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Abstract: Alzheimer’s disease (AD) brains are histologically marked by the presence of intracellular
and extracellular amyloid deposits, which characterize the onset of the disease pathogenesis. Increas-
ing evidence suggests that certain nutrients exert a direct or indirect effect on amyloid β (Aβ)-peptide
production and accumulation and, consequently, on AD pathogenesis. We exploited the fruit fly
Drosophila melanogaster model of AD to evaluate in vivo the beneficial properties of Lisosan G, a
fermented powder obtained from organic whole grains, on the intracellular Aβ-42 peptide accumula-
tion and related pathological phenotypes of AD. Our data showed that the Lisosan G-enriched diet
attenuates the production of neurotoxic Aβ peptides in fly brains and reduces neuronal apoptosis.
Notably, Lisosan G exerted anti-oxidant effects, lowering brain levels of reactive oxygen species and
enhancing mitochondrial activity. These aspects paralleled the increase in autophagy turnover and
the inhibition of nucleolar stress. Our results give support to the use of the Drosophila model not
only to investigate the molecular genetic bases of neurodegenerative disease but also to rapidly and
reliably test the efficiency of potential therapeutic agents and diet regimens.

Keywords: amyloid β peptides; Alzheimer’s disease; brain neurodegeneration; Drosophila model
system; Lisosan G; nutraceuticals; natural compounds

1. Introduction

Alzheimer’s disease (AD) stands as the most prevalent neurodegenerative disorder
and form of dementia, characterized by cognitive decline typically occurring later in life [1].
Histologically, AD brains exhibit intracellular and extracellular amyloid deposits [2–4].
These amyloid plaques primarily consist of amyloid peptides Aβ-40 and Aβ-42, with
the latter being the predominant amyloidogenic peptide, generated through differential
proteolytic cleavage of the transmembrane receptor Amyloid Precursor Protein (APP).
This cleavage is mediated by the β-site APP-cleaving enzyme (BACE) and the γ-secretase
complex comprising Presenilin 1 and 2, Nicastrin, APH-1, and PEN-2 [5,6]. Excessive
accumulation of amyloid β (Aβ) peptides is thought to be the initial event in the disease
pathogenesis, inducing neuronal dysfunction and death [7,8].

The power of the fruit fly Drosophila melanogaster genetics to model neurodegenera-
tive diseases provides novel insights into the pathogenic processes that occur in human
brains [9–12]. Approximately 70% of genes responsible for human diseases have coun-
terparts in the fruit fly [13]. Hence, it is not unexpected that many genes linked to AD
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pathogenesis have counterparts in Drosophila that display functional similarity. The
Drosophila homolog of human APP, known as APP-like or APPL, possesses characteristic
domains akin to vertebrate APP family members but lacks similarity at the C-terminal
amyloidogenic Aβ-peptide sequence [14]. For this reason, despite the conservation and
functional capabilities of γ-secretase complex components in Drosophila, which can accu-
rately process both human APP and fly APPL [15–18], it was thought that no endogenous
toxic Aβ-peptide could be produced in the fly [19–21]. However, a β-secretase-like enzyme
was later identified in Drosophila, able to cleave human APP and also Drosophila APPL,
producing an Aβ-peptide able to aggregate and induce neurodegeneration phenotypes
in Drosophila [16]. Overall, the above data show that APP and APPL proteins and their
processing pathways are evolutionarily conserved, as is the production of a neurotoxin
Aβ-peptide.

To gain further insights into APP processing, Aβ-peptide production, and neuro-
degeneration induction, transgenic flies that carry Gal4-driven [22] constructs co-expressing
the 695 amino acid isoform of human APP and the human β-site APP-cleaving enzyme 1
(BACE1), were generated [15,23,24]. Human APP undergoes cleavage by human BACE1
followed by endogenous Drosophila γ-secretase, resulting in the generation of the Aβ-
peptide in the brains of transgenic flies. The intracellular accumulation and aggregation of
Aβ align with AD phenotypes [25].

The development of fruit fly models of AD provides an excellent tool to assay the
effects of diet on pathological phenotypes associated with Aβ peptide accumulation [26].
During the last few years, increasing evidence has suggested that certain nutrients exert a
direct or indirect effect on Aβ-peptide production and accumulation and, consequently,
on AD pathogenesis. Specific nutrients show modulating effects on the inflammatory
response and on the oxidative stress related to the disease, which eventually leads to
the neurodegeneration observed in AD [27]. Drosophila melanogaster is a potent in vivo
model for studying human neurodegenerative diseases that could be used parallel to
traditional vertebrate systems [12,28]. Furthermore, Drosophila models are valuable for
exploring pathophysiological alterations and drug discovery, including investigations on
bioactive natural compounds [29–32]. In this respect, Drosophila is a robust and well-
established genetic framework. It provides a significant advantage concerning low-cost
animal husbandry management, with a short generation time and lifespan, which are suitable
characteristics to test the biological effects of a nutraceutical molecule in vivo [33–35].

To support the use of in vivo alternatives to the traditional vertebrate models in the
study of the potential activity of natural substances in AD, recently, an interesting set of
experiments highlighted the remarkable anti-oxidant properties of plant edible flower
extract [36,37]. Lisosan G is a fermented powder obtained from organic whole grains
(Triticum aestivum). It is a crude mix containing proteins, lipids, glucids, polysaccharides,
vitamins B1, B2, and B6, tocopherols, polyunsaturated fatty acids [38], and mineral elements
such as magnesium, iron, zinc, copper, and selenium [38]. Recently, an active role of the
main metabolite components of Lisosan G, namely gallic acid, 4-hydroxybenzoic acid,
quercetin, and nicotinamide, was suggested in mice retina affected by glaucoma [39]. In
addition, the protective effects of Lisosan G against apoptosis, autophagy impairment, and
oxidative stress/inflammation through the involvement of anti-oxidant systems are well
documented in different models, including nervous system components of Drosophila [40–46].
In the present work, we exploited the Drosophila model of AD to evaluate in vivo the
beneficial properties of the oral administration of Lisosan G on the brain content of Aβ-42
peptide and their pathological effects.

2. Materials and Methods
2.1. Chemicals

The alimentary integrator Lisosan G, which is registered with the Italian Ministry of
Health as a nutritional supplement, was obtained from Agrisan Company (Larciano, Pistoia,
Italy). As previously detailed [46], Lisosan G is a powder obtained by the fermentation of
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the bran and germ of a grain (Triticum aestivum) that contains different major components,
including proteins, lipids, glucids, polysaccharides, oligo-elements, vitamins, and fatty acid
and appears particularly rich in anti-oxidant components such as phenolic components
and alpha-lipoic acid.

Bovine serum albumin, normal goat serum, anti-nitrotyrosine primary antibody
(#A21285), and Alexa Fluor secondary antibodies were purchased from ThermoFisher Scien-
tific (Monza, Italy). Anti-cleaved caspase 3 primary antibody (#9664) and horseradish perox-
idase (HRP)-conjugated secondary antibodies were purchased from Cell Signaling Technol-
ogy (Danvers, MA, USA). Anti-Light-Chain 3 (LC3) (#ab128025), anti-p62/Sequestosome-1
(SQSTM1) (#P0067), and anti-tubulin (#T5168) were purchased from Merck Sigma-Aldrich
(Darmstadt, Germany). The primer pairs for PCR analysis were purchased from Bio-Fab
Research (Roma, Italy). Where not indicated, the other reagents were purchased from
Merck Sigma-Aldrich.

2.2. Fly Strains and Crosses

Transgenic fly lines that express wild-type human Aβ-42 peptide (UAS-Aβ42) and a
pan-neuronal elav-Gal4 driver were obtained from Bloomington Drosophila Stock Center
(Indiana University, Bloomington, IN, USA). The AD model flies were obtained by crossing
three to five Gal4 virgin females to three Aβ-42 males. In the F1 progeny, AD animals were
UAS-Aβ42::ElavGAL4, and they could be distinguished from healthy siblings based on their
phenotypic characteristics (Figure 1). Healthy flies, recognized by the Tubby phenotype,
do not contain the UAS-Aβ42 third chromosome and hence did not reproduce the AD
phenotype. In the nervous system of AD flies (phenotypically non-Tubby), Gal4 activated
the expression of APP and BACE1, with the latter processing the former together with
endogenous D. melanogaster γ-secretase, thus generating the toxic Aβ peptide.
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Figure 1. Crossing to obtain progeny affected by AD in D. melanogaster. The UAS/GAL4 system
allows the expression of the human genes BACE1 (coding for the human β-secretase enzyme) and
APP (coding for the human 695aa APP protein) throughout the central nervous system, resulting
in the formation of Aβ plaques in the brain, a hallmark of AD. Specifically, by crossing transgenic
parental lines (P) of Drosophila carrying the UAS sequence upstream the human genes APP and
BACE1 with a pan-neuronal driver elav-Gal4, the F1 progeny generates the Aβ-42 expressing animals,
which accumulates and forms amyloid plaques at the extraneuronal level.
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2.3. Standard and Integrated Diet, Treatments

Flies were raised on a standard Drosophila cornmeal agar diet (STD) at 25 ◦C. Briefly,
1200 mL of diet contained 100 g cornmeal, 110 g glucose, 100 g yeast, and 8 g agar. As an
anti-mold agent, 3 g ethyl 4-hydroxybenzoate, dissolved in 16 mL of absolute ethanol, was
added to the diet. To prepare the experimental diet, Lisosan G was added to the STD and
thoroughly mixed [46]. The generated AD model flies were allowed to feed on the diet
supplemented with Lisosan G for the entire developmental period at a final concentration
of 10 µg/mL [46]. Three crosses were set up as control, each on 10 mL of the STD; the
other three crosses were set up on 10 mL of Lisosan G-supplemented diet. Parental strains
(UAS-Aβ42) and the F1 healthy progeny were also used as a control in all the assays.

2.4. Tissue Preparation

Following published protocols [46–50], D. melanogaster heads were immersion-fixed
overnight or for 48 h in 4% paraformaldehyde in 0.1 M Phosphate Buffer (PB) at 4 ◦C,
transferred to 12% sucrose in PB, and stored at 4 ◦C for at least 24 h. Longitudinal sections
(10 mm of thickness) were obtained by a cryostat, mounted onto positively charged slides,
and stored at −20 ◦C until use. All the counts of the in situ immunolabeling experiments
and the consequent statistical analyses were focused on the central brain area.

2.5. Aβ Immunohistochemistry—Congo-Red Staining

Histological brain sections (10 µm of thickness) were placed on slides and stained
with an amyloid stain, Congo Red kit (Congo Red Stain Kit/Amyloid Stain; Abcam,
Cambridge, UK), following the manufacturer’s protocol, with some slight modifications.
Briefly, sections were quickly washed in PB; then, they were hydrated with distilled water.
Slides were stained with 4–6 drops of Hematoxylin, incubated for 50–60 s, and rinsed with
tap water. Slides were then stained with 4–6 drops of Bluing Reagent, incubated for 30 s,
and rinsed in distilled water. Slides were dipped in 95% alcohol for 5 s and stained with
Congo Red Solution for 20 min. Finally, slides were quickly dipped twice in 100% alcohol,
dipped repeatedly (4 dips) in a clearing agent, and mounted in synthetic resin.

2.6. Imaging and Quantification of Aβ Plaques

To quantify Aβ plaques in each brain, we analyzed brains from a minimum of
3 independent experiments; in particular, 12 brains from flies reared on STD and 15 brains
from flies reared on the Lisosan G-supplemented diet. For image analysis, we used ImageJ
software, available at: https://imagej.net/ij/ (accessed on 1 February 2024). Blinded quan-
tification of Aβ plaques in histological preparations of Congo Red stained brain sections
was performed by counting individual plaques in non-overlapping digital images captured
using the 100× objective (Zeiss Axioskop 2 plus microscope; Carl Zeiss, Oberkochen, Ger-
many). For the larger deposits of Aβ peptide, detectable as intense Congo Red staining, we
also measured the area. Aβ plaques above 5 nm2 were considered as large.

2.7. Confocal Immunostaining

For immunostaining detection, longitudinal sections were washed in PB and then
pre-incubated for 30 min at room temperature with 5% and 10% of normal goat serum
in PB containing 0.5% Triton X-100. Pre-treated sections were incubated overnight at
4 ◦C with the following rabbit primary antibodies: anti-cleaved caspase 3 (1:500), anti-
nitrotyrosine (1:100), anti-LC-3 (1:100), and anti-p62 (1:200) [51,52] in PB containing 0.5%
Triton X-100. Following washes in PB, the sections were incubated in the appropriate Alexa
Fluor secondary antibodies (1:200) in PB for 1.5 h at room temperature. Incubation in
secondary antibody alone was performed as a negative control.

Images were acquired by a Zeiss LSM 710 confocal microscope (Carl Zeiss). Blinded
analysis of cleaved caspase 3 and nitrotyrosine immunostaining was carried out on the
single images of each brain section. Each image was converted to grayscale and normalized
to the background using Adobe Photoshop (Adobe Systems, Mountain View, CA, USA).

https://imagej.net/ij/
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Mean gray levels were then measured in the selected areas [53]. A minimum of 10 areas
from at least 10 different flies collected in 3 independent experiments were analyzed for
each experimental group.

2.8. Protein Extraction and Western Blotting Analysis

Western blotting was carried out using protein extracts obtained from 15 fly heads
per experimental group. Heads were homogenized in 20 µL of 6X sample buffer (compris-
ing 0.125 M Tris-HCl pH 6.8, 2% SDS, 5% DTT, 10% Glycerol, Bromophenol Blue). The
denatured protein samples were loaded onto a 12% polyacrylamide gel with a thickness
of 0.75 mm for size-based separation. The running gel was prepared by mixing 30% acry-
lamide, 1.5 M Tris pH 8.8, 10% SDS, 10% APS and TEMED in a total volume of 8 mL
distilled water. The stacking gel was prepared by mixing in distilled water, 30% acrylamide,
0.5 M Tris pH 6.8, 10% SDS, 10% APS and TEMED. Each well was loaded with 20 µL of
protein sample. The gel-containing support was placed in the electrophoresis chamber
with 1x TGS pH 8.3 and run for 1 h at a constant voltage of 120.

For immunoblotting analysis [54,55], SDS–polyacrylamide gels were electroblotted
onto a nitrocellulose membrane (Bio-Rad, Hercules, CA, USA) using transfer buffer (390 mM
NaH2PO4H2O and 610 mM Na2HPO4H2O). The membranes were subsequently blocked
with 5% low-fat dry milk and then probed with the rabbit anti-cleaved caspase 3 (1:500)
and the mouse anti-tubulin (1:1000) antibodies. The incubation was conducted overnight
at +4 ◦C. Following the primary antibody incubation, the membrane was washed with
three 5-min rinses in the washing buffer and subsequently incubated with the appropriate
HRP-conjugated secondary antibodies (1:5000) for an hour at room temperature. After the
secondary antibody incubation, three additional 5-min rinses were performed. All blots
were developed using the ECL Plus method (Amersham Biosciences/Cytiva, Freiburg,
Germany) and signals were detected with the ChemiDoc scanning system (Bio-Rad) at
multiple exposures.

2.9. Determination of Reactive Oxygen Species (ROS)

Determination of reactive oxygen species was performed as previously published with
minor modifications [46]. Briefly, 100 fly heads per experimental group were weighted
and then homogenized in 10 mM Tris buffer, pH 7. The homogenates were centrifuged at
1200 rpm for 5 min at 4 ◦C, and 100 µL of each supernatant were incubated in the presence
of 5 µM 2′,7′-Dichlorofluorescin diacetate (DCFH-DA) at 37 ◦C for 60 min. Results were
recorded at the end of the incubation at an excitation wavelength of 488 nm and an emission
wavelength of 525 nm in a DTX 880 Multimode Detector (Beckman Coulter, Brea, CA, USA).

2.10. 9 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) Assay

The mitochondrial viability in the head homogenate of adult flies was evaluated as
previously published with minor modifications [52,56,57]. Briefly, 100 heads per experi-
mental group were weighted and manually homogenized in cold PB. The supernatants
were collected after each consecutive centrifugation at 4 ◦C for 5 min at 1500 rpm. Mito-
chondrial activity was then evaluated using the MTT reduction method (0.5 mg/mL of
final concentration) at the absorbance of 595 nm.

2.11. RNA Analysis and Gene Expression Assay

Frozen third instar larvae (n = 25) were homogenized in 600 mL of TRIzol solution
(ThermoFisher Scientific). Total RNA was purified using the Direct-zol™ RNA MiniPrep
Kits (Zymo Research, Irvine, CA, USA), following the manufacturer’s protocol. RNA
integrity was checked on agarose gel 1%. RNA quantification was performed via Qubit
RNA HS Assay Kit (ThermoFisher Scientific) using the Qubit 2.0 Fluorometer. mRNA was
reverse transcribed with the RevertAid Reverse Transcriptase and the oligo(dT)18 primer in
the first strand cDNA using the Thermo Scientific RevertAid First Strand cDNA Synthesis
Kit (ThermoFisher Scientific) following the manufacturer’s instructions. The cDNA was



Biomolecules 2024, 14, 855 6 of 18

synthesized in the thermocycler MJ Research and stored at −20 ◦C. Quantitative PCR was
performed using the CFX96 Touch Real-Time PCR Detection System (Bio-Rad) with SYBR
green dye (GoTaq® qPCR Master Mix; Promega, Madison, WI, USA). The primer pairs are
detailed in Table 1. Rpl32 has been used as a housekeeping gene for normalization using
the 2−∆∆CT method.

Table 1. Primer pairs designed for qPCR analysis.

Gene Name FlyBase ID Primer Sequence * Amplicon Size

sod1 FBgn0003462 F: 5′-ACCGACTCCAAGATTACGCTC-3′

R: 5′-CAGTGGCCGACATCGGAATA-3′ 197 bp

sod2 FBgn0010213 F: 5′-AATCTAAATGCCGCCGAGGA-3′

R: 5′-CTCTTCCACTGCGACTCGAT-3′ 197 bp

cat FBgn0000261 F: 5′-CTATGGCTCGCACACCTTCA-3′

R: 5′-TCGTCCAACTGGGGAACTTG-3′ 194 bp

rpl32 FBgn0002626 F: 5′-GACCATCCGCCCAGCATAC-3′

R: 5′-CGGCGACGCACTCTGTT-3′ 138 bp

* F: forward, R: reverse.

2.12. Statistical Analysis

Generally, sample size calculation was conceptualized with a 5% alpha error, 80%
power, and appropriate effect strength. Samples were only excluded from analyses due
to technical problems, e.g., pipetting error, loss/spill of samples, or defects in materi-
als/hardware. Statistical significance of raw data between the groups (completely random-
ized) in each experiment was evaluated using unpaired Student’s t/Mann–Whitney tests
(single comparisons) or one-way ANOVA followed by the Tukey post-test (multiple compar-
isons). A p-value ≤ 0.05 was considered statistically significant. Data belonging to different
experiments were represented and averaged in the same graph. R-Bionconductor [58],
available at: https://www.r-project.org/ (accessed on 1 February 2024), and the GraphPad
Prism 6 software package (GraphPad Software, San Diego, CA, USA) were used for the
analyses. The results are expressed as means ± SEM of the indicated n values.

3. Results

To obtain D. melanogaster expressing the Aβ peptide in the brain, thus mimicking AD,
transgenic Drosophila lines expressing the human APP and BACE1 under UAS control were
crossed to stocks expressing the pan-neuronal driver elav-Gal4. The generated AD model
flies were allowed to feed either on STD or on the diet supplemented with Lisosan G for
the entire developmental period at a final concentration of 10 µg/mL. This concentration
was previously assessed as effective to counteract hyperglycemic injuries to Drosophila
retinal neurons [46]. To minimize the effects of aging on the neurological phenotypes, the
experiments were performed on 1–5 days-old adult animals unless otherwise indicated.

3.1. Lisosan G Diet Reduces the Number of Amyloid β Plaques in AD Brains

The amyloid structure of plaque-forming Aβ-peptide aggregates was identified through
Congo Red staining [59] of tissue sections from adult fly brains, making this dye the gold
standard for the histological visualization of amyloid in tissue sections. Brain tissues from
healthy individuals grown on STD, with or without Lisosan G supplementation, were
devoid of amyloid plaques (Figure 2A,A’), which instead characterized brain tissues from
transgenic animals mimicking AD (Figure 2B). The Congo Red staining showed the pres-
ence of both numerous small clusters and a few larger deposits of Aβ peptide detectable
as intense red staining in the brains of adult flies. The Congo Red staining on adult brain
sections from AD flies grown on food supplemented with Lisosan G showed a remarkable
recovery of the AD-related amyloid β plaque phenotype (Figure 2C), with a significant re-
duction in the β-amyloid peptide aggregates in all animals examined (Figure 2D,E). In total,
we observed 2150 small plaques in the brains of 12 AD flies grown on standard food (mean:

https://www.r-project.org/
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ca. 179 plaques/brain), as opposed to only 223 plaques in 15 AD flies grown on Lisosan
G-supplemented food (mean: ca. 15 plaques/brain) (Figure 2D). As regards large plaques,
we found 168 plaques in AD animals fed with STD (mean: 14 plaques/brain) that were
significantly reduced in Lisosan-fed AD animals (total number: 30; mean: 2 plaques/brain)
(Figure 2E). To note, the size of large plaques decreased as well in AD flies treated with
Lisosan G when compared with animals grown on control food (Table 2).
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Figure 2. Effect of Lisosan G on Aβ plaques in AD brains of D. melanogaster. Longitudinal tis-
sue sections from adult fly brains dyed with Congo Red staining to identify the Aβ plaques.
(A,A’) Brain tissues from healthy individuals devoid of Aβ plaques grown on STD or food sup-
plemented with Lisosan G, respectively. (B) In brain tissues from AD individuals, the Congo Red
staining displays small clusters (arrowheads) and larger deposits of β-amyloid peptide (arrows).
Inserts represent enlarged image details of the Aβ plaques. (C) Brain tissues from AD flies grown
on food supplemented with Lisosan G, the Congo Red staining shows a remarkable recovery of the
AD-related Aβ plaque phenotype. Scale bar: 10 µm. Quantitative measurements of small (D) and
large (E) plaques number/brain in the brain of AD flies grown on STD or food supplemented with
Lisosan G. *** p < 0.0001 vs. STD. Images and data are representative of n = 12–15 animals obtained
from at least 3 independent experiments.
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Table 2. Area of Aβ large plaques in AD D. melanogaster brains.

Treatment Mean Area (nm2)

STD 19.65 ± 1.83

Lisosan G-supplemented food 11.32 ± 2.03 ***
*** p < 0.0001 vs. STD.

3.2. Lisosan G Diet Reduces the Apoptosis Levels in AD Brains

Drosophila AD adult brains were also characterized by intense apoptotic activity as
evidenced by the presence of numerous cleaved (active) caspase-3 foci (Figure 3B), which
were instead absent in non-AD brains from healthy flies grown on STD, with or without
Lisosan G (Figure 3A,A’). Remarkably, the number and intensity of apoptotic foci were
significantly reduced by ca. 65% when flies were grown on Lisosan G-supplemented food
(Figure 3C,D). Accordingly, the immunoblotting analysis performed on protein extracts
obtained from the heads of adult AD Drosophila confirmed a clear decrease in active
caspase-3 in the brains of flies being administered with Lisosan G (Figure 3E).
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Figure 3. Effect of Lisosan G on the apoptosis levels of AD D. melanogaster brains. Confocal mi-
croscopy immunofluorescence imaging of cleaved (active) caspase 3 in longitudinal brain sections
from healthy flies grown on STD (A) or food supplemented with Lisosan G (A’), AD flies grown on
STD (B) or on food supplemented with Lisosan G (C). Inserts represent enlarged image details of the
cleaved caspase-3 signals. Scale bar: 5 µm. (D) Quantitative analysis of cleaved caspase-3 immunoflu-
orescence (a.u.: arbitrary units) in the brain of AD flies grown on STD or food supplemented with
Lisosan G. *** p < 0.0001 vs. STD. Images and data are representative of n = 10–15 animals obtained
from at least 3 independent experiments. (E) Western blot analysis of cleaved caspase 3 in adult
brains from AD flies grown on STD and Lisosan G-supplemented diet. To avoid saturation, tubulin
has been acquired at a shorter exposure than caspase 3. The proteins are thus displayed as separate
blots cut at the relevant molecular weights. Image is representative of 3 independent experiments
(n = 45 animals). Western blot original images are in the Supplementary Materials.
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3.3. Lisosan G Diet Reduces the Oxidation Levels of AD Brains

A growing body of evidence has been accumulating in support of the beneficial role
of polyphenols in preventing neurodegenerative diseases and relieving the symptoms
of AD [60,61]. The Lisosan G’s ability to ameliorate the pathological symptoms in the
Drosophila AD model can be ascribed to its polyphenol content, which was demonstrated
to efficiently counteract oxidative stress [44]. In this respect, the redox status of AD flies
was first verified by confocal immunostaining using an anti-nitrotyrosine antibody to detect
peroxynitrite [49]. As shown in Figure 4A,A’,D, adult brains of healthy flies grown on
STD, with or without Lisosan G, were nearly devoid of any peroxynitrite staining. On
the contrary, intense nitrotyrosine immunostaining, formed by many punctuated signals,
was clearly detected in all the areas of AD brains and was more intense when compared
with animals grown on control food (Figure 4B–D). In AD flies fed with Lisosan G, instead,
the increase in peroxynitrite labeling was significantly reduced by ca. 38%, although the
oxidation levels did not reach those detected in healthy brains (Figure 4C,D).
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Figure 4. Effect of Lisosan G on the redox status of AD D. melanogaster brains. Confocal microscopy
immunofluorescence imaging of nitrotyrosine in longitudinal brain sections from healthy flies grown
on STD (A) or food supplemented with Lisosan G (A’) and AD flies grown on STD (B) or food
supplemented with Lisosan G (C). Inserts represent enlarged image details of the nitrotyrosine
signals. Scale bar: 20 µm. (D) Quantitative analysis of nitrotyrosine immunofluorescence (a.u.:
arbitrary units). Images and data are representative of n = 5–8 animals obtained from at least
3 independent experiments. §§§ p < 0.0001 vs. healthy; *** p < 0.0001 vs. AD STD. (E) Measurements
of ROS by DCF fluorescence intensity in heads of AD flies grown on STD or food supplemented
with Lisosan G. Results are expressed as arbitrary units (a.u.). *** p < 0.0001 vs. STD. Data are
representative of at least n = 300 animals obtained from 3 independent experiments run in triplicate.

The anti-oxidant effects of Lisosan G were then confirmed using the DCFH-DA probe.
We found that DCF fluorescence in adult D. melanogaster AD heads was significantly
decreased by Lisosan G, indicating lower levels of brain ROS (Figure 4E).

In support of the beneficial anti-oxidant effect of this treatment, we observed a sig-
nificant enhancement in the MTT reductive ability in the brains of AD adult flies fed
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with Lisosan G in comparison to those under the STD condition (Figure 5A). These re-
sults prompted us to investigate the transcription differences of three enzymes involved
in the cellular anti-oxidant response, namely superoxide dismutase (SOD) 1, SOD2, and
catalase (CAT). However, similar mRNA levels were found in AD on STD or Lisosan
G-supplemented medium (Figure 5B).
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Figure 5. Mitochondrial activity and anti-oxidant enzyme levels in AD D. melanogaster. (A) Mea-
surements of mitochondrial activity by MTT absorbance in brains of AD adult flies grown on STD
or food supplemented with Lisosan G. Results are expressed as arbitrary units (a.u.). ** p < 0.001
vs. STD. Data are representative of n = 300 animals obtained from 3 independent experiments.
(B) mRNA levels of sod1, sod2, and cat genes by qPCR in third instar larvae of AD flies grown on
STD (blue dashed line) or food supplemented with Lisosan G (purple bars). Results are expressed as
fold change of AD STD (blue dashed line). Data have been obtained from 3 independent experiments
(n = 75 animals).

3.4. Lisosan G Diet Increases Autophagy Turnover of AD Brains

Given the interplay between oxidative stress and the catabolic process autophagy,
changes in autophagic function in Drosophila were detected by immunofluorescence
analysis of the autophagic vacuole proteins LC3 and p62 [48,49]. Both LC3 and p62 staining
was very faint in the adult brains of healthy flies grown on STD, with or without Lisosan
G (Figure 6A,A’,D,D’). AD flies showed a large amount of LC3 clusters with intense
fluorescent aggregates, while their presence was clearly reduced in the Lisosan G-treated
group (Figure 6B,C). In contrast, punctate p62 immunostaining in untreated AD brains was
similar to what was observed after Lisosan G administration (Figure 6E,F).

3.5. Effect of Lisosan G on Nucleolar Stress

Nucleolar stress is described as a cellular feature associated with AD in humans and
mice and consists of a reduced expression and/or stability of the major ribosomal RNA
species 18S and 28S in brain cells [62]. Gel electrophoresis of RNA extracted from healthy
larvae showed the typical smear with the two broad bands corresponding to 18S and 28S
RNAs (Figure 7, central lane). In AD larvae, the 28S rRNA band fully disappeared, whereas
the 18S rRNA band became faint (Figure 7, left lane). Strikingly, in Lisosan G-fed AD larvae,
the bulk RNA smear became again clearly visible and, in particular, the pattern of the
two rRNA bands, notably that of 28S, was restored (Figure 7, right lane), even if the band
intensity did not equal that of healthy brains.
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Figure 6. Effect of Lisosan G on the autophagy levels of AD D. melanogaster brains. Confocal
microscopy immunofluorescence imaging of LC3 (A–C) and p62 (D–F) in longitudinal brain sections
from healthy flies grown on STD (A,D) or food supplemented with Lisosan G (A’,D’) and AD flies
grown on STD (B,E) or food supplemented with Lisosan G (C,F). Inserts represent enlarged image
details of fluorescence signals. Scale bar: 20 µm. Images are representative of n = 5–8 animals obtained
from at least 3 independent experiments.
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Figure 7. Effect of Lisosan G on nucleolar stress of D. melanogaster. Gel electrophoresis of RNA
extracted from healthy (central lane) larvae showed the typical smear with the two broad bands
corresponding to 18S and 28S RNAs. In AD larvae (left lane), the 28S rRNA band fully disappeared,
whereas the 18S rRNA band became faint. In AD larvae grown on food supplemented with Lisosan
G (right lane), the 18S and 28S bands were fully restored. Image is representative of 3 independent
experiments (n = 75 animals).
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4. Discussion

Using flies genetically engineered to mimic AD we tested the beneficial role of the
natural product Lisosan G, commercialized as a nutritional supplement. Our results,
summarized in Table 3, showed that the Lisosan G-enriched diet is capable of rescuing the
AD typical phenotypes under analysis.

Table 3. An overview of the effects of Lisosan G on different AD Drosophila phenotypes.

Healthy AD AD + Lisosan G

Aβ plaques − + −
Apoptosis − + −

Oxidative stress − + −
Autophagy • ‡‡ •

18S and 28S rDNA stability + − +
“−” indicates absence/low levels and “+” presence/high levels of the given phenotype. “•” indicates functional
autophagy and “‡‡” impaired autophagy.

The distinctive tissue feature of AD is the accumulation of extracellular Aβ plaques in
brains [6,63]. In the brains of transgenic adult Drosophila flies, co-expressing human APP
and BACE1, we observed both large and small amyloid β plaques, which were absent in
non-AD brains. The presence of these two typologies of plaques was already described
in AD Drosophila, even though in a different nervous district, the retina, by [15], who
observed a gender-biased distribution of them, with the larger plaques more evident in male
retinas and the smaller ones limited to female retinas. Instead, our observations evidenced
both large and small plaques in the same brain, irrespective of gender. Remarkably, Lisosan
G treatment was able to strongly reduce the formation of amyloid β plaques, whether
small or large. As it stands, we cannot discriminate whether this reduction is imputable
to an inhibition of plaque formation or to an efficient disaggregation of already formed
plaques. However, one can argue that small plaques came from the fragmentation of the
large ones because of the Lisosan G action. Nevertheless, this is highly unlikely since the
large-to-small plaque ratio was nearly identical in Lisosan G-treated vs. untreated AD flies
(0.11 vs. 0.10). Moreover, if that hypothesis held, we should have observed an inverse
relationship between the number of small and large plaques in a single Lisosan G-fed
animal, but this is not the case.

Aβ plaques are also responsible for mitochondrial damage and dysfunction in AD [64].
As a consequence of mitochondrial impairment, AD brains are also characterized by a high
rate of apoptosis [65–68], which is also a feature of the AD Drosophila model [69]. Wang
and Davis [70] showed that neuron apoptosis in AD Drosophila brains is a consequence
of Aβ-42-induced mitochondrial damage. Thus, the significant reduction in neuronal
apoptosis following the Lisosan G diet is likely caused by the ability of this compound to
rescue the mitochondrial damage in AD flies as a byproduct of the reduction in Aβ plaque
number. In this respect, we found an increase in mitochondrial activity exerted by Lisosan
G in the Drosophila AD brain.

Another archetypal AD-related phenotype is oxidative stress in neuronal cells [71].
In humans, mitochondrial damage appears in strict relationships to oxidative stress in
AD brains, which is caused by mitochondrial dysfunctioning further enhanced by ROS
accumulation [61,72,73]. In this scenario, it is fully coherent that Lisosan G can significantly
reduce ROS levels and nitrotyrosine labeling in AD flies. Nitrotyrosine is the product
of the action of the free radical oxidant peroxynitrite [74]. Nitrotyrosine represents an
indicator of protein oxidation and is considered a reliable biomarker of oxidative stress
in neurodegenerative diseases [75]. Moreover, nitrotyrosine was shown to mediate the
Aβ peptide neurotoxicity [76]. Thus, these results clearly show that Lisosan G is also
capable of relieving AD-related oxidative stress. In normal brains, oxidative stress triggers
a cascade of anti-oxidant genes coding for enzymes acting as free radical scavengers, such as
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SOD1, SOD2, and CAT [77]. Literature data on the anti-oxidant gene expression in AD are
controversial, being reported in different studies as a reduction, an increase, or invariance
of anti-oxidant enzyme expression in the brains of affected humans. The discrepancies
among the studies were ascribed to different disease stages and/or to the different sizes
of the samples in different studies [78]. Our data indicate that Lisosan G did not affect
SOD1, SOD2, and CAT expression levels, suggesting that its antioxidative action is exerted
upstream of ROS formation. In this line, the increase in mitochondrial activity in AD
brains implies a favorable influence of Lisosan G on mitochondrial functionality, indicating
a beneficial effect on the main source of cellular ROS. Targeting both mitochondria and
redox homeostasis emerges as a potential clinical option in different (neuro)degenerative
diseases [79–81].

Additionally, Lisosan G is a nutraceutical powder enriched with a pool of bioactive
substances, making it challenging to determine the specific pathways and identify the
main genes through which it exerts its effects. Since it can be used as a nutraceutical
approach with no harmful effects, Lisosan G deserves further exploration and appears to be
a promising natural substance for potential use in AD conditions. Previous investigations
into Lisosan G’s protective effects on Drosophila neurons after metabolic insults have
indicated an interplay between apoptosis, autophagy, and ROS [46]. Similar results in flies
were recently achieved with different natural compounds [52]. Additionally, mechanistic
insights into Lisosan G’s action on regulating redox metabolites revealed its crucial role in
determining the redox environment and interactions with free radicals [46]. For instance,
Lisosan G increased the level of GSH, thus restoring the GSH/GSSG ratio and enhancing the
anti-oxidant capacity of the glutathione anti-oxidant defense system. This may also occur in
AD conditions. Of note, the increase in LC3 and p62 observed in AD brains of flies revealed
that autophagy is somewhat impaired in our system with a high presence of accumulating
autophagosomes awaiting lysosomal degradation. We found that Lisosan G exerted a
positive effect on functional autophagy. Indeed, it lowered LC3-positive vacuoles, thus
reactivating, at least in part, the autophagosome turnover of neurons. Autophagy, which
is a primary intracellular mechanism for degrading aggregated proteins and damaged
organelles, plays a crucial role in AD since oxidative stress may induce neuronal cell
death/apoptosis via impairing autophagy of accumulated Aβ plaques [82].

Nucleolar stress is termed the function of the nucleolus as a cell stress sensor [83,84].
In neurodegenerative disease patients, including AD, nucleolar structure and functions
become altered [62,85]. In this regard, Payão [86] demonstrated that 28S rRNA synthesis is
reduced in the blood of AD patients as compared to age-matched healthy controls. This
downregulation seems to result from rDNA promoter hypermethylation [87]. In line with
the above observations, impairment of protein synthesis was found to represent an early
event of AD pathogenesis [88]. In D. melanogaster, nucleolar stress was demonstrated in
wild-type animals following ribosome biogenesis inhibition [89]. Our observation that a
strong reduction in 18S and 28S rRNA is already apparent at the 3rd instar larval stage of
transgenic D. melanogaster mimicking AD compellingly supports the notion that nucleolar
stress represents an early diagnostic phenotype of AD pathology. On the other hand, the
above observations further confirm that the AD Drosophila model recapitulates most of the
human AD phenotypes. It is, thus, very interesting that Lisosan G feeding can also rescue
this early AD pathological phenotype. This role of Lisosan G is conceivably related to the
reduction in oxidative stress that has been indicated as responsible for nucleolar stress [90].
Also, impaired autophagy and defective mitochondria have been linked with nucleolar
stress in AD [91].

5. Conclusions

In Drosophila, nutrient absorption takes place through the different gut sections,
foregut, anterior midgut, middle midgut, and posterior midgut, like in humans [92]. Thus,
flies provide the opportunity for rapid testing of new orally available therapeutic strategies.
In this respect, the presented data demonstrate that the Lisosan G-enriched diet prevents
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and/or induces reversion of intraneuronal Aβ-peptide accumulation in the Drosophila
model of AD. It also rescues other AD-related phenotypes and pathological mechanisms in
the brain, namely apoptosis, oxidative and nucleolar stress, and autophagy impairment.
Mechanistically, the beneficial effects of Lisosan G likely depend on Lisosan G-induced
restoration of autophagy turnover/redox status and mitochondrial activity, which exert
a key role against neuronal apoptosis and nucleolar stress. The promising data using the
oral administration with Lisosan G against fly AD endorse the nutraceutical approach as
a modern line of defense against AD neurodegeneration. However, they require further
in-depth investigation and, potentially, comparison with other pharmacological/natural
substances. The possibility of synergistic/additive beneficial effects of Lisosan G with other
compounds could also pave the way for testing novel nutraceutical strategies in AD.

D. melanogaster represents an acknowledged model system to investigate in vivo
the genetic and molecular mechanisms underlying neurodegenerative human diseases,
including AD, opening new avenues to the diagnosis and prognosis of such invalidating
syndromes [12,21,26,93,94]. The ease of genetic modifications and treatments in flies also
allows for early proof-of-principle studies of therapeutic approaches and drug screening.
However, insects are evolutionarily and functionally distant from mammals and studies
in flies have to be carefully analyzed before translating them to human pathophysiology.
Although success rates of AD drugs in clinical trials after testing in vertebrate models
have been disappointing, data obtained in Drosophila should be further verified in other
organisms of increasing biological complexity in order to better model the disease for
accurate use in preclinical studies.

As a whole, our results give further, strong support to the use of the Drosophila
model not only to investigate the molecular genetic bases of neurodegenerative disease but
also to rapidly and reliably test/screen the efficiency of potential therapeutic agents and
diet regimens.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biom14070855/s1, Figure S1: Figure 3E Western blot original images.
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