Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives
Abstract
:1. Introduction
2. The Treatment of Hemophilia Using Blood-Purified Factors VIII and IX
3. Treatment of Hemophilia Using Recombinant Factors VIII and IX
4. Non-Replacement Therapy for Hemophilia (Antibodies)
5. Cellular Therapy of Hemophilia
6. Gene Therapy of Hemophilia
6.1. Adeno-Associated Virus Vectors
6.2. Lentivirus Vectors
6.3. Gene Editing
6.4. Non-Viral Delivery
7. Clinical Applications of AAV-Based Gene Therapeutics for HEMOPHILIA A and B
8. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Castro, H.E.; Briceño, M.F.; Casas, C.P.; Rueda, J.D. The history and evolution of the clinical effectiveness of hemophilia type a treatment: A systematic review. Indian J. Hematol. Blood Transfus. 2014, 30, 1–11. [Google Scholar] [CrossRef]
- Mancuso, M.E.; Mahlangu, J.N.; Pipe, S.W. The changing treatment landscape in hemophilia: From standard half-life clotting factor concentrates to gene editing. Lancet 2021, 397, 630–640. [Google Scholar] [CrossRef]
- Batty, P.; Lillicrap, D. Advances and challenges for hemophilia gene therapy. Hum. Mol. Genet. 2019, 28, R95–R101. [Google Scholar] [CrossRef] [PubMed]
- Lippi, G.; Favaloro, E.J. Gene therapy for hemophilias: The end of phenotypic testing or the start of a new era? Blood Coagul. Fibrinolysis 2020, 31, 237–242. [Google Scholar] [CrossRef]
- Iorio, A.; Stonebraker, J.S.; Chambost, H.; Makris, M.; Coffin, D.; Herr, C.; Germini, F. Establishing the prevalence and prevalence at birth of hemophilia in males: A meta-analytic approach using National Registries. Ann. Intern. Med. 2019, 171, 540–546. [Google Scholar] [CrossRef] [PubMed]
- Roth, D.A.; Tawa, N.E., Jr.; O’Brien, J.M.; Treco, D.A.; Selden, R.F. Nonviral transfer of the gene encoding coagulation factor viii in patients with severe hemophilia A. N. Engl. J. Med. 2001, 344, 1735–1742. [Google Scholar] [CrossRef] [PubMed]
- Kay, M.A.; Manno, C.S.; Ragni, M.V.; Larson, P.J.; Couto, L.B.; McClelland, A.; Glader, B.; Chew, A.J.; JTai, S.; Herzog, R.W.; et al. Evidence for gene transfer and expression of factor IX in hemophilia B patients treated with an AAV vector. Nat. Genet. 2000, 24, 257–261. [Google Scholar] [CrossRef]
- Manno, C.S.; Chew, A.J.; Hutchison, S.; Larson, P.J.; Herzog, R.W.; Arruda, V.R.; Tai, S.J.; Ragni, M.V.; Thompson, A.; Ozelo, M.; et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003, 101, 2963–2972. [Google Scholar] [CrossRef]
- Jiang, H.; Pierce, G.F.; Ozelo, M.C.; De Paula, E.V.; Vargas, J.A.; Smith, P.; Sommer, J.; Luk, A.; Manno, C.S.; High, K.A.; et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol. Ther. 2006, 14, 452–455. [Google Scholar] [CrossRef]
- Nathwani, A.C. Gene therapy for hemophilia. Hematology 2019, 13, 853–868. [Google Scholar] [CrossRef]
- Bolous, N.S.; Bhatt, N.; Bhakta, N.; Neufeld, E.J.; Davidoff, A.M.; Reiss, U.M. Gene Therapy and Hemophilia: Where Do We Go from Here? J. Blood Med. 2022, 13, 559–580. [Google Scholar] [CrossRef] [PubMed]
- Pipe, S.W.; Gonen-Yaacovi, G.; Segurado, O.G. Hemophilia A gene therapy: Current and next-generation approaches. Expert. Opin. Biol. Ther. 2022, 22, 1099–1115. [Google Scholar] [CrossRef] [PubMed]
- Dimichele, D.M.; Hoots, W.K.; Pipe, S.W.; Rivard, G.E.; Santagostino, E. International Workshop on Immune Tolerance Induction: Consensus Recommendations. Haemophilia 2007, 13, 1–22. [Google Scholar] [CrossRef]
- Oldenburg, J.; Young, G.; Santagostino, E.; Escuriola Ettingshausen, C. The Importance of Inhibitor Eradication in Clinically Complicated Hemophilia A Patients. Expert Rev. Hematol. 2018, 11, 857–862. [Google Scholar] [CrossRef]
- Josic, D.; Schwinn, H.; Stadler, M.; Strancar, A. Purification of factor VIII and von Willebrand factor from human plasma by anion-exchange chromatography. J. Chromatogr. B Biomed. Appl. 1994, 662, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Mannucci, P.M. The choice of plasma-derived clotting factor concentrates. Baillieres Clin. Haematol. 1996, 9, 273–290. [Google Scholar] [CrossRef] [PubMed]
- Franchini, M.; Mannucci, P.M. The history of hemophilia. Semin. Thromb. Hemost. 2014, 40, 571–576. [Google Scholar] [CrossRef]
- Samuelson Bannow, B.; Recht, M.; Négrier, C.; Hermans, C.; Berntorp, E.; Eichler, H.; Mancuso, M.E.; Klamroth, R.; O’Hara, J.; Santagostino, E.; et al. Factor VIII: Long-established role in hemophilia A and emerging evidence beyond haemostasis. Blood Rev. 2019, 35, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Weyand, A.C.; Shavit, J.A. Novel treatments for hemophilia through rebalancing of the coagulation cascade. Pediatr. Blood Cancer 2021, 68, e28934. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tiede, A.; Collins, P.; Knoebl, P.; Teitel, J.; Kessler, C.; Shima, M.; Di Minno, G.; d’Oiron, R.; Salaj, P.; Jiménez-Yuste, V.; et al. International Recommendations on the Diagnosis and Treatment of Acquired Hemophilia A. Haematologica 2020, 105, 1791–1801. [Google Scholar] [CrossRef]
- Gringeri, A. Factor VIII safety: Plasma-derived versus recombinant products. Blood Transfus. 2011, 9, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Dioun, A.F.; Ewenstein, B.M.; Geha, R.S.; Schneider, L.C. IgE-Mediated Allergy and Desensitization to Factor IX in Hemophilia B. J. Allergy Clin. Immunol. 1998, 102, 113–117. [Google Scholar] [CrossRef]
- Pipe, S.W. New therapies for hemophilia. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 650–656. [Google Scholar] [CrossRef]
- Santagostino, E.; Young, G.; Carcao, M.; Mannucci, P.M.; Halimeh, S.; Austin, S. A contemporary look at FVIII inhibitor development: Still a great influence on the evolution of hemophilia therapies. Expert Rev. Hematol. 2018, 11, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Lambert, T.; Benson, G.; Dolan, G.; Hermans, C.; Jiménez-Yuste, V.; Ljung, R.; Morfini, M.; Zupančić-Šalek, S.; Santagostino, E. Practical aspects of extended half-life products for the treatment of hemophilia. Ther. Adv. Hematol. 2018, 9, 295–308. [Google Scholar] [CrossRef]
- Konkle, B.A.; Shapiro, A.; Quon, D.; Staber, J.; Suzuki, T.; Poloskey, S.; Rice, K.; Katragadda, S.; Rudin, D.; Fruebis, J. BIVV001: The first investigational factor VIII therapy to break through the VWF ceiling in hemophilia A, with potential for extended protection for one week or longer. Blood 2018, 132 (Suppl. 1), 636. [Google Scholar] [CrossRef]
- Mahlangu, J.; Oldenburg, J.; Paz-Priel, I.; Negrier, C.; Niggli, M.; Mancuso, M.E.; Schmitt, C.; Jiménez-Yuste, V.; Kempton, C.; Dhalluin, C. Emicizumab prophylaxis in patients who have hemophilia A without inhibitors. N. Engl. J. Med. 2018, 379, 811–822. [Google Scholar] [CrossRef]
- Oldenburg, J.; Mahlangu, J.N.; Kim, B.; Schmitt, C.; Callaghan, M.U.; Young, G.; Santagostino, E.; Kruse-Jarres, R.; Negrier, C.; Kessler, C. Emicizumab prophylaxis in hemophilia A with inhibitors. N. Engl. J. Med. 2017, 377, 809–818. [Google Scholar] [CrossRef]
- Kitazawa, T.; Shima, M. Emicizumab, a humanized bispecific antibody to coagulation factors IXa and X with a factor VIIIa-cofactor activity. Int. J. Hematol. 2018, 111, 20–30. [Google Scholar] [CrossRef]
- Knight, T.; Callaghan, M.U. The role of emicizumab, a bispecific factor IXa- and factor X-directed antibody, for the prevention of bleeding episodes in patients with hemophilia A. Ther. Adv. Hematol. 2018, 9, 319–334. [Google Scholar] [CrossRef]
- Jimenez-Yuste, V.; Shima, M.; Fukutake, K.; Lehle, M.; Chebon, S.; Retout, S.; Portron, A.; Levy, G.G. Emicizumab subcutaneous dosing every 4 weeks for the management of hemophilia A: Preliminary data from the pharmacokinetic run-in cohort of a multicenter, open-label, phase 3 study (HAVEN 4). Blood 2017, 130 (Suppl. 1), 86. [Google Scholar] [CrossRef]
- Pipe, S.; Jiménez-Yuste, V.; Shapiro, A.; Key, N.; Podolak-Dawidziak, M.; Hermans, C.; Peerlinck, K.; Lehle, M.; Chebon, S.; Portron, A. Emicizumab subcutaneous dosing every 4 weeks is safe and effective in the control of bleeding in persons with hemophilia A (PwHA) with and without inhibitors: Results from phase 3 HAVEN 4 study. Hemophilia 2008, 24 (Suppl. 5), 212–213. [Google Scholar]
- Baker, M.P.; Reynolds, H.M.; Lumicisi, B.; Bryson, C.J. Immunogenicity of protein therapeutics: The key causes, consequences, and challenges. Self Nonself. 2010, 1, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Bloem, K.; Hernández-Breijo, B.; Martínez-Feito, A.; Rispens, T. Immunogenicity of therapeutic antibodies: Monitoring antidrug antibodies in a clinical context. Ther. Drug Monit. 2017, 39, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Paz-Priel, I.; Chang, T.; Asikanius, E.; Chebon, S.; Emrich, T.; Fernandez, E.; Kuebler, P.; Schmitt, C. Immunogenicity of Emicizumab in people with hemophilia A (PwHA): Results from the HAVEN 1–4 studies. Blood 2018, 132 (Suppl. 1), 633. [Google Scholar] [CrossRef]
- Roberts, H.R.; Lee, C.A.; Kessler, C.M.; Varon, D.; Martinowitz, U.; Heim, M.; Monroe, D.M.; Oliver, J.A.; Chang, J.-Y.; Hoffman, M. Newer concepts of blood coagulation. Hemophilia 1998, 4, 331–334. [Google Scholar] [CrossRef]
- Waters, E.K.; Genga, R.M.; Schwartz, M.C.; Nelson, J.A.; Schaub, R.G.; Olson, K.A.; Kurz, J.C.; McGinness, K.E. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood 2011, 117, 5514–5522. [Google Scholar] [CrossRef] [PubMed]
- Korte, W.; Graf, L. The Potential Close Future of Hemophilia Treatment—Gene Therapy, TFPI Inhibition, Antithrombin Silencing, and Mimicking Factor VIII with an Engineered Antibody. Transfus. Med. Hemother. 2018, 45, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Keam, S.J. Concizumab: First Approval. Drugs 2023, 83, 1053–1059. [Google Scholar] [CrossRef]
- Crescioli, S.; Kaplon, H.; Chenoweth, A.; Wang, L.; Visweswaraiah, J.; Reichert, J.M. Antibodies to Watch in 2024. mAbs 2024, 16, 2297450. [Google Scholar] [CrossRef]
- Petersen, L.C. Hemostatic properties of a TFPI antibody. Thromb. Res. 2012, 129 (Suppl. S2), S44–S45. [Google Scholar] [CrossRef] [PubMed]
- Chowdary, P. Anti-tissue factor pathway inhibitor (TFPI) therapy: A novel approach to the treatment of hemophilia. Int. J. Hematol. 2020, 111, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Sidonio, R.F.; Zimowski, K.L. TFPI blockade: Removing coagulation’s brakes. Blood 2019, 134, 1885–1887. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, T.; Shapiro, A.; Abraham, A.; Angchaisuksiri, P.; Castaman, G.; Cepo, K.; d’Oiron, R.; Frei-Jones, M.; Goh, A.-S.; Haaning, J.; et al. Phase 3 Trial of Concizumab in Hemophilia with Inhibitors. N. Engl. J. Med. 2023, 389, 783–794. [Google Scholar] [CrossRef] [PubMed]
- Cardinal, M.; Kantaridis, C.; Zhu, T.; Sun, P.; Pittman, D.D.; Murphy, J.E.; Arkin, S. A first-in-human study of the safety, tolerability, pharmacokinetics and pharmacodynamics of PF-06741086, an anti-tissue factor pathway inhibitor mAb, in healthy volunteers. J. Thromb. Haemost. 2018, 16, 1722–1731. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, M.E.; Ingham, S.J.M.; Kunze, M. Befovacimab, an anti-tissue factor pathway inhibitor antibody: Early termination of the multiple-dose, dose-escalating Phase 2 study due to thrombosis. Haemophilia 2022, 28, 702–712. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kwak, H.; Lee, S.; Jo, S.; Kwon, Y.E.; Kang, H.; Choi, G.; Jung, M.E.; Kwak, M.; Kim, S.; Oh, B.; et al. MG1113, a specific anti-tissue factor pathway inhibitor antibody, rebalances the coagulation system and promotes hemostasis in hemophilia. Res. Pract. Thromb. Haemost. 2020, 4, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Kwak, E.; Kim, M.J.; Park, J.H.; Jung, H.W.; Jung, M.E. Target-mediated drug disposition modeling of an anti-TFPI antibody (MG1113) in cynomolgus monkeys to predict human pharmacokinetics and pharmacodynamics. J. Thromb. Haemost. 2021, 19, 1425–1435. [Google Scholar] [CrossRef] [PubMed]
- Labrijn, A.F.; Meesters, J.I.; de Goeij, B.E.C.G.; van den Bremer, E.T.; Neijssen, J.; van Kampen, M.D.; Strumane, K.; Verploegen, S.; Kundu, A.; Gramer, M.J.; et al. Efficient generation of stable bispecific IgG1 by controlled Fab-arm exchange. Proc. Natl. Acad. Sci. USA 2013, 110, 5145–5150. [Google Scholar] [CrossRef]
- Østergaard, H.; Lund, J.; Greisen, P.J.; Kjellev, S.; Henriksen, A.; Lorenzen, N.; Johansson, E.; Røder, G.; Rasch, M.G.; Johnsen, L.B.; et al. A factor VIIIa-mimetic bispecific antibody, Mim8, ameliorates bleeding upon severe vascular challenge in hemophilia A mice. Blood 2021, 138, 1258–1268. [Google Scholar] [CrossRef]
- Kjellev, S.L.; Østergaard, H.; Greisen, P.J.; Hermit, M.B.; Thorn, K.; Hansen, B.G.; Zhou, R.; Bjelke, J.R.; Kjalke, M.; Lund, J.; et al. Mim8—A next-generation FVIII mimetic bi-specific antibody—Potently restores the hemostatic capacity in hemophilia A settings in vitro and in vivo. Blood 2019, 134, 96. [Google Scholar] [CrossRef]
- Lauritzen, B.; Bjelke, M.; Björkdahl, O.; Bloem, E.; Keane, K.; Kjalke, M.; Rossen, M.; Lippert, S.L.; Weldingh, K.N.; Skydsgaard, M.; et al. A novel next-generation FVIIIa mimetic, Mim8, has a favorable safety profile and displays potent pharmacodynamic effects: Results from safety studies in cynomolgus monkeys. J. Thromb. Haemost. 2022, 20, 1312–1324. [Google Scholar] [CrossRef]
- Hoeben, R.C.; Einerhand, M.P.; Briet, E.; van Ormondt, H.; Valerio, D.; van der Eb, A.J. Toward gene therapy in hemophilia A: Retrovirus-mediated transfer of a factor VIII gene into murine haematopoietic progenitor cells. Thromb. Haemost. 1992, 67, 341–345. [Google Scholar] [PubMed]
- Kikuchi, J.; Mimuro, J.; Ogata, K.; Tabata, T.; Ueda, Y.; Ishiwata, A.; Kimura, K.; Takano, K.; Madoiwa, S.; Mizukami, H.; et al. Sustained transgene expression by human cord blood derived CD34 + cells transduced with simian immunodeficiency virus agmTYO1-based vectors carrying the human coagulation factor VIII gene in NOD/SCID mice. J. Gene Med. 2004, 6, 1049–1060. [Google Scholar] [CrossRef]
- Moayeri, M.; Ramezani, A.; Morgan, R.A.; Hawley, T.S.; Hawley, R.G. Sustained phenotypic correction of hemophilia a mice following oncoretroviral-mediated expression of a bioengineered human factor VIII gene in long-term hematopoietic repopulating cells. Mol. Ther. 2004, 10, 892–902. [Google Scholar] [CrossRef] [PubMed]
- Sadelain, M.; Chang, A.; Lisowski, L. Supplying clotting factors from hematopoietic stem cell-derived erythroid and megakaryocytic lineage cells. Mol. Ther. 2009, 17, 1994–1999. [Google Scholar] [CrossRef]
- Wilcox, D.A.; Shi, Q.; Nurden, P.; Haberichter, S.L.; Rosenberg, J.B.; Johnson, B.D.; Nurden, A.T. White GC 2nd, Montgomery RR. Induction of megakaryocytes to synthesize and store a releasable pool of human factor VIII. J. Thromb. Haemost. 2003, 1, 2477–2489. [Google Scholar] [CrossRef] [PubMed]
- Yarovoi, H.V.; Kufrin, D.; Eslin, D.E.; Thornton, M.A.; Haberichter, S.L.; Shi, Q.; Zhu, H.; Camire, R.; Fakharzadeh, S.S.; Kowalska, M.A.; et al. Factor VIII ectopically expressed in platelets: Efficacy in hemophilia A treatment. Blood 2003, 102, 4006–4013. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Wilcox, D.A.; Fahs, S.A.; Weiler, H.; Wells, C.W.; Cooley, B.C.; Desai, D.; Morateck, P.A.; Gorski, J.; Montgomery, R.R. Factor VIII ectopically targeted to platelets is therapeutic in hemophilia A with high-titer inhibitory antibodies. J. Clin. Investig. 2006, 116, 1974–1982. [Google Scholar] [CrossRef]
- Gewirtz, J.; Thornton, M.A.; Rauova, L.; Poncz, M. Platelet-delivered factor VIII provides limited resistance to anti-factor VIII inhibitors. J. Thromb. Haemost. 2008, 6, 1160–1166. [Google Scholar] [CrossRef]
- Ohmori, T.; Kashiwakura, Y.; Ishiwata, A.; Madoiwa, S.; Mimuro, J.; Sakata, Y. Silencing of a targeted protein in vivo platelets using a lentiviral vector delivering short hairpin RNA sequence. Arter. Thromb. Vasc. Biol. 2007, 27, 2266–2272. [Google Scholar] [CrossRef]
- Ohmori, T.; Ishiwata, A.; Kashiwakura, Y.; Madoiwa, S.; Mitomo, K.; Suzuki, H.; Hasegawa, M.; Mimuro, J.; Sakata, Y. Phenotypic correction of hemophilia A by ectopic expression of activated factor VII in platelets. Mol. Ther. 2008, 16, 1359–1365. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Schroeder, J.A.; Kuether, E.L.; Zhang, G.; Shi, Q. Platelet gene therapy by lentiviral gene delivery to hematopoietic stem cells restores hemostasis and induces humoral immune tolerance in FIX(null) mice. Mol. Ther. 2014, 22, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, C.K.; Mattson, J.G.; Weiler, H.; Shi, Q.; Montgomery, R.R. Targeting Factor VIII Expression to Platelets for Hemophilia A Gene Therapy Does Not Induce an Apparent Thrombotic Risk in Mice. J. Thromb. Haemost. 2017, 15, 98–109. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Fahs, S.A.; Kuether, E.L.; Cooley, B.C.; Weiler, H.; Montgomery, R.R. Targeting FVIII expression to endothelial cells regenerates a releasable pool of FVIII and restores hemostasis in a mouse model of hemophilia A. Blood 2010, 116, 3049–3057. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Alipio, Z.; Fink, L.M.; Adcock, D.M.; Yang, J.; Ward, D.C.; Ma, Y. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc. Natl. Acad. Sci. USA 2009, 106, 808–813. [Google Scholar] [CrossRef] [PubMed]
- Kashiwakura, Y.; Ohmori, T.; Mimuro, J.; Madoiwa, S.; Inoue, M.; Hasegawa, M.; Ozawa, K.; Sakata, Y. Production of functional coagulation factor VIII from iPSCs using a lentiviral vector. Hemophilia 2014, 20, e40–e44. [Google Scholar] [CrossRef] [PubMed]
- Coutu, D.L.; Cuerquis, J.; El Ayoubi, R.; Forner, K.A.; Roy, R.; Francois, M.; Griffith, M.; Lillicrap, D.; Yousefi, A.M.; Blostein, M.D.; et al. Hierarchical scaffold design for mesenchymal stem cell-based gene therapy of hemophilia B. Biomaterials 2011, 32, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, N.; Ohashi, K.; Tatsumi, K.; Utoh, R.; Shim, I.K.; Kanegae, K.; Kashiwakura, Y.; Ohmori, T.; Sakata, Y.; Inoue, M.; et al. Genetically modified adipose tissue-derived stem/ stromal cells, using simian immunodeficiency virus-based lentiviral vectors, in the treatment of hemophilia B. Hum. Gene Ther. 2013, 24, 283–294. [Google Scholar] [CrossRef]
- Tatsumi, K.; Sugimoto, M.; Lillicrap, D.; Shima, M.; Ohashi, K.; Okano, T.; Matsui, H. A novel cell-sheet technology that achieves durable factor VIII delivery in a mouse model of hemophilia A. PLoS ONE 2013, 8, e83280. [Google Scholar] [CrossRef]
- Kundu, R.K.; Sangiorgi, F.; Wu, L.Y.; Kurachi, K.; Anderson, W.F.; Maxson, R.; Gordon, E.M. Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice. Blood 1998, 92, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Giles, A.R.; Tinlin, S.; Hoogendoorn, H.; Greenwood, P.; Greenwood, R. Development of factor VIII:C antibodies in dogs with hemophilia A. Blood 1984, 63, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Kolesnik, V.V.; Nurtdinov, R.F.; Oloruntimehin, E.S.; Karabelsky, A.V.; Malogolovkin, A.S. Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes. Clin. Transl. Med. 2024, 14, e1607. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Manno, C.S.; Pierce, G.F.; Arruda, V.R.; Glader, B.; Ragni, M.; Rasko, J.J.; Ozelo, M.C.; Hoots, K.; Blatt, P.; Konkle, B.; et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 2006, 12, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.P.; Alvira, M.R.; Wang, L.; Calcedo, R.; Johnston, J.; Wilson, J.M. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc. Natl. Acad. Sci. USA 2002, 99, 11854–11859. [Google Scholar] [CrossRef] [PubMed]
- Vandamme, C.; Adjali, O.; Mingozzi, F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum. Gene Ther. 2017, 28, 1061–1074. [Google Scholar] [CrossRef] [PubMed]
- Simioni, P.; Tormene, D.; Tognin, G.; Gavasso, S.; Bulato, C.; Iacobelli, N.P.; Finn, J.D.; Spiezia, L.; Radu, C.; Arruda, V.R. X-linked thrombophilia with a mutant factor IX (factor IX Padua). N. Engl. J. Med. 2009, 361, 1671–1675. [Google Scholar] [CrossRef] [PubMed]
- Von Drygalski, A.; Giermasz, A.; Castaman, G.; Key, N.S.; Lattimore, S.; Leebeek, F.W.G.; Miesbach, W.; Recht, M.; Long, A.; Gut, R.; et al. Etranacogene Dezaparvovec (AMT-061 Phase 2b): Normal/near Normal FIX Activity and Bleed Cessation in Hemophilia B. Blood Adv. 2019, 3, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Miesbach, W.; Foster, G.; Peyvandi, F. Liver-related aspects of gene therapy for hemophilia: Need for collaborations with hepatologists. J. Thromb. Haemost. 2003, 21, 200–203. [Google Scholar] [CrossRef]
- George, L.A.; Sullivan, S.K.; Giermasz, A.; Rasko, J.E.; Samelson-Jones, B.J.; Ducore, J.; Cuker, A.; Sullivan, L.M.; Majumdar, S.; Teitel, J.; et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N. Engl. J. Med. 2017, 377, 2215–2227. [Google Scholar] [CrossRef]
- Xue, F.; Li, H.; Wu, X.; Liu, W.; Zhang, F.; Tang, D.; Chen, Y.; Wang, W.; Chi, Y.; Zheng, J.; et al. Safety and activity of an engineered, liver-tropic adeno-associated virus vector expressing a hyperactive Padua factor IX administered with prophylactic glucocorticoids in patients with hemophilia B: A single-centre, single -arm, phase 1, pilot trial. Lancet Haematol. 2022, 9, e504–e513. [Google Scholar] [CrossRef] [PubMed]
- Canadian Agency for Drugs and Technologies in Health. Fidanacogene Elaparvovec (Beqvez): CADTH Reimbursement Recommendation: Indication: For the Treatment of Adults (Aged 18 Years or Older) with Moderately Severe to Severe Hemophilia B (Congenital Factor IX Deficiency) Who Are Negative for Neutralizing Antibodies to Variant AAV Serotype Rh74; CADTH Reimbursement Reviews and Recommendations; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2024. [Google Scholar]
- Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/beqvez (accessed on 3 July 2024).
- Dhillon, S. Fidanacogene Elaparvovec: First Approval. Drugs 2024, 84, 479–486. [Google Scholar] [CrossRef]
- McIntosh, J.; Lenting, P.J.; Rosales, C.; Lee, D.; Rabbanian, S.; Raj, D.; Patel, N.; Tuddenham, E.G.; Christophe, O.D.; McVey, J.H.; et al. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood 2013, 121, 3335–3344. [Google Scholar] [CrossRef] [PubMed]
- Rangarajan, S.; Walsh, L.; Lester, W.; Perry, D.; Madan, B.; Laffan, M.; Yu, H.; Vettermann, C.; Pierce, G.F.; Wong, W.Y.; et al. AAV5-factor VIII gene transfer in severe hemophilia A. N. Engl. J. Med. 2017, 377, 2519–2530. [Google Scholar] [CrossRef] [PubMed]
- Pasi, K.J.; Rangarajan, S.; Mitchell, N.; Lester, W.; Symington, E.; Madan, B.; Laffan, M.; Russell, C.B.; Li, M.; Pierce, G.F.; et al. Multiyear follow-up of AAV5-hFVIII-SQ gene therapy for hemophilia A. N. Engl. J. Med. 2020, 382, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, A.C.; Tuddenham, E.; Chowdary, P.; McIntosh, J.; Lee, D.; Rosales, C.; Phillips, M.; Pie, J.; Junfang, Z.; Meagher, M.M.; et al. GO-8: Preliminary results of a phase I/II dose escalation trial of gene therapy for hemophilia using a novel human factor VIII variant. Blood 2018, 132 (Suppl. 1), 489. [Google Scholar] [CrossRef]
- Ozelo, M.C.; Mahlangu, J.; Pasi, K.J.; Giermasz, A.; Leavitt, A.D.; Laffan, M.; Symington, E.; Quon, D.V.; Wang, J.D.; Peerlinck, K.; et al. Valoctocogene roxaparvovec gene therapy for hemophilia A. N. Engl. J. Med. 2022, 386, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- George, L.A.; Monahan, P.E.; Eyster, M.E.; Sullivan, S.K.; Ragni, M.V.; Croteau, S.E.; Rasko, J.E.; Recht, M.; Samelson-Jones, B.J.; MacDougall, A.; et al. Multiyear factor VIII expression after AAV gene transfer for hemophilia A. N. Engl. J. Med. 2021, 385, 1961–1973. [Google Scholar] [CrossRef] [PubMed]
- Finn, J.D.; Nichols, T.C.; Svoronos, N.; Merricks, E.P.; Bellenger, D.A.; Zhou, S.; Simioni, P.; High, K.A.; Arruda, V.R. The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood 2012, 120, 4521–4523. [Google Scholar] [CrossRef]
- Brimble, M.A.; Morton, C.L.; Winston, S.M.; Reeves, I.L.; Spence, Y.; Cheng, P.-H.; Zhou, J.; Nathwani, A.C.; Thomas, P.G.; Souquette, A.; et al. Pre-Existing Immunity to a Nucleic Acid Contaminant-Derived Antigen Mediates Transaminitis and Resultant Diminished Transgene Expression in a Mouse Model of Hepatic Recombinant Adeno-Associated Virus-Mediated Gene Transfer. Hum. Gene Ther. 2024. [Google Scholar] [CrossRef]
- Nault, J.C.; Datta, S.; Imbeaud, S.; Franconi, A.; Mallet, M.; Couchy, G.; Letouzé, E.; Pilati, C.; Verret, B.; Blanc, J.F.; et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat. Genet. 2015, 47, 1187–1193. [Google Scholar] [CrossRef] [PubMed]
- Ragni, M.V.; Mead, H.; De Jong, Y.P.; Kaczmarek, R.; Leavitt, A.D.; Long, B.; Nugent, D.; Sabatino, D.E.; Fong, S.; Von Drygalski, A.; et al. Optimizing Liver Health Before and After Gene Therapy for Hemophilia A. Blood Adv. 2024. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, F.; Wisse, E.; De Geest, B. The role of liver sinusoidal cells in hepatocyte-directed gene transfer. Am. J. Pathol. 2010, 176, 14–21. [Google Scholar] [CrossRef]
- Du, L.M.; Nurden, P.; Nurden, A.T.; Nichols, T.C.; Bellinger, D.A.; Jensen, E.S.; Haberichter, S.L.; Merricks, E.; Raymer, R.A.; Fang, J.; et al. Platelet-targeted gene therapy with human factor VIII establishes haemostasis in dogs with hemophilia A. Nat. Commun. 2013, 4, 2773–2783. [Google Scholar] [CrossRef]
- Nathwani, A.C.; Reiss, U.M.; Tuddenham, E.G.; Rosales, C.; Chowdary, P.; McIntosh, J.; Della Peruta, M.; Lheriteau, E.; Patel, N.; Raj, D.; et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N. Engl. J. Med. 2014, 371, 1994–2004. [Google Scholar] [CrossRef] [PubMed]
- Totsugawa, T.; Kobayashi, N.; Maruyama, M.; Kosaka, Y.; Okitsu, T.; Arata, T.; Sakaguchi, M.; Ueda, T.; Kurabayashi, Y.; Tanaka, N. Lentiviral vector: A useful tool for transduction of human liver endothelial cells. ASAIO J. 2003, 49, 635–640. [Google Scholar] [CrossRef] [PubMed]
- van Til, N.P.; Markusic, D.M.; van der Rijt, R.; Kunne, C.; Hiralall, J.K.; Vreeling, H.; Frederiks, W.M.; Oude-Elferink, R.P.; Seppen, J. Kupffer cells and not liver sinusoidal endothelial cells prevent lentiviral transduction of hepatocytes. Mol. Ther. 2005, 11, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Paez-Cortez, J.; Montano, R.; Iacomini, J.; Cardier, J. Liver sinusoidal endothelial cells as possible vehicles for gene therapy: A comparison between plasmid-based and lentiviral gene transfer techniques. Endothelium 2008, 15, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Milani, M.; Annoni, A.; Moalli, F.; Liu, T.; Cesana, D.; Calabria, A.; Bartolaccini, S.; Biffi, M.; Russo, F.; Visigalli, I.; et al. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Sci. Transl. Med. 2019, 11, eaav7325. [Google Scholar] [CrossRef]
- Shi, Q.; Kuether, E.L.; Chen, Y.; Schroeder, J.A.; Montgomery, R.R. Platelet gene therapy corrects the hemophilic phenotype in immunocompromised hemophilia A mice transplanted with genetically manipulated human cord blood stem cells. Blood 2014, 123, 395–403. [Google Scholar] [CrossRef]
- Shi, Q.; Wilcox, D.A.; Fahs, S.A.; Fang, J.; Johnson, B.D.; Du, L.M.; Desai, D.; Montgomery, R.R. Lentivirus-mediated platelet-derived factor VIII gene therapy in murine hemophilia A. J. Thromb. Haemost. 2007, 5, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Cantore, A.; Ranzani, M.; Bartholomae, C.C.; Volpin, M.; Della Valle, P.; Sanvito, F.; Sergi Sergi, L.; Gallina, P.; Benedicenti, F.; Bellinger, D.; et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci. Transl. Med. 2015, 7, 277ra28. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Schroeder, J.A.; Gao, C.; Li, J.; Hu, J.; Shi, Q. In vivo enrichment of genetically manipulated platelets for murine hemophilia B gene therapy. J. Cell Physiol. 2021, 236, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; McCarty, N.H. CRISPR-Cas9 technology and its application in haematological disorders. Br. J. Haematol. 2016, 175, 208–225. [Google Scholar] [CrossRef] [PubMed]
- Huai, C.; Jia, C.; Sun, R.; Xu, P.; Min, T.; Wang, Q.; Lu, D. CRISPR/Cas9-mediated somatic and germline gene correction to restore hemostasis in hemophilia B mice. Hum. Genet. 2017, 136, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Niu, X.; Liu, Y.; Zheng, R.; Yang, L.; Lu, J.; Yin, S.; Wei, Y.; Pan, J.; Sayed, A.; et al. Long-term correction of hemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J. Genet. Genom. 2022, 49, 1114–1126. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Oh, H.K.; Choi, B.S.; Lee, H.H.; Lee, K.J.; Kim, U.G.; Lee, J.; Lee, H.; Lee, G.S.; Ahn, S.J.; et al. Genome editing-mediated knock-in of therapeutic genes ameliorates the disease phenotype in a model of hemophilia. Mol. Ther. Nucleic Acids 2022, 29, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Hanlon, K.S.; Kleinstiver, B.P.; Garcia, S.P.; Zaborowski, M.P.; Volak, A.; Spirig, S.E.; Muller, A.; Sousa, A.A.; Tsai, S.Q.; Bengtsson, N.E.; et al. High levels of AAV vector integration into CRISPR-induced DNA breaks. Nat. Commun. 2019, 10, 4439. [Google Scholar] [CrossRef] [PubMed]
- Breton, C.; Clark, P.M.; Wang, L.; Greig, J.A.; Wilson, J.M. ITR-Seq, a next-generation sequencing assay, identifies genome-wide DNA editing sites in vivo following adeno-associated viral vector-mediated genome editing. BMC Genom. 2020, 21, 239. [Google Scholar] [CrossRef]
- Leibowitz, M.L.; Papathanasiou, S.; Doerfler, P.A.; Blaine, L.J.; Sun, L.; Yao, Y.; Zhang, C.Z.; Weiss, M.J.; Pellman, D. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing. Nat. Genet. 2021, 53, 895–905. [Google Scholar] [CrossRef]
- Ferrari, S.; Jacob, A.; Cesana, D.; Laugel, M.; Beretta, S.; Varesi, A.; Unali, G.; Conti, A.; Canarutto, D.; Albano, L.; et al. Choice of template delivery mitigates the genotoxic risk and adverse impact of editing in human hematopoietic stem cells. Cell Stem Cell 2022, 29, 1428–1444. [Google Scholar] [CrossRef]
- Huang, H.R.; Moroski-Erkul, C.; Bialek, P.; Wang, C.; Gong, G.; Hartfort, S.; Sattler, R.; White, D.; Lai, K.; Chalothorn, D.; et al. CRISPR/Cas9-mediated targeted insertion of human F9 achieves therapeutic circulating protein levels in mice and non-human primates. Mol. Ther. 2019, 27 (Suppl. 1), 7. [Google Scholar] [CrossRef]
- Lee, J.H.; Han, J.P.; Song, D.W.; Lee, G.S.; Choi, B.S.; Kim, M.; Lee, Y.; Kim, S.; Lee, H.; Yeom, S.C. In Vivo Genome Editing for Hemophilia B Therapy by the Combination of Rebalancing and Therapeutic Gene Knockin Using a Viral and Non-Viral Vector. Mol. Ther. Nucleic Acids 2023, 32, 161–172. [Google Scholar] [CrossRef]
- Wagner, D.L.; Peter, L.; Schmueck-Henneresse, M. Cas9-directed in humans—A model to evaluate regulatory T cells in gene therapy? Gene Ther. 2021, 28, 549–559. [Google Scholar] [CrossRef]
- Song, Y.K.; Liu, F.; Zhang, G.; Liu, D. Hydrodynamics-based transfection: Simple and efficient method for introducing and expressing transgenes in animals by intravenous injection of DNA. Methods Enzymol. 2002, 346, 92–105. [Google Scholar] [CrossRef]
- Zhang, G.; Budker, V.; Wolff, J.A. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum. Gene Ther. 1999, 10, 1735–1737. [Google Scholar] [CrossRef]
- Sandra, L.; Herrero, M.J.; Aliño, S.F. Translational advances of hydrofection by hydrodynamic injection. Genes 2018, 9, 136. [Google Scholar] [CrossRef]
- Heng, H.H.Q. Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J. Cell Sci. 2004, 117, 999–1008. [Google Scholar] [CrossRef]
- Quiviger, M.; Giannakopoulos, A.; Verhenne, S.; Marie, C.; Stavrou, E.F.; Vanhoorelbeke, K. Improved molecular platform for the gene therapy of rare diseases by liver protein secretion. Eur. J. Med. Genet. 2018, 61, 723–728. [Google Scholar] [CrossRef]
- Giannakopoulos, A.; Quiviger, M.; Stavrou, E.; Verras, M.; Marie, C.; Scherman, D. Efficient episomal gene transfer to human hepatic cells using the pFAR4-S/MAR vector. Mol. Biol. Rep. 2019, 46, 3203–3211. [Google Scholar] [CrossRef]
- Witzigmann, D.; Kulkarni, J.A.; Leung, J.; Chen, S.; Cullis, P.R.; van der Meel, R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 2020, 159, 344–363. [Google Scholar] [CrossRef]
- Hosseinkhani, H.; Abedini, F.; Ou, K.L.; Domb, A.J. Polymers in gene therapy technology. Polym. Adv. Technol. 2015, 26, 198–211. [Google Scholar] [CrossRef]
- Jain, A.; Hosseinkhani, H.; Domb, A.J.; Khan, W. Cationic Polymers for the Delivery of Therapeutic Nucleotides. In Polysaccharides; Ramawat, K.G., Merillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1969–1990. [Google Scholar] [CrossRef]
- Dirisala, A.; Uchida, S.; Tockary, T.A.; Yoshinaga, N.; Yoshinaga, N.; Li, J.; Osawa, S.; Gorantla, L.; Fukushima, S.; Osada, K.; et al. Precise tuning of disulphide crosslinking in mRNA polyplex micelles for optimizing extracellular and intracellular nuclease tolerance. J. Drug Target. 2019, 27, 670–680. [Google Scholar] [CrossRef]
- Abdullah, S.; Wendy-Yeo, W.Y.; Hosseinkhani, H.; Hosseinkhani, M.; Masrawa, E.; Ramasamy, R.; Rosli, R.; Rahman, S.A.; Domb, A.J. Gene transfer into the lung by nanoparticle dextran-spermine/plasmid DNA complexes. J. Biomed. Biotechnol. 2010, 2010, 284840. [Google Scholar] [CrossRef]
- Hosseinkhani, H.; Azzam, T.; Tabata, Y.; Domb, A.J. Dextran–spermine polycation: An efficient nonviral vector for in vitro and In vivo gene transfection. Gene Ther. 2004, 11, 194–203. [Google Scholar] [CrossRef]
- Abedini, F.; Hosseinkhani, H.; Ismail, M.; Chen, Y.R.; Omar, A.R.; Chong, P.P.; Domb, A.J. In vitro intracellular trafficking of biodegradable nanoparticles dextran–spermine in cancer cell lines. Int. J. Nanotechnol. 2011, 8, 712–723. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Tran, D.M.; Cavedon, A.; Cai, X.; Rajendran, R.; Lyle, M.J.; Miao, C.H. Treatment of Hemophilia A Using Factor VIII Messenger RNA Lipid Nanoparticles. Mol. Ther. Nucleic Acids 2020, 20, 534–544. [Google Scholar] [CrossRef]
- Paramasivam, P.; Franke, C.; Stöter, M.; Höijer, A.; Bartesaghi, S.; Sabirsh, A.; Lindfors, L.; Arteta, M.Y.; Dahlén, A.; Bak, A.; et al. Endosomal escape of delivered mRNA from endosomal recycling tubules visualized at the nanoscale. J. Cell Biol. 2022, 221, e202110137. [Google Scholar] [CrossRef]
- Dirisala, A.; Uchida, S.; Li, J.; Van Guyse, J.F.R.; Hayashi, K.; Vummaleti, S.V.C.; Kaur, S.; Mochida, Y.; Fukushima, S.; Kataoka, K. Effective mRNA Protection by Poly(l-ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromol. Rapid Commun. 2022, 43, e2100754. [Google Scholar] [CrossRef]
- Yen, A.; Cheng, Y.; Sylvestre, M.; Gustafson, H.H.; Puri, S.; Pun, S.H. Serum Nuclease Susceptibility of mRNA Cargo in Condensed Polyplexes. Mol. Pharm. 2018, 15, 2268–2276. [Google Scholar] [CrossRef]
- Uchida, S.; Itaka, K.; Uchida, H.; Hayakawa, K.; Ogata, T.; Ishii, T.; Fukushima, S.; Osada, K.; Kataoka, K. In vivo messenger RNA introduction into the central nervous system using polyplex nanomicelle. PLoS ONE 2013, 8, e56220. [Google Scholar] [CrossRef]
- Ghadiri, M.; Vasheghani–Farahani, E.; Atyabi, F.; Kobarfard, F.; Hosseinkhani, H. In–vitro assessment of magnetic dextran–spermine nanoparticles for capecitabine delivery to cancerous cells. Iran. J. Pharm. Res. 2017, 16, 1320–1334. [Google Scholar]
- Pipe, S.W.; Leebeek, F.W.G.; Recht, M.; Key, N.S.; Castaman, G.; Miesbach, W.; Lattimore, S.; Peerlinck, K.; Van der Valk, P.; Coppens, M.; et al. Gene Therapy with Etranacogene Dezaparvovec for Hemophilia B. N. Engl. J. Med. 2023, 388, 706–718. [Google Scholar] [CrossRef] [PubMed]
- Machin, N.; Ragni, M.; Smith, K. Gene therapy in hemophilia A: A cost-effectiveness analysis. Blood Adv. 2018, 2, 1792–1798. [Google Scholar] [CrossRef]
- Wilson, J.M.; Flotte, T.R. Moving Forward After Two Deaths in a Gene Therapy Trial of Myotubular Myopathy. Hum. Gene Ther. 2020, 31, 695–696. [Google Scholar] [CrossRef]
- Galieva, A.; Egorov, A.; Malogolovkin, A.; Brovin, A.; Karabelsky, A. RNA-Seq Analysis of Trans-Differentiated ARPE-19 Cells Transduced by AAV9-AIPL1 Vectors. Int. J. Mol. Sci. 2023, 25, 197. [Google Scholar] [CrossRef]
- Schulz, M.; Levy, D.I.; Petropoulos, C.J.; Bashirians, G.; Winburn, I.; Mahn, M.; Somanathan, S.; Cheng, S.H.; Byrne, B.J. Binding and Neutralizing Anti-AAV Antibodies: Detection and Implications for rAAV-Mediated Gene Therapy. Mol. Ther. 2023, 31, 616–630. [Google Scholar] [CrossRef]
- Earley, J.; Piletska, E.; Ronzitti, G.; Piletsky, S. Evading and Overcoming AAV Neutralization in Gene Therapy. Trends Biotechnol. 2023, 41, 836–845. [Google Scholar] [CrossRef]
- Arjomandnejad, M.; Dasgupta, I.; Flotte, T.R.; Keeler, A.M. Immunogenicity of Recombinant Adeno-Associated Virus (AAV) Vectors for Gene Transfer. BioDrugs 2023, 37, 311–329. [Google Scholar] [CrossRef]
- Hinderer, C.; Katz, N.; Buza, E.L.; Dyer, C.; Goode, T.; Bell, P.; Richman, L.K.; Wilson, J.M. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Hum. Gene Ther. 2018, 29, 285–298. [Google Scholar] [CrossRef]
- Roca, C.; Motas, S.; Marcó, S.; Ribera, A.; Sánchez, V.; Sánchez, X.; Bertolin, J.; León, X.; Pérez, J.; Garcia, M.; et al. Disease Correction by AAV-Mediated Gene Therapy in a New Mouse Model of Mucopolysaccharidosis Type IIID. Hum. Mol. Genet. 2017, 26, 1535–1551. [Google Scholar] [CrossRef]
- McCarty, D.M.; DiRosario, J.; Gulaid, K.; Muenzer, J.; Fu, H. Mannitol-Facilitated CNS Entry of rAAV2 Vector Significantly Delayed the Neurological Disease Progression in MPS IIIB Mice. Gene Ther. 2009, 16, 1340–1352. [Google Scholar] [CrossRef]
- Zou, P. First-in-Patient Dose Prediction for Adeno-Associated Virus-Mediated Hemophilia Gene Therapy Using Allometric Scaling. Mol. Pharm. 2023, 20, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Bertin, B.; Veron, P.; Leborgne, C.; Deschamps, J.-Y.; Moullec, S.; Fromes, Y.; Collaud, F.; Boutin, S.; Latournerie, V.; Van Wittenberghe, L.; et al. Capsid-Specific Removal of Circulating Antibodies to Adeno-Associated Virus Vectors. Sci. Rep. 2020, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Weber, T. Anti-AAV Antibodies in AAV Gene Therapy: Current Challenges and Possible Solutions. Front. Immunol. 2021, 12, 658399. [Google Scholar] [CrossRef] [PubMed]
- Potter, R.A.; Peterson, E.L.; Griffin, D.; Cooper Olson, G.; Lewis, S.; Cochran, K.; Mendell, J.R.; Rodino-Klapac, L.R. Use of Plasmapheresis to Lower Anti-AAV Antibodies in Nonhuman Primates with Pre-Existing Immunity to AAVrh74. Mol. Ther. Methods Clin. Dev. 2024, 32, 101195. [Google Scholar] [CrossRef] [PubMed]
- Chicoine, L.; Montgomery, C.; Bremer, W.; Shontz, K.; Griffin, D.; Heller, K.; Lewis, S.; Malik, V.; Grose, W.; Shilling, C.; et al. Plasmapheresis Eliminates the Negative Impact of AAV Antibodies on Microdystrophin Gene Expression Following Vascular Delivery. Mol. Ther. 2014, 22, 338–347. [Google Scholar] [CrossRef]
- Zhong, C.; Jiang, W.; Wang, Y.; Sun, J.; Wu, X.; Zhuang, Y.; Xiao, X. Repeated Systemic Dosing of Adeno-Associated Virus Vectors in Immunocompetent Mice after Blockade of T Cell Costimulatory Pathways. Hum. Gene Ther. 2022, 33, 290–300. [Google Scholar] [CrossRef]
Antibody and Producer | Description |
---|---|
Marsticimab (Pfizer, Brussels, Belguim, Cambridge, MA, USA) | This drug is a humanized IgG1 monoclonal antibody that binds to the Kunitz-2 domain of the TF/FVIIa complex in the extrinsic route of the coagulation cascade. With promising results (a considerable decrease in the number of bleeding in a group of 42 volunteers), the medication passed the first round of clinical trials, allowing for the continuation of research [45]. |
Befovacimab (BAY 1093884) (Bayer, São Paulo, Brazil, Berlin, Germany) | Monoclonal antibody IgG2 that binds to Kunitz domains 1 and 2. In 2018, positive results from a multicenter, open-label, phase 1 research with patients with hemophilia A and hemophilia B (both with and without an inhibitor) were presented. Preclinical and clinical trial data were encouraging at first, but befovacimab’s suitable safety profile was not later verified. Concerns regarding the predictability of thrombosis following befovacimab treatment are raised by the absence of laboratory abnormalities linked to SAEs or differential PK/PD characteristics in participants experiencing SAEs. This underscores the necessity for additional research on the therapeutic window of anti-TFPI treatment [46]. |
MG1113 (Greencross, Gyeonggi-do, Korea) | The drug was designed based on the IgG4 monoclonal antibody’s ability to bind Kunitz domain 2. It is used through both intravenous and subcutaneous administration. Results from in vitro and in vivo investigations in animal models of the ongoing phase 1 trials have demonstrated restoration of thrombin production and a decrease in bleeding [47,48]. |
Mim8 (Novo Nordisk, Måløv, Denmark) | The Duobody platform was used in the development of Mim8 [49] to screen for anti-FX and anti-FIXa antibodies. It is a new generation of bispecific antibody for the treatment of hemophilia A disease (by subcutaneous injection). The medication demonstrated low immunogenicity, low viscosity, enhanced activation on the membrane surface, and low binding of FIX and FX in solution in laboratory testing [50]. Despite having a distinct chemical structure, mim8 shares the bridging function of FIXa and FX with emicizumab. For instance, the emicizumab group and the anti-FIXa Mim8 group identify distinct epitopes [51]. Clinical trials in phases 1 and 2 are presently being conducted to assess the safety and efficacy of Mim8 in vivo [52]. |
Name | Company | Description |
---|---|---|
ASC618 | ASC Therapeutics, Milpitas, CA, USA | Clinical phase: 2 The drug was designed using an AAV8 vector, which encodes the B domain of codon-optimized human factor VIII under a synthetic liver-directed promoter intended for liver expression (NCT04676048). |
ANB-010 | BIOCAD, Saint Petersburg, Russia | Clinical phase: 2 The drug uses an AAV vector encoding human FVIII. Work on the investigational drugs has been ongoing since the beginning of 2018, and the first experiments to evaluate the effectiveness on animals were started in 2019. On 26 May 2023, the Ministry of Health of the Russian Federation issued permission to conduct a clinical trial ANB-010-1/EDELWEISS “Assessment of safety, pharmacodynamics, biodistribution, immunogenicity and effectiveness of the drug ANB-010 in patients with hemophilia A”. |
BMN 270: valoctocogene roxaparvovec (ROCTAVIAN™) | BioMarin Pharmaceutical, Novato, CA, USA | Clinical phase: 3 BMN 270 uses adeno-associated viruses (AAV 5) as carrier genes to express the protein factor VIII via a liver-selective promoter, which is lacking in people with hemophilia A. In this phase 3 open-label study, 54 men with hemophilia B (Factor IX activity ≤ 2% of normal) received a single infusion of adeno-associated virus 5 (AAV5) vector expressing the Padua variant of factor IX (etranacogene dezaparvovec; 2 × 1013 genome copies per kilogram of body weight), independent of pre-existing AAV5 neutralizing antibodies. This was done after a run-in period of prophylaxis with factor IX (NCT03569891). In the run-in phase, the annualized bleeding rate was 4.19 (95% confidence interval [CI], 3.22 to 5.45); for 7 to 18 months following therapy, it dropped to 1.51 (95% CI, 0.81 to 2.82), resulting in a rate ratio of 0.36 (95% Wald CI, 0.20 to 0.64; p < 0.001). The least-square mean of factor IX activity increased from baseline by 36.2 percentage points (95% CI 31.4 to 41.0) at 6 months and by 34.3 percentage points (95% CI 29.5 to 39.1) 18 months after treatment. During the posttreatment period, participants’ average annual usage of factor IX concentrate decreased by 248,825 IU (p < 0.001 for all three comparisons). Participants with pre-dose AAV5 neutralizing antibody titers of less than 700 showed benefit and safety. At the end of the study, no significant side effects connected to the medication were observed [136]. The European Medicines Agency (EMA) gave conditional approval to ROCTAVIAN in August 2022. Following this announcement, BioMarin announced the cost of the drug at EUR 1.5 million. In June 2023, the U.S. FDA approved ROCTAVIAN for the treatment of hemophilia A in adults with severe cases without pre-existing adeno-associated virus serotype 5 antibodies detected by an FDA-approved test. |
PF-07055480 | Pfizer, New York, NY, USA (formerly developed by Sangamo Therapeutics) | Clinical phase: 2 Hyroctocogen fitelparvovec is designed to deliver a shorter but working version of the F8 gene to hepatic cells, which are responsible for clotting factors synthesis in the body. The gene is packaged in SB-525 (PF-07055480) vector, which encodes liver-specific promoter, and AAV2/6 with improved liver tropism serves as a delivery mechanism to these cells (NCT03061201). |
SPK-8011/RG6357 | Roche, Basel, Switzerland (in collaboration with Spark Therapeutics) | Clinical phase: 2 SPK-8011 is an AAV-based (AAV-LK 03) capsid-expressing human FVIII. In July 2021, investigators presented information on a phase 2 study of SPK-8001, a new bioengineered AAV vector using the AAV-LK 03 capsid, also called Spark 200. The investigational SPK-8011 was dosed to 17 subjects in the phase 2 study: 2 at a dose of 5 × 1011 vg/kg, 3 at a dose of 1 × 1012 vg/kg, and 9 at a dose of 2 × 1012 vg/kg. Due to potential cellular immunity in response to the AAV capsid, two subjects experienced a loss of FVIII expression. After a two-year follow-up, eleven out of the fifteen participants who still had FVIII expression showed no significant decrease in FVIII activity (mean 12.6 ± 7.3% of normal at 26–52 weeks compared with 11.8 ± 7.2% of normal 52 weeks after vector injection; 95%, range: [−1.9, 0.3]) (NCT 03432520). |
BBM-H803 | Belief BioMed, Shanghai, China | Clinical phase: 1 BBM-H803, also called BBM-002, is designed to deliver a working version of F8 into liver cells using a harmless AAV vector. Once the F8 gene is unloaded from the viral vector, liver cells can begin to produce FVIII. This is expected to increase FVIII levels over a long period, thereby helping to prevent bleeding (NCT05454774). |
SB-525 | Pfizer (formerly developed by Sangamo Biosciences) | Clinical phase: 3 SB-525 is a gene therapy that uses a recombinant adeno-associated virus vector 2/6 (AAV 2/6) encoding a cDNA for the deleted B domain of human FVIII. The Alta trial is a phase II single-dose, dose-ranging study. Hyroctocogene fitelparvovec is a recombinant vector of AAV serotype 6 (rAAV 6), often referred to as SB-525 and PF-07055480. Four groups of two patients each received four ascending doses of gyroctcogene fitelparvovec (9 × 1011, 2 × 1012, 1 × 1013, and 3 × 1013 vg/kg). The dosage group was subsequently extended to 3 × 1013 vg/kg by adding three more patients. Eleven of the participants in this study were male. Patient follow-up lasted from 35 to 144 weeks; one patient from group 1 × 1013 vg/kg was later withdrawn from the study. In summary, elevated alanine aminotransferase (ALT; 8 [72.7%]), elevated aspartate aminotransferase (AST; 5 [45.5%]), upper respiratory tract infections (4 [36.4%]), and fever (4 [36.4%]) were the most frequently reported adverse effects. One patient (from the 3 × 1013 vg/kg dose cohort) reported treatment-related complications, hypotension, and fever within ≈6 h of drug infusion. The increase in factor VIII activity from baseline was generally successful but relatively short-lived. Patients in cohort 3 × 1013 vg/kg maintained a mean value in the normal range for factor VIII activity for five weeks after infusion, with a mean FVIII activity value of 63.5. About 3 weeks post-gyroctocogen prophylaxis administration, no bleeding was observed in any patient treated in the 3 × 1013 vg/kg cohort (NCT 04370054). |
Name | Company | Description |
---|---|---|
ANB-002 | BIOCAD | Clinical phase: 2 A new gene therapy for the treatment of hemophilia B based on BIOCAD proprietary AAV capsid vector. It contains an expression cassette—a synthetic DNA fragment encoding the therapeutic gene for human blood clotting factor IX (FIX). On 20 February 2023, the Russian Ministry of Health issued permission to conduct the clinical trial ANB-002-1/SAFRAN. |
PF-06838435 (fidanacogene elaparvovec) | Pfizer | Clinical phase: 3 A single dose of this medicine is administered intravenously (IV) to prevent frequent bleeding episodes in patients. Paduya‘s working F 9 gene is packaged in an engineered delivery vector called adeno-associated virus (AAV)-Spark 100. It is approved as Beqvez for adults with moderate to severe hemophilia B who tested negative for antibodies against the viral vector therapy. The safety and pharmacological properties of fidanacogene elaparvovec were initially studied in an open-label phase 1/2a study (NCT02484092). Following promising results from the phase 1/2a study, a phase 3 clinical trial called BENEGENE-2 (NCT03861273) was initiated to study gene therapy in a larger population of patients with hemophilia B. Results from the first 45 participants showed a 71% decrease in bleeding rate after gene therapy treatment compared with the run-in period (1.3 vs. 4.43 bleedings per year). The rate of bleeding requiring treatment decreased by 78%, while the rate of replacement therapy infusions decreased by 92%. Two years after treatment, the average activity of FIX in treated individuals was 25% normal. In comparison, FIX activity of 5% to 40% is considered a mild form of hemophilia B. Patients with this percentage activity often only have noticeable bleeding from trauma or surgery, not spontaneous bleeding. Participants will be assessed over 15 years to assess long-term safety outcomes. |
Idanacogene elaparvovec | Pfizer/Spark Therapeutics, Philadelphia, PA, USA | Clinical phase: 2 At a dosage of 5 × 1011 mg/kg, the hepatotropic bioengineered medication fidanacogene elaparvovec, which is based on the AAV vector and effectively delivers transgenes, has demonstrated sustained FIX levels and a low average annual bleeding rate. For 45 adult male volunteers with moderate to severe hemophilia B, Pfizer started a phase 3 open-label study to evaluate the safety and effectiveness of factor IX (FIX) gene transfer using PF-06838435 (Raav-Spark 100-Hfix-Padua). Pfizer reported the results at the February session of the EHAAD 2023 conference. No bleeding incidents occurred in 64.5% (29/45) of the participants between week 12 and month 15 following the medication infusion. In months 15 and 24, the average FIX activity was 27.5% and 25%, respectively. The majority of patients, over 80%, had FIX levels higher than 5%. In total, 62.2% (28/45) of the subjects were administered corticosteroids. The corticosteroid treatment lasted an average of 107 days. No corticosteroids had been administered to any of the participants in the first year after the drug infusion (NCT 02484092). |
BBM-H901 | Belief BioMed | Clinical phase: 1 An AAV vector is used to deliver the FIX Padua gene. Ten adult men in China participated in an open-label, phase 1 research (NCT04135390) to evaluate the safety and efficacy of a single intravenous (IV) infusion of BBM-H901. The pretreatment FIX activity of less than two international units per deciliter of blood (UI/dL), the absence of FIX protein antibodies, and low levels of AAV-specific antibodies were present in the eligible participants. Following a week of consistent doses of the immunosuppressive drug prednisolone, patients received a single dosage of BBM-H901 at a rate of 5 × 1010 vector genomes per kilogram of body weight (vg/kg). There was a reduction in the median number of target joints from 1.5 to 0, in the median annualized bleeding rate from 12 to 0, and in the median number of FIX replacement therapy infusions from 53.5 to 0. It should be noted that the target joints are the joints where bleeding often occurs. |
VGB-R04 | Shanghai Vitalgen BioPharma Co, Shanghai, China | Clinical phase: 1/2 VGB-R04 is a novel AAV vector armed with a high specific activity variant of factor IX. Volunteers are currently being recruited for clinical trials. Six weeks before the injection of VGB-R04, each participant in this study will give their informed consent and go through a screening evaluation. Each participant will undergo preliminary safety monitoring for 52 (±2) weeks and be allowed to take part in a follow-up study to assess VGB-R04’s long-term safety for five years. |
AskBio009 | Takeda, Cambridge, MA, USA | Clinical phase: 2 The liver-specific transthyretin promoter/enhancers, an AAV2-derived inverted terminal repeat, and codon-optimized complementary DNA (cDNA) encoding the hyperactive FIX (R338L) Padua variant were all included on the BAX 335 expression cassette. This allowed for the delivery of FIX (NCT01687608) |
AMT061 (etranacogene dezaparvovec) | uniQure, Amsterdam, The Netherlands/CSL Behring, King of Prussia, PA, USA | Clinical phase: 3 AMT-061 consists of Padova-type FIX, a mutant gene with eight to nine times the expression of wild-type FIX, and LP 1, under the control of a liver-specific promoter, within the AAV 5 viral vector. The latest report of the phase 3 etranacogene desaparvovec trial in February 2023 was by CSL Behring at the EHAAD meeting. According to the report, 96% (52/54) of participants achieved a sustainable FIX level. In one patient, therapy was discontinued due to an allergic reaction. The second patient who did not benefit from the trial had a very high level of antibodies against AAV. High levels of antibodies to the AAV vector were present in 39% (21/54) of the subjects. Twenty of them were able to produce robust expression of FIX with titers less than 700 (NCT 03569891). The average annual bleeding rate for months from 7 to 24 was recorded to be no more than 1. In the 18th month, the average FIX expression activity was 36.9%, whereas in the 24th month, it was 36.7%. After the infusion, ALT (alanine aminotransferase) levels increased in 21% (11/52) of subjects. Of the 52, 17% were administered corticosteroids. The corticosteroid treatment lasted for eighty days. Corticosteroids were discontinued for all the participants after the 6th month. Hepatocellular carcinoma (HCC) was discovered in one patient a year following the infusion. In December 2020, the FDA originally put an end to the etranacogene desaparvovec investigation. Following months of investigation, UniQure determined that the treatment was “very unlikely” to result in cancer. In February 2023, etranacogene dezaparvovec received conditional clearance from the European Medicines Agency. November 2022 saw the U.S. FDA approve Etra. Shortly after, CSL declared the price of this drug to be USD 3.5 million. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernyi, N.; Gavrilova, D.; Saruhanyan, M.; Oloruntimehin, E.S.; Karabelsky, A.; Bezsonov, E.; Malogolovkin, A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules 2024, 14, 854. https://doi.org/10.3390/biom14070854
Chernyi N, Gavrilova D, Saruhanyan M, Oloruntimehin ES, Karabelsky A, Bezsonov E, Malogolovkin A. Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules. 2024; 14(7):854. https://doi.org/10.3390/biom14070854
Chicago/Turabian StyleChernyi, Nikita, Darina Gavrilova, Mane Saruhanyan, Ezekiel S. Oloruntimehin, Alexander Karabelsky, Evgeny Bezsonov, and Alexander Malogolovkin. 2024. "Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives" Biomolecules 14, no. 7: 854. https://doi.org/10.3390/biom14070854
APA StyleChernyi, N., Gavrilova, D., Saruhanyan, M., Oloruntimehin, E. S., Karabelsky, A., Bezsonov, E., & Malogolovkin, A. (2024). Recent Advances in Gene Therapy for Hemophilia: Projecting the Perspectives. Biomolecules, 14(7), 854. https://doi.org/10.3390/biom14070854