; Mosley, D.D.; Samuelson, D.R.; Poole, J.A.; Smith, D.R.; Knoell, D.L.; Wyatt, T.A. Zinc Protects against Swine Barn Dust-Induced Cilia Slowing. Biomolecules 2024, 14, 843. https://doi.org/10.3390/biom14070843
Bauer CD, Mosley DD, Samuelson DR, Poole JA, Smith DR, Knoell DL, Wyatt TA. Zinc Protects against Swine Barn Dust-Induced Cilia Slowing. Biomolecules. 2024; 14(7):843. https://doi.org/10.3390/biom14070843
Chicago/Turabian StyleBauer, Christopher D., Deanna D. Mosley, Derrick R. Samuelson, Jill A. Poole, Deandra R. Smith, Daren L. Knoell, and Todd A. Wyatt. 2024. "Zinc Protects against Swine Barn Dust-Induced Cilia Slowing" Biomolecules 14, no. 7: 843. https://doi.org/10.3390/biom14070843
APA StyleBauer, C. D., Mosley, D. D., Samuelson, D. R., Poole, J. A., Smith, D. R., Knoell, D. L., & Wyatt, T. A. (2024). Zinc Protects against Swine Barn Dust-Induced Cilia Slowing. Biomolecules, 14(7), 843. https://doi.org/10.3390/biom14070843