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Abstract: Agricultural workers exposed to organic dust from swine concentrated animal feeding
operations (CAFOs) have increased chances of contracting chronic lung disease. Mucociliary clearance
represents a first line of defense against inhaled dusts, but organic dust extracts (ODEs) from swine
barns cause cilia slowing, leading to decreased bacterial clearance and increased lung inflammation.
Because nutritional zinc deficiency is associated with chronic lung disease, we examined the role of
zinc supplementation in ODE-mediated cilia slowing. Ciliated mouse tracheal epithelial cells were
pretreated with 0–10 µg/mL ZinProTM for 1 h, followed by treatment with 5% ODE for 24 h. Cilia
beat frequency (CBF) and protein kinase C epsilon (PKCε) activity were assayed. ODE treatment
resulted in cilia slowing after 24 h, which was reversed with 0.5 and 1.0 µg/mL ZinPro pre-treatment.
No zinc protection was observed at 50 ng/mL, and ciliated cells detached at high concentrations
(100 µg/mL). ZinPro alone produced no changes in the baseline CBF and showed no toxicity to the
cells at concentrations of up to 10 µg/mL. Pre-treatment with ZinPro inhibited ODE-stimulated PKCε

activation in a dose-dependent manner. Based on ZinPro’s superior cell permeability compared to
zinc salts, it may be therapeutically more effective at reversing ODE-mediated cilia slowing through
a PKCε pathway. These data demonstrate that zinc supplementation may support the mucociliary
transport apparatus in the protection of CAFO workers against dust-mediated chronic lung disease.

Keywords: organic dust; cilia; zinc; lung

1. Introduction

Meat production in the United States involves large-scale concentrated animal feeding
operations (CAFOs), requiring workers to be exposed to potentially hazardous air quality
environments [1,2]. Each year, approximately 16,000 deaths are attributed to food produc-
tion in the United States, with 80% being from animal production and producing livestock
feed [3]. Workers in CAFOs are exposed to many possible respiratory components, such as
ammonia, numerous gasses, including carbon dioxide and hydrogen sulfide, and organic
dusts [1]. These organic dusts contain a variety of substances such as feed particles, fecal
matter, animal dander, and fungal and bacterial components [4]. Livestock production is
associated with an enhanced risk of respiratory symptoms. These symptoms range from
rhinitis to chronic inflammatory lung disease [5]. Workers in CAFOs that are exposed to
organic dusts have a higher incidence of lung disorders such as asthma, chronic bronchitis,
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and chronic obstructive pulmonary disease (COPD) [6,7]. Unfortunately, personal protec-
tive equipment (PPE) and/or respirators are not well utilized by CAFO workers due to
many factors, such as overheating and comfort [8].

Exhalation and coughing are important to lung mechanical protection, but the first
line of innate defense against inhaled dusts is mucociliary clearance [9]. We showed in an
in vivo mouse model that the repetitive nasal delivery of organic dust extracts (ODEs) from
swine barns results in a significant lung inflammatory pathology consisting of mononuclear
infiltrates that aggregate in a peribronchiolar manner [10] in response to a sequential
activation of the protein kinase C (PKC) pathway [11]. We have also shown that ODEs
from swine barns cause cilia slowing [12] and that the slowing of cilia occurs through the
activation of protein kinase C epsilon (PKCε) [13].

Zinc deficiency has been implicated in numerous lung diseases [14], representing a
relatively common occurrence due to nutritionally inadequate diets [15]. We previously
demonstrated that many agricultural workers who reported increased respiratory symp-
toms were also zinc-deficient [16]. Although zinc deficiency can be attributed to diet,
inhibitors of zinc absorption also play a role. Phytate, which can be found in common foods
such as cereal, rice, and corn, has a negative effect on zinc absorption [17]. To improve zinc
absorption, the commercially available agent ZinProTM was developed, and it represents
an uptake-enhanced, organic conjugate of zinc that is fed to livestock to assist in numerous
functions, including immunity. Because nutrition impacts the exposome and zinc deficiency
is associated with chronic lung disease, we hypothesized here that zinc supplementation
could prevent ODE-mediated cilia slowing. To investigate this hypothesis, we investigated
the role of ZinPro in the treatment of ODE-induced cilia slowing and the mechanistic
regulation of ODE-induced epithelial cell PKCε. This study demonstrated that ZinPro
treatment reversed ODE-induced cilia slowing by PKCε activity, suggesting that zinc sup-
plementation may lower the risk of developing organic dust-mediated inflammatory lung
disease.

2. Materials and Methods
2.1. Cell Culture

Both human and mouse lung epithelial cells were used. BEAS-2Bs are a non-tumorigenic
human bronchial epithelial cell line and were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). BEAS-2B cultures were grown at 37 ◦C with
5% CO2 in M-199 media. Cells were passaged by adding Gibco TrypLE Express (Life
Technologies Corp., Grand Island, NY, USA) for 5–10 min and TrypLE Express inactivated
with phosphate-buffered saline (PBS; pH 7.4) containing 10% fetal bovine serum (FBS)
(R&D Systems, Pittsburgh, PA, USA). Collected cells were centrifuged for 10 min at 193× g
(Beckman Coulter, Brea, CA, USA), and an additional wash was performed with PBS + fetal
bovine serum (FBS). Cells were counted, plated, and allowed to proliferate to 80–90%
confluence for subsequent assays.

Wild-type C57BL/6 mice (Jackson Laboratory, Bar Harbor, ME, USA) were eutha-
nized, and their tracheas were removed and cut longitudinally to expose the inner lumen.
The tracheas were incubated overnight at 4 ◦C in 1.5 mg/mL Pronase digestion buffer
(Sigma Aldrich, St. Louis, MO, USA). Digestion was halted with 10% FBS, the tracheas
were removed, and digestion buffer media were centrifuged at 193× g for 3 min to col-
lect the cells. Mouse tracheal epithelial cells (MTECs) were resuspended in basic media
(Gibco-Thermo Fisher, Waltham, MA, USA) with 10% FBS and placed in 60 mm tissue
culture dishes. After the dishes were incubated for 3–4 h at 37 ◦C, the media were removed
and centrifuged at 193× g for 3 min. MTECs were resuspended in an air–liquid interface
(ALI) Cell Nutrient Mix consisting of MTEC basic media with growth supplements (Gibco-
Thermo Fisher), counted, and then seeded onto cell culture inserts with 1 × 105 cells per
insert and returned to the incubator. Once the cells reached confluency, the media were
removed, and the cells were exposed to air until cilia formed (approximately 14 d). For
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some assays, mouse ciliated tracheal rings [18] or detergent-extracted ciliary axonemes
lacking a cell membrane were prepared as previously described [19].

2.2. Organic Dust Extract (ODE) Preparation

Aqueous organic dust extract (ODE) prepared from swine confinement feeding fa-
cilities was the exposure agent used in these experiments. Briefly, settled surface dust
(1 g) was incubated in sterile Hank’s Balanced Salt Solution (10 mL; Mediatech, Manassas,
VA, USA) for 1 h and centrifuged twice for 30 min at 2850× g, with the final supernatant
filter-sterilized (0.22 µm) to remove microorganisms and coarse particles. Stock ODE (100%)
was batch-prepared and stored at −20 ◦C; aliquots were diluted for each experiment to
a final concentration (vol/vol) of 5% in sterile phosphate-buffered saline (PBS, pH 7.4;
diluent) for in vitro exposures and 12.5% for in vivo studies. A semiquantitative analy-
sis by means of inductively coupled plasma mass spectrometry revealed the presence of
the metals B, Mg, Ti, Mn, Fe, Co, Ni, Cu, Rb, Mo, and Zn (in 100% dust concentrate: B,
1380 ng/mL; Mg, 144,600 ng/mL; Ti, 1166 ng/mL; Mn, 275.5 ng/mL; Fe, 4226 ng/mL; Co,
59.7 ng/mL; Ni, 371 ng/mL; Cu, 3295.5 ng/mL; Rb, 1076.5 ng/mL; Mo, 132 ng/mL; Zn,
8797.5 ng/mL) [20]. Endotoxin concentrations from the prepared ODE were determined
using limulus amebocyte lysate assay (Lonza, Walkersville, MD, USA). Endotoxin levels
averaged 5.232–10.464 mg (~40–200 EU) for 100% ODE. Mass spectrometry studies of
ODE performed previously revealed significant amounts of muramic acid (a peptidoglycan
marker) and 3-hydroxy fatty acids (a endotoxin marker), but not ergosterol (a fungi marker),
as compared to house dust [21,22].

2.3. In Vivo Mouse Intranasal Inoculation and Infection

Mice were lightly anesthetized using isoflurane and received 50 µL of 12.5% ODE
intranasally and daily (excluding weekends) for 13 days. Some mice were infected by
oropharyngeal aspiration with 100 µL of 4 × 108 colony-forming units (CFUs) per mouse
of Streptococcus pneumoniae (D39 strain) following ODE treatments. The mice were then
euthanized 48 h later to collect total lung CFUs. All animal experiments were evaluated
and approved by the University of Nebraska Medical Center Institutional Animal Care and
Use Committee (Protocol #22-070-11-FC).

2.4. Determination of Colony-Forming Units (CFUs)

Whole lungs were removed from the euthanized mice and placed in 800 µL of PBS. The
lungs were then homogenized using a whole tissue homogenizer (Dremel 300, Mt. Prospect,
IL, USA). Serial dilutions were performed on the lung homogenate and then plated onto
blood agar plates (Remel, Lenexa, KS, USA). Plates were incubated overnight at 37 ◦C with
5% CO2. Plates were removed the following day, and bacterial colonies were counted to
determine total lung CFUs.

2.5. Live Animal MicroCT

Experimental mice were evaluated for changes in lung density using live animal microCT
scanning. Mice were rendered unconscious using an RAS4 anesthesia device (Perkin Elmer,
Waltham, MA, USA) with the following settings: 1.5 induction chamber, 3.5 CT scanner,
exhaust 1.5, and isoflurane set to level 3. Mice were exposed to vaporized isoflurane for a
maximum of 3 min. Each mouse was transferred and positioned supine on the scanning
bed of a Quantum GX-2 microCT scanner (Perkin Elmer, Waltham, MA, USA). A nose cone
attachment was used to keep the animal unconscious, with continuous isoflurane exposure
during scanning. Using the Quantum GX2’s respiratory gating function, a high-speed, 4 min
lung gating scan was recorded for lung assessment. The microCT scanning parameters were
as follows: 50 kV, 114 µA, and 36 FOV mm. A Cu 0.06 + Al 0.5 X-ray filter was used, and
the total radiation dose incurred by each mouse was 338 mGy per scan. A baseline scan was
performed on each mouse. Following the baseline scan, the mice received sterile PBS or 12.5%
ODE daily. After 13 intranasal treatments, as described above, the mice were re-scanned to
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determine the damage caused by ODE. Once scanning was completed, 3D models of the lung
scans were constructed using the open-source software 3D Slicer (version 4.11) and analyzed
to quantify the extent of lung damage, comparing post-exposure to baseline determinations
for each mouse.

2.6. Measurement of Tissue Zinc Content

Whole lungs from mice repetitively nasal-instilled with either sterile PBS or 12.5%
ODE were collected and flash frozen until assayed. Lung samples were thawed and dried
using a vacuum oven, then digested in 1 mL of Nitric Acid and Perchloric Acid (1:2) for
2 h at 80 ◦C. Zn measurements were analyzed using a PinAAcle 500 Atomic Absorption
Spectrometer (Perkin Elmer). Results were standardized by total weight (g) assayed.

2.7. Cilia Beat Frequency Assay

A detailed characterization of the Sisson–Ammons Video Analysis (SAVA) system
can be found in [23]. SAVA uses whole-field analysis to analyze cilia beat frequency (CBF)
while eliminating operator bias due to the selection of areas containing aberrantly fast or
slow-moving cilia. SAVA was used to detect regions of ciliated wild-type MTECs that were
treated with or without 5% ODE and with or without 1–10 µg/mL ZinPro. ZinPro is a
form of zinc that is conjugated to various amino acids for the purpose of enhancing its
cellular uptake and bioavailability in vivo. The ZinPro Corporation (Minneapolis, MN,
USA) kindly provided the reagent used in this study, which was in the conjugate form of
glutamic acid and lysine (1:1). The changes in CBF and total number of motile points were
measured at multiple time points over 24 h.

Some ciliated MTECs were fed basally with Chelex-treated zinc-free FBS containing
media for 72 h. Although the media were zinc free, they did contain other essential cations
(Ca++, Mg++, etc.). Our medium source was assayed through the Atomic Absorption
Spectrum, and no contaminating zinc was discovered. After zinc chelation, MTECs were
pretreated for 4 h with 10 µM N,N,N′,N′-Tetrakis-2-pyridylmethylethylenediamine (TPEN)
(Sigma Aldrich) to chelate intracellular zinc. Following the 4 h preincubation, TPEN was
removed from the media. The cells were then pretreated with ZinPro (1 µg/mL) for 1 h,
followed by 5% ODE, and CBF was measured 24 h later.

2.8. Kinase Activity Assay

BEAS-2B cells at 80% confluency were pretreated for 1 h with or without ZinPro.
Following pretreatment, 5% ODE was added to the cells and incubated at 37 ◦C at 5% CO2
for 1 h, 6 h, or 24 h. The cells were flash frozen with liquid N2 in 250 µL of a cell lysis
buffer containing 35 mM 1M Tris-HCl (pH 7.4), 0.4 mM EGTA, 10 mM MgCl2, 10 mM
phenylmethylsulfonyl fluoride, and a 1:100 dilution of Sigma Protease Inhibitor Cocktail
(SPIC, Sigma-Aldrich, St. Louis, MO, USA). The cells were scraped, transferred into
microfuge tubes, and dissociated by sonication for 5 sec each. Protein (PKCε) catalytic
activity was determined using the method of Hannun et al. [24]. Equal volumes (20 µL)
of radiolabeled ATP (10 µCi/mL [γ-32P]-ATP; Revvity Health Sciences, Waltham, MA,
USA) and PKC reaction mix (containing 24 µg/mL phorbol 12-myristate 13-acetate, 30 mM
dithiotreitol, 150 µM adenosine triphosphate, 45 mM magnesium acetate, and PKC epsilon-
specific substrate peptide (Bachem, Torrance, CA, USA) mixed in a 50 mM Tris-HCl buffer)
were dispensed into 12 × 75 mm glass tubes. A protein sample (20 µL) was added to each
tube in a 30 ◦C water bath, and each tube was incubated for exactly 10 min. The reaction
was halted by adding 50 µL from each tube to be spotted onto Phosphocellulose exchange
papers (St. Vincent’s Institute of Medical Research, Fitzroy, Australia), and these were
submerged in 85% phosphoric acid immediately.

For some experiments, MTECs were incubated for 1 h with or without the intracellular
zinc-chelating agent Tris(2-pyridylmethyl)amine (TPA) (Sigma-Aldrich). Following the
1 h preincubation, TPA was removed from the media. The cells were then pretreated with
ZinPro (1 µg/mL) for 1 h, followed by 5% ODE. After 24 h, 250 µL PBS was added to the
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ALI cell culture inserts, and the cells were harvested. The cells were then centrifuged at
200× g for 10 min, and the supernatant was discarded. The cells were resuspended in
250 µL of cell lysis buffer and flash frozen in liquid N2 to be assayed for PKC activity. For
cell-free in vitro enzyme inhibition assays, ZinPro or amino acids (lysine/glutamine; 1:1)
were added at various concentrations to purified PKCε, and a PKC activity assay was
performed. Negative controls consisted of the absence of an enzyme or substrate.

2.9. Statistical Analysis

Data are presented as the mean ± standard deviation (SD) with scatter plots depicted
for each data point. Student’s t-test was used to assess the statistical difference between
two groups, and a one-way analysis of variance (ANOVA) was used to assess statistical
differences among three or more experimental groups, with Tukey’s post hoc test for
multiple comparisons between any two groups. Statistical significance was accepted at a
p value < 0.05. The determination of data normality and statistical analyses were performed
using GraphPad Prism 10 (San Diego, CA, USA) software.

3. Results
3.1. Repetitive Organic Dust Extract (ODE) Treatment Increases Lung Inflammation and
Decreases Bacterial Clearance

Previous studies have shown a distinct inflammatory histopathology of lymphoid
aggregates in the lung of mice nasally instilled with 12.5% ODE daily over 3 weeks [25]. To
determine lung density as a measure of inflammation, we performed live animal microCT
scans on uninfected mice before and after 3-week repetitive ODE exposure. ODE treatment
significantly (p < 0.02) increased lung density, as measured by Hounsfield units (a represen-
tation of lung inflammation) in the mice (Figure 1A). The mice repetitively exposed to ODE
also demonstrated a significant increase in (p < 0.001) bacterial burden 48 h after infection
with S. pneumoniae (Figure 1B). These effects were not due to an alteration in tissue zinc
content in response to ODE, as the ODE-treated mice showed no differences in whole-lung
zinc deficiency compared to the control mice nasally instilled with sterile PBS (Figure 1C).
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Figure 1. Repetitive nasal instillation of organic dust extract (ODE) increases lung inflammation and
decreases bacterial clearance. (A) Live animal microCT of the lung showing density in Hounsfield
units (HUs) in mice at baseline followed by 3 weeks of 12.5% ODE (* p < 0.02, paired t-test of baseline
vs. ODE for each mouse, n = 6). (B) S. pneumoniae lung burden at 48 h post infection in 12.5%
ODE-treated mice (** p < 0.001, n = 6/group). (C) Total lung zinc content in mice repetitively instilled
with sterile PBS or 12.5% ODE (n = 10).

3.2. ODE-Induced Slowing of Ciliary Beat Frequency (CBF) in Mouse Tracheal Epithelial Cells
(MTECs) Is Prevented by Pretreatment with ZinPro

To further explore the cause of defective bacterial clearance in the ODE-treated mice,
we measured ciliary beating in primary mouse tracheal epithelial cells (MTECs) cultured in
a polarized state to express active motile cilia. MTECs were treated with increasing concen-
trations (50 ng/mL to 1 µg/mL) of ZinPro®, an enhanced amino acid and zinc conjugate,
and CBF was assessed out to 24 h. There was no effect on the CBF between the baseline
media control and ZinPro over time (Figure 2A). However, at very high concentrations
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of ZinPro (0.1–1 mg/mL), ciliated cell detachment and cytotoxicity were observed. As
previously reported [12], 5% ODE significantly decreased (p < 0.01) the CBF through a
24 h treatment; however, ODE-induced cilia slowing was prevented when MTECs were
pretreated for 1 h with ZinPro at concentrations of 0.5 and 1.0 µg/mL (Figure 2B), whereas
ZinPro concentrations below 0.5 µg/mL did not reverse ODE-induced cilia slowing.
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Figure 2. ODE-induced slowing of ciliary beat frequency (CBF) in mouse tracheal epithelial cells
(MTECs) is prevented by pretreatment with ZinPro. (A) Time course (0–24 h) of MTECs treated with
0–1 µg/mL ZinPro shows no effect on baseline CBF in Hertz (Hz). (B) Time course in the presence of
5% ODE (* p < 0.01 0–50 ng/mL vs. 500 ng/mL−1 µg/mL ZinPro; one-way ANOVA, n = 20).

3.3. ODE-Induced Activation of Protein Kinase C Epsilon (PKCε) in Mouse Tracheal Epithelial
Cells (MTECs) Is Prevented by Pretreatment with ZinPro

The activation of PKCε results in decreased ciliary beating [13,26]. Likewise, 5% ODE
activates PKCε, beginning after 1 h, with the maximum kinase activation occurring within
6 h, followed by kinase autodownregulation at 24 h (Figure 3A). PKCε activation and
subsequent autodownregulation are prevented when MTECs are pretreated for 1 h with
1 µg/mL Zinpro (Figure 3A). Moreover, 0.5 µg/mL ZinPro (the lowest concentration) was
also capable of significantly (p < 0.01) blocking ODE-stimulated PKCε at 6 h or the peak
activity time (Figure 3B).
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Figure 3. ODE-induced activation of protein kinase C epsilon (PKCε) in mouse tracheal epithelial
cells (MTECs) is prevented by pretreatment with ZinPro. (A) Time course (0–24 h) of MTECs treated
with 1 µg/mL ZinPro in the presence or absence of 5% ODE (* p < 0.02 at 1 h ODE vs. media control;
** p < 0.003 at 6 h ODE vs. media control). (B) PKCε activity at 6 h with ±5% ODE and ±500 ng/mL
ZinPro (* p < 0.01; ** p < 0.001; one-way ANOVA, n = 9).

3.4. Intracellular Zinc Chelation Inhibits ZinPro Reversal of ODE-Induced Cilia Slowing

In order to determine whether the restoration of the CBF was specifically due to zinc, we exam-
ined the impact of the intracellular chelator N,N,N′,N′-Tetrakis-2-pyridylmethylethylenediamine
(TPEN). All media were initially depleted of zinc using Chelex. MTECs were pretreated with or
without 5 µM TPEN for 4 h prior to exposure to 5% ODE in the presence or absence of 1 µg/mL
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ZinPro, and the CBF was assayed at 24 h. TPEN blocked the ability of ZinPro to rescue ODE-
induced cilia slowing (Figure 4A). ZinPro alone did not change the baseline CBF media controls,
but, as before, it prevented ODE-mediated cilia slowing. TPEN alone produced a less robust
but significant (p < 0.01) decrease in the CBF compared to the media controls but showed no
difference in the presence of ODE. No toxicity was observed with TPEN or Chelexed media and
no significant differences in the total number of motile cilia were observed under any treatment
conditions (Figure 4A).
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Figure 4. Intracellular chelation of zinc blocks ZinPro reversal of ODE-induced cilia slowing.
(A) Ciliated MTECs were pretreated for 4 h with or without 5 µM TPEN (N,N,N′,N′-Tetrakis-2-
pyridylmethylethylenediamine), followed by 24 h of ±1 µg/mL ZinPro and ±5% ODE (* p < 0.01,
** p < 0.001, **** p < 0.0001 one-way ANOVA, n = 20). (B) No significant differences in the total number
of moving cilia were observed with Chelexed media or TPEN treatment at the time of recording (24 h).

3.5. Intracellular Chelation of Zinc Blocks ZinPro Reversal of ODE-Induced PKCε Activation

The impact of the intracellular sequestration of zinc was then examined with regard
to the ZinPro’s effect on PKCε activation. MTECs were pretreated similarly to TPEN,
as described above but using the intracellular zinc chelator Tris(2-pyridylmethyl)amine
(TPA) for 1 h, and cells were then fractionated into a non-translocated (inactive) cytosolic
fraction and translocated (active) particulate PKCε fractions. The peak kinase activity was
measured at 6 h following cell treatment and exhibited a significant ODE-mediated decrease
(indicating translocation) in cytosolic PKCε, which was prevented by 1 µg/mL ZinPro
(Figure 5A). The beneficial effect of ZinPro was reversed by TPA, confirming the results seen
for TPEN. This coincided with the reversal of the translocated enzyme particulate fraction
(Figure 5B), showing mechanistic agreement between PKCε activity and cilia slowing.
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Figure 5. Intracellular chelation of zinc blocks ZinPro reversal of ODE-induced PKCε activation.
Ciliated MTECs were pretreated for 1 h with or without 5 µM TPA (Tris(2-pyridylmethyl)amine)
followed by 24 h of ±1 µg/mL ZinPro and ±5% ODE. (A) Cytosolic cell fraction measuring non-
translocated PKC (** p < 0.001, **** p < 0.0001 one-way ANOVA). (B) Particulate cell fraction showing
translocation-activated PKC (** p < 0.001, *** p < 0.005, **** p < 0.0001 one-way ANOVA, n = 9).
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3.6. Zinc Inhibits In Vitro Protein Kinase C Epsilon (PKCε) Activity

To determine if these observations are due to a direct effect of zinc on PKCε, in vitro
enzyme activity assays were conducted using a cell-free purified enzyme and substrate. When
0.1 µg/µL purified PKCε was co-incubated with 0–1 mg/mL ZinPro in vitro, a significant
(p < 0.05) concentration-dependent inhibition of phosphate transfer to substrate peptide was
observed (Figure 6A). Similarly, purified PKCε treated with 0–1 mg/mL ZnSO4 in vitro also
significantly (p < 0.0001) inhibited the ability to phosphorylate its substrate (Figure 6B). As a
control to account for the amino acid conjugates attached to ZinPro, purified PKCε treated
with the same amount (0–1 mg/mL) of lysine and glutamic acid in vitro did not inhibit kinase
activity (Figure 6C). As anticipated, the substrate-only negative control showed no changes in
non-specific phosphate incorporation by ZinPro (Figure 6D).
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with 0–1 mg/mL ZinPro in vitro (* p < 0.05; **** p < 0.0001, one-way ANOVA, n = 12). (B) Purified
PKCε treated with 0–1 mg/mL ZnSO4 in vitro (**** p < 0.0001, one-way ANOVA, n = 9). (C) Purified
PKCε treated with 0–1 mg/mL lysine and glutamic acid in vitro as a control. (D) Substrate-only
negative control treated with 0–1 mg/mL ZinPro.

3.7. CBF Is Enhanced in Isolated Ciliary Axonemes but Not Intact Mouse Tracheal Cells or Tissue

Knowing that ZinPro and zinc sulfate directly inhibit cell-free PKCε in vitro, we
compared whether the ability of ZinPro to restore the CBF in situ was superior to another
commonly used zinc salt form: zinc chloride. The treatment of intact ciliated mouse tracheal
tissue rings (Figure 7A) or isolated ciliated polarized MTEC ALI cultures (Figure 7B)
with ZnCl2 at doses of up to 10 µM had no impact on the CBF. However, isolated and
de-membranated ciliary axonemes that were activated by 1 mM ATP to bend in culture
exhibited a small but significant (p < 0.03) increase in motility (Figure 7C), further suggesting
that the amino acid-coupled active transport of ZinPro leads to enhanced intracellular zinc
uptake when compared to conventional zinc salt forms (ZnCl2 or ZnSO4).
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Figure 7. CBF is enhanced in isolated ciliary axonemes but not intact mouse tracheal cells or tissue.
(A) Freshly excised mouse tracheal rings with beating cilia treated with ±10 µM ZnCl2. (B) Ciliated
MTEC treated with ±10 µM ZnCl2. (C) De-membranated isolated ciliary axonemes activated with
1 mM ATP and treated with ±10 µM ZnCl2 (* p < 0.03 unpaired t-test, n = 12).
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4. Discussion

Our studies demonstrated that the uptake-enhanced, highly cell-permeable zinc de-
livery agent ZinPro sufficiently reversed ODE-induced cilia slowing through modulating
PKCε activity in airway epithelial cells. The circulating zinc levels in healthy male adults
are approximately 12 µmol/L [27]. Concentrations of ZinPro of 0.5–1.0 µg/mL, as utilized
in our experiments, would equate to the supplementation of 10–15 µmol/L of ZinPro for
translational application. As prior studies have demonstrated that repetitive ODE treat-
ment induces lung inflammatory pathology consisting of lymphoid aggregates [25], this
current work extends these observations by live-animal micro-CT imaging, with increased
inflammation represented by increases in density measurements (Hounsfield units). The
ZinPro’s effect on ciliary motility was ascribed to zinc’s properties (as opposed to its conju-
gates), as ZinPro’s positive effects were abrogated in the presence of several zinc chelators.
Moreover, zinc directly affects the ciliary beat of axonemes alone. Thus, these data suggest
that supplementation with zinc may be beneficial in protecting CAFO workers against
chronic lung disease, who we previously showed have a higher incidence of insufficient
dietary zinc intake [16]. This is highly relevant because daily dietary Zn intake is required
for human health and proper immune function. Despite this, nutritional deficiency remains
prevalent within vulnerable populations [28–31]. In fact, ~17% of the world’s population
is at risk of inadequate zinc intake [32]. Dietary Zn deficiency increases susceptibility to
pathogens [33] and is associated with a higher incidence of pneumonia [34,35], while Zn
supplementation has been shown to reduce this risk [36–38].

In general, approximately 90% of intracellular zinc is nonlabile and considered part
of the permanent matrix embedded within proteins that comprise cells. In contrast, the
labile zinc pool is subject to rapid depletion in the setting of dietary deficiency. This is
important because it is this pool that is responsible for cell signaling, which impacts innate
and adaptive immunity. Zinc deficiency leads to an increased risk of influenza A-mediated
pneumonia [39]. Whereas nasal cilia motility was shown to be stimulated in vitro through
the combination of zinc and calcium [40], in our case, neither ZnCl2 nor ZnSO4 had an effect
on intact tracheal cilia or isolated ciliated cells. Lung epithelial cell apoptosis and barrier
leaks are also increased in the context of zinc deficiency [41]. Zinc depletion degrades
junction proteins, leading to a loss of cell-to-cell contact-enhanced epithelial permeability
and apoptosis, as demonstrated by Knoell et al. [42]. In addition to epithelial cells, zinc
has antimicrobial effects on monocytes and macrophages, with the regulation of both
monocytes and the airway epithelium by zinc being mediated through ZIP8 and NF-kB
signaling [14].

Chronic alcohol intake has been shown to reduce zinc levels and the functionality of
alveolar macrophages, particularly phagocytic activity [43]. Although zinc serum levels
were normal in humans with alcohol use disorder (AUD), alveolar macrophage intracellular
zinc levels were significantly decreased [43]. Improved phagocytic function was obtained
in vitro when treating these cells with zinc acetate and glutathione [43]. Chronic alcohol in-
take also leads to reduced clearance of lung bacterial burden, but with the supplementation
of zinc, alcohol-fed rats were able to return to a normal level of bacterial clearance in their
lungs [44]. Unlike lung barrier function, we observed no effect of reversing alcohol-induced
ciliary dysfunction in mice using either ZnCl2 or ZnSO4. Interestingly, ZnCl2 was directly
stimulatory when applied to isolated ciliary axonemes whose membranes were removed
by detergent extraction.

It has previously been determined that zinc transporters play a role in the clearance of
lung bacteria. Zip8, a zinc transporter, is induced rapidly following a bacterial infection [45].
When Zip8 KO mice were infected with Streptococcus pneumoniae, they showed a higher level
of inflammation, morbidity, and mortality when compared to their WT counterparts [45].
This suggests that zinc alone cannot improve lung bacterial infections and that a zinc
transporter is necessary to aid in the immune response as it pertains to zinc. ZinPro is zinc
conjugated to the amino acids lysine and glutamine. As such, its uptake is enhanced by
effective zinc transporter action, which facilitates intracellular bioavailability for zinc target
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responses, such as the inhibition of PKCε, a known regulator of cilia slowing. Collectively,
these findings underscore the importance of zinc transporter proteins and/or improved
zinc formulations that improve bioavailability in lung epithelia.

To our knowledge, this is the first report of direct in vitro inhibition by zinc of purified
PKCε enzyme catalytic activity. Previously, it was shown in a tyrosine phosphatase that zinc
binding can inhibit, rather than activate, the enzyme [46,47]. This activation would then
require the removal of the inhibitory zinc. Although the serine–threonine-phosphorylating
PKCε, as well as many other enzymes, contain zinc-finger binding regions that are respon-
sible for protein structural conformation [48], the mechanism of the zinc inhibition of PKCε

activity is unknown at this time. With regard to in situ or in vivo inhibitory mechanisms, one
possibility might be zinc-mediated alterations in lipid binding. Gomez et al. [49,50] showed
that zinc changes the availability of triglyceraldehydes, although this would not explain
PKCε inhibition, which binds a lipid in its diacylglycerol-binding region. Miyazaki et al.
showed that zinc-deficient rats overproduce lung nitric oxide when exposed to endotoxin,
a significant bioactive component of swine barn dust [51]. We have previously established
that the heavy S-nitrosylation of cilia proteins can desensitize their cyclic nucleotide-mediated
stimulatory function [52], but the ciliostimulatory pathway is not associated with PKC. High
ZnCl2 concentrations (>100 µM) have been shown to produce small decreases in pH in 16HBE
cells [53], but these decreases would not be sufficient to inhibit PKCε in situ. Interestingly,
zinc deficiency enhances hydrogen peroxide-mediated increases in apoptosis [41], while zinc
supplementation blocks this injury. Because it is well established that hydrogen peroxide can
stimulate PKCε, the mechanism of action may be the inhibition of this enzyme by zinc. Future
studies elucidating the role of zinc binding and active site phosphate transfer inhibition will
be required to understand its mechanism of action.

Workers in CAFOs have exhibited higher rates of chronic lung disease [6,7], with
approximately 25% of workers exhibiting adverse respiratory health [54]. Studies have
shown that the use of PPE and respiratory masks in CAFOs is relatively low [8], and this is
particularly a concern for migrant workers [16,55]. We suggest that the incorporation of
a multi-factorial approach that assesses dietary- and genetically induced zinc deficiency
coupled with prophylactic zinc supplementation along with other measures, including
proper PPE use and wearing a respirator mask, could potentially lead to a reduced risk of
chronic lung diseases in CAFO workers. In addition, community engagement with regard
to nutrition among these at-risk workers may positively impact public health.
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