Zinc Deficiency and Zinc Supplementation in Allergic Diseases
Abstract
:1. Introduction
2. Role of Zinc in Allergic Disease Development and Exacerbation
3. Zinc and Respiratory Allergic Diseases
Zinc and Chronic Rhinosinusitis
4. Zinc and Allergic Gastrointestinal Disorders
5. Zinc and Allergic Skin Disorders
6. Conclusions
Disease | Participation | Age | Results/Symptoms | Reference |
---|---|---|---|---|
Asthma | 50 (D), 50 (C) | 2–18 yr | Significant lower serum zinc levels compared to healthy controls | [110] |
50 (D), 50 (C) | 1–12 yr | [113] | ||
49 (D), 24 (C) | 10–50 yr | [97] | ||
24 (D), 24 (C) | 8–18 yr | [118] | ||
36 (D), 36 (C) | 10–30 yr | [99] | ||
50 (D), 70 (C) | 5–18 yr | [121] | ||
100 (D), 100 (C) | 6 yr | [103] | ||
40 (D), 43 (C) | 18–70 yr | [100] | ||
22 (D), 33 (C) | - | [104] | ||
554 (D), 1312 (C) | 30–60 yr | [89] | ||
73 (D), 75 (C) | 3–24 mon | [95] | ||
34 (D), 14 (C) | Infants | [101] | ||
80 (D), 80 (C) | 2–15 yr | [107] | ||
6 (D), 12 (C) | 6–12 yr | [114] | ||
51 (D), 541 (C) | 6–12 yr | [102] | ||
52 (D), 38 (C) | 25–48 yr | [96] | ||
60 (D), 30 (C) | 38–52 yr | Significantly lower serum zinc levels and significantly higher IgE levels and worse FEV1 in asthmatic patients | [55] | |
46 (D), 30 (C) | 20–65 yr | [91] | ||
25 (D), 25 (C) | 30–40 yr | [210] | ||
71 (D), 0 (C) | 7–17 yr | [105] | ||
114 (D), 49 (C) | 41–71 yr | Significantly lower sputum zinc levels compared to healthy controls | [98] | |
40 (D), 20 (C) | 2–12 yr | Significantly decreased nail and hair zinc levels compared to healthy controls | [183] | |
22 (D), 19 (C) | 2–14 yr | [111] | ||
34 (D), 14 (C) | 1–3 yr | [101] | ||
40 (D), 40 (C) | 7–14 yr | No difference in serum zinc levels in patients compared to healthy controls | [117] | |
42 (D), 30 (C) | 2–14 yr | [74] | ||
175 (D), 165 (C) | 3–19 yr | [93] | ||
80 (D), 80 (C) | 3–9 yr | [120] | ||
46 (D), 43 (C) | 3 mon–2 yr | [95] | ||
30 (D), 30 (C) | mean age 41 | [122] | ||
19 (D), 17 (C) | above 18 yr | [115] | ||
100 (D), 170 (C) | 20–65 yr | Significantly elevated serum zinc levels in patients vs. healthy controls | [123] | |
67 (D), 45 (C) | below 18 yr | No difference in erythrocyte zinc levels compared to healthy controls and no relationship between zinc levels and duration of follow up, severity, and control of asthma | [116] | |
37 (D), 30 (C) | 8–18 yr | No effect beween serum zinc level and serum IgE levels or Skin Test Reactivity | [119] | |
CRS | 28 (D), 7 (C) | above 18 yr | Significantly reduced zinc level in biopsy of nasal epithelium | [129] |
28 (D), 8 (C) | 32–44 yr | Significantly reduced tissue zinc levels in correlation with a reduction in collagen content, and increased eosinophil numbers | [128] | |
24 (D), 20 (C) | 7–12 yr | Significantly decreased serum zinc levels compared to healthy controls | [125] | |
Atopic dermatitis | 42 (D), 126 (C) | 3 yr | Zinc deficiency significantly correlates with AD severity and elevated serum IgE levels | [106] |
67 (D), 49 (C) | 9–27 yr | Significantly lower erythrocyte zinc levels in AD patients compared to healthy controls, negative correlation between the SCORAD score and erythrocyte zinc levels | [182] | |
92 (D), 70 (C) | 2–4 mon | Erythrocyte zinc levels were significantly lower in AD patients compared to healthy controls | [184] | |
58 (D), 43 (C) | 2–14 yr | Significantly decreased hair zinc levels, but no alteration of serum zinc levels in AD patients and healthy controls | [188] | |
65 (D), 79 (C) | Significantly reduced serum zinc levels in AD patients compared to healthy controls, and recurrent infections of the skin | [186] | ||
105 (D), 105 (C) | 1–12 yr | Significant difference in median zinc between children with AD and healthy controls | [185] | |
43 (D), 19 (C) | 2–14 yr | [111] | ||
20 (D), 20 (C) | 5–12 yr | Significantly lower serum zinc levels in patients with moderate AD compared to patients with mild AD, negative correlation between serum zinc levels and severity of AD | [187] | |
18 (D), 20 (C) | - | Significantly lower serum zinc levels and hair zinc levels compared to healthy controls | [183] | |
134 (D), 112 (C) | - | No difference in serum zinc levels in patients vs. healthy controls | [180] | |
160 (D), 79 (C) | - | [181] | ||
Alopecia areata | 49 (D), 32 (C) | - | Significantly lower serum zinc and hair zinc levels compared to healthy controls | [198] |
32 (D), 32 (C) | 5–31.5 yr | [168] | ||
50 (D), 50 (C) | 17.5–36.5 yr | Significantly lower serum zinc levels compared to healthy controls | [194] | |
50 (D), 50 (C) | 27 yr | [193] | ||
77 (D), 112 (C) | 16–43 yr | [195] | ||
60 (D), 60 (C) | 20–55 yr | [196] | ||
30 (D), 30 (C) | 19–48 yr | [197] | ||
Food allergy | 134 (D), 36 (C) | 1–36 mon | Significantly lower serum zinc levels compared to healthy controls | [150] |
50 (D), 50 (C) | 4–10 yr | Significantly lower intracellular zinc levels in erythrocytes in patients with FPIAP compared to healthy controls | [156] |
Disease | Participation | Zinc Supplementation | Symptoms/Effects | Reference |
---|---|---|---|---|
Asthma | 144 (I), 140 (C) | 50 mg daily, 8 weeks | Elevated serum zinc level, improvement in clinical symptoms | [109] |
21 (I), 21 (C) | 30mg daily (ZB), 4 days | Decreased severity of asthma in the first 48 hours after admission | [108] | |
797 women | 12.5 mg daily during pregnancy | Significantly lower appearance of asthma events and asthma activity | [94] | |
CRS | 28 (I), 16 (C) | 55 mg elemental zinc, 6 weeks | Significant improvement in clinical status and general health | [72] |
34 (I), 0 (C) | 40 mg elemental zinc, 2 weeks | Significant reduction in mean total symptom score and improvement in mean quality of life score after supplementation | [127] | |
Atopic dermatitis | 12 (I → C) | ZO-textiles (trousers and long-sleeve shirts) | Less pruritus, improvement in sleep quality and clinical cutaneous symptoms | [211] |
797 women | 12.5 mg daily, during pregnancy | Significantly reduced appearance of eczema, doctor-confirmed eczema, and less intense treatment | [94] | |
58 (I), 43 (C) | 12 mg daily (ZO), 8 weeks | Significantly increased hair zinc levels and decreased EASI, TEWL, visual analogue scales for pruritus, and sleep disturbance | [188] | |
420 pregnant women, 300 children | 21 mg daily, during pregnancy | No relationship between zinc supplementation during pregnancy and allergic outcome in 1-year-old children | [50] | |
1002 pregnant women | 8.5 mg daily, during pregnancy | No association between zinc intake and allergic rhinitis | [51] | |
763 mother-child pairs | 8.5 mg daily, during pregnancy | No association between zinc intake and risk of wheeze or eczema in the children | [52] | |
Alopecia areata | - | 100 mg daily (ZA), 20 days | Less clinical cutaneous symptoms, no statistical differences between treatments in term of eyebrow regrowth | [200] |
100 (I), 100 (C) | 1% pyrithione zinc shampoo, 9 weeks | Significantly elevated hair counts | [212] | |
15 (I → C) | 50 mg daily (ZG), 12 weeks | Significantly elevated serum zinc levels, no statistically significant hair regrowth | [192] | |
37 (I), 37 (C) | 5 mg/kg/d (ZS), 3 months | Complete hair regrowth after 2 months of intervention compared to placebo | [201] | |
21 (I), 21 (C) | 220 mg daily (ZS), 3 months | No improvement in extent or activity of diseases but slight raise in serum zinc and hair zinc levels compared to healthy controls | [202] |
Author Contributions
Funding
Conflicts of Interest
References
- Nurmatov, U.; Devereux, G.; Sheikh, A. Nutrients and foods for the primary prevention of asthma and allergy: Systematic review and meta-analysis. J. Allergy Clin. Immunol. 2011, 127, 724–733.e30. [Google Scholar] [CrossRef]
- Luschkova, D.; Traidl-Hoffmann, C.; Ludwig, A. Klimawandel und Allergien. HNO Nachrichten 2023, 53, 38–47. [Google Scholar] [CrossRef]
- Yang, L.; Sato, M.; Saito-Abe, M.; Miyaji, Y.; Shimada, M.; Sato, C.; Nishizato, M.; Kumasaka, N.; Mezawa, H.; Yamamoto-Hanada, K.; et al. Maternal Dietary Zinc Intake during Pregnancy and Childhood Allergic Diseases up to Four Years: The Japan Environment and Children’s Study. Nutrients 2023, 15, 2568. [Google Scholar] [CrossRef]
- Lin, Y.P.; Kao, Y.C.; Pan, W.H.; Yang, Y.H.; Chen, Y.C.; Lee, Y.L. Associations between Respiratory Diseases and Dietary Patterns Derived by Factor Analysis and Reduced Rank Regression. Ann. Nutr. Metab. 2016, 68, 306–314. [Google Scholar] [CrossRef]
- Julia, V.; Macia, L.; Dombrowicz, D. The impact of diet on asthma and allergic diseases. Nat. Rev. Immunol. 2015, 15, 308–322. [Google Scholar] [CrossRef]
- Ng, A.E.; Boersma, P. Diagnosed Allergic Conditions in Adults: United States, 2021. In NCHS Data Brief; National Center for Health Statistics: Hyattsville, MD, USA, 2023; pp. 1–8. [Google Scholar]
- Center for Disease Control and Prevention, Asthma, Most Recent National Asthma Data. Available online: https://www.cdc.gov/asthma/most_recent_national_asthma_data.htm (accessed on 12 April 2024).
- Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [CrossRef]
- Yang, L.; Sato, M.; Saito-Abe, M.; Irahara, M.; Nishizato, M.; Sasaki, H.; Konishi, M.; Ishitsuka, K.; Mezawa, H.; Yamamoto-Hanada, K.; et al. Hypertensive disorders of pregnancy and risk of allergic conditions in children: Findings from the Japan Environment and Children’s study (JECS). World Allergy Organ. J. 2021, 14, 100581. [Google Scholar] [CrossRef] [PubMed]
- Ellwood, P.; Asher, M.I.; Beasley, R.; Clayton, T.O.; Stewart, A.W. The international study of asthma and allergies in childhood (ISAAC): Phase three rationale and methods. Int. J. Tuberc. Lung Dis. 2005, 9, 10–16. [Google Scholar]
- Uzzaman, A.; Cho, S.H. Chapter 28: Classification of hypersensitivity reactions. Allergy Asthma Proc. 2012, 33 (Suppl. S1), 96–99. [Google Scholar] [CrossRef] [PubMed]
- Crimi, E.; Spanevello, A.; Neri, M.; Ind, P.W.; Rossi, G.A.; Brusasco, V. Dissociation between airway inflammation and airway hyperresponsiveness in allergic asthma. Am. J. Respir. Crit. Care Med. 1998, 157, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.M.; James, A.; Uasuf, C.; Payne, D.N.; Hablas, H.; Agrofioti, C.; Bush, A. Asthma severity and inflammation markers in children. Pediatr. Allergy Immunol. 2001, 12, 125–132. [Google Scholar] [CrossRef]
- Djukanović, R.; Wilson, S.J.; Kraft, M.; Jarjour, N.N.; Steel, M.; Chung, K.F.; Bao, W.; Fowler-Taylor, A.; Matthews, J.; Busse, W.W.; et al. Effects of treatment with anti-immunoglobulin E antibody omalizumab on airway inflammation in allergic asthma. Am. J. Respir. Crit. Care Med. 2004, 170, 583–593. [Google Scholar] [CrossRef]
- Berry, M.A.; Hargadon, B.; Shelley, M.; Parker, D.; Shaw, D.E.; Green, R.H.; Bradding, P.; Brightling, C.E.; Wardlaw, A.J.; Pavord, I.D. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N. Engl. J. Med. 2006, 354, 697–708. [Google Scholar] [CrossRef]
- Payne, D.N.; Rogers, A.V.; Adelroth, E.; Bandi, V.; Guntupalli, K.K.; Bush, A.; Jeffery, P.K. Early thickening of the reticular basement membrane in children with difficult asthma. Am. J. Respir. Crit. Care Med. 2003, 167, 78–82. [Google Scholar] [CrossRef]
- Mekori, Y.A. Introduction to allergic diseases. Crit. Rev. Food Sci. Nutr. 1996, 36 (Suppl. S1), S1–S18. [Google Scholar] [CrossRef]
- Okada, H.; Kuhn, C.; Feillet, H.; Bach, J.F. The ‘hygiene hypothesis’ for autoimmune and allergic diseases: An update. Clin. Exp. Immunol. 2010, 160, 1–9. [Google Scholar] [CrossRef]
- Davidson, G.; Kritas, S.; Butler, R. Stressed mucosa. Nestle Nutr. Workshop Ser. Pediatr. Program. 2007, 59, 133–142; discussion 136–143. [Google Scholar] [CrossRef]
- Kelvin, A.A.; Zambon, M. Influenza imprinting in childhood and the influence on vaccine response later in life. Euro Surveill. 2019, 24, 1900720. [Google Scholar] [CrossRef]
- Renz, H.; Adkins, B.D.; Bartfeld, S.; Blumberg, R.S.; Farber, D.L.; Garssen, J.; Ghazal, P.; Hackam, D.J.; Marsland, B.J.; McCoy, K.D.; et al. The neonatal window of opportunity-early priming for life. J. Allergy Clin. Immunol. 2018, 141, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Torow, N.; Hornef, M.W. The Neonatal Window of Opportunity: Setting the Stage for Life-Long Host-Microbial Interaction and Immune Homeostasis. J. Immunol. 2017, 198, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Lambrecht, B.N.; Hammad, H. The immunology of the allergy epidemic and the hygiene hypothesis. Nat. Immunol. 2017, 18, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Kuitunen, M.; Kukkonen, K.; Juntunen-Backman, K.; Korpela, R.; Poussa, T.; Tuure, T.; Haahtela, T.; Savilahti, E. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 2009, 123, 335–341. [Google Scholar] [CrossRef] [PubMed]
- Kalliomäki, M.; Salminen, S.; Arvilommi, H.; Kero, P.; Koskinen, P.; Isolauri, E. Probiotics in primary prevention of atopic disease: A randomised placebo-controlled trial. Lancet 2001, 357, 1076–1079. [Google Scholar] [CrossRef]
- Wickens, K.; Black, P.N.; Stanley, T.V.; Mitchell, E.; Fitzharris, P.; Tannock, G.W.; Purdie, G.; Crane, J. A differential effect of 2 probiotics in the prevention of eczema and atopy: A double-blind, randomized, placebo-controlled trial. J. Allergy Clin. Immunol. 2008, 122, 788–794. [Google Scholar] [CrossRef] [PubMed]
- Blaser, M.J. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat. Rev. Immunol. 2017, 17, 461–463. [Google Scholar] [CrossRef] [PubMed]
- Gensollen, T.; Iyer, S.S.; Kasper, D.L.; Blumberg, R.S. How colonization by microbiota in early life shapes the immune system. Science 2016, 352, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, R.L.; Bergmann, K.E.; Lau-Schadensdorf, S.; Luck, W.; Dannemann, A.; Bauer, C.P.; Dorsch, W.; Forster, J.; Schmidt, E.; Schulz, J.; et al. Atopic diseases in infancy. The German multicenter atopy study (MAS-90). Pediatr. Allergy Immunol. 1994, 5, 19–25. [Google Scholar] [CrossRef]
- Nickel, R.; Kulig, M.; Forster, J.; Bergmann, R.; Bauer, C.P.; Lau, S.; Guggenmoos-Holzmann, I.; Wahn, U. Sensitization to hen’s egg at the age of twelve months is predictive for allergic sensitization to common indoor and outdoor allergens at the age of three years. J. Allergy Clin. Immunol. 1997, 99, 613–617. [Google Scholar] [CrossRef]
- Lau, S.; Illi, S.; Sommerfeld, C.; Niggemann, B.; Bergmann, R.; von Mutius, E.; Wahn, U. Early exposure to house-dust mite and cat allergens and development of childhood asthma: A cohort study. Multicentre Allergy Study Group. Lancet 2000, 356, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Illi, S.; von Mutius, E.; Lau, S.; Niggemann, B.; Grüber, C.; Wahn, U. Perennial allergen sensitisation early in life and chronic asthma in children: A birth cohort study. Lancet 2006, 368, 763–770. [Google Scholar] [CrossRef]
- Kulig, M.; Bergmann, R.; Klettke, U.; Wahn, V.; Tacke, U.; Wahn, U. Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J. Allergy Clin. Immunol. 1999, 103, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Hamelmann, E.; Beyer, K.; Gruber, C.; Lau, S.; Matricardi, P.M.; Nickel, R.; Niggemann, B.; Wahn, U. Primary prevention of allergy: Avoiding risk or providing protection? Clin. Exp. Allergy 2008, 38, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Thorburn, A.N.; Macia, L.; Mackay, C.R. Diet, metabolites, and “western-lifestyle” inflammatory diseases. Immunity 2014, 40, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Urrutia-Pereira, M.; Mocelin, L.P.; Ellwood, P.; Garcia-Marcos, L.; Simon, L.; Rinelli, P.; Chong-Neto, H.J.; Solé, D. Prevalence of rhinitis and associated factors in adolescents and adults: A Global Asthma Network study. Rev. Paul. Pediatr. 2023, 41, e2021400. [Google Scholar] [CrossRef] [PubMed]
- Cazzoletti, L.; Zanolin, M.E.; Spelta, F.; Bono, R.; Chamitava, L.; Cerveri, I.; Garcia-Larsen, V.; Grosso, A.; Mattioli, V.; Pirina, P.; et al. Dietary fats, olive oil and respiratory diseases in Italian adults: A population-based study. Clin. Exp. Allergy 2019, 49, 799–807. [Google Scholar] [CrossRef] [PubMed]
- Andrianasolo, R.M.; Hercberg, S.; Kesse-Guyot, E.; Druesne-Pecollo, N.; Touvier, M.; Galan, P.; Varraso, R. Association between dietary fibre intake and asthma (symptoms and control): Results from the French national e-cohort NutriNet-Santé. Br. J. Nutr. 2019, 122, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- Peroni, D.G.; Hufnagl, K.; Comberiati, P.; Roth-Walter, F. Lack of iron, zinc, and vitamins as a contributor to the etiology of atopic diseases. Front. Nutr. 2022, 9, 1032481. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.; Montserrat-de la Paz, S.; Leon, M.J.; Rivero-Pino, F. Effects of Malnutrition on the Immune System and Infection and the Role of Nutritional Strategies Regarding Improvements in Children’s Health Status: A Literature Review. Nutrients 2023, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- Cannas, D.; Loi, E.; Serra, M.; Firinu, D.; Valera, P.; Zavattari, P. Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients 2020, 12, 2074. [Google Scholar] [CrossRef]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Solomons, N.W.; Jacob, R.A. Studies on the bioavailability of zinc in humans: Effects of heme and nonheme iron on the absorption of zinc. Am. J. Clin. Nutr. 1981, 34, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Kondaiah, P.; Yaduvanshi, P.S.; Sharp, P.A.; Pullakhandam, R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption? Nutrients 2019, 11, 1885. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, P. Iron and zinc interactions in humans. Am. J. Clin. Nutr. 1998, 68, 442s–446s. [Google Scholar] [CrossRef]
- Maxfield, L.; Shukla, S.; Crane, J.S. Zinc Deficiency. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493231/ (accessed on 24 May 2024).
- Litonjua, A.A.; Rifas-Shiman, S.L.; Ly, N.P.; Tantisira, K.G.; Rich-Edwards, J.W.; Camargo, C.A., Jr.; Weiss, S.T.; Gillman, M.W.; Gold, D.R. Maternal antioxidant intake in pregnancy and wheezing illnesses in children at 2 y of age. Am. J. Clin. Nutr. 2006, 84, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Beckhaus, A.A.; Garcia-Marcos, L.; Forno, E.; Pacheco-Gonzalez, R.M.; Celedón, J.C.; Castro-Rodriguez, J.A. Maternal nutrition during pregnancy and risk of asthma, wheeze, and atopic diseases during childhood: A systematic review and meta-analysis. Allergy 2015, 70, 1588–1604. [Google Scholar] [CrossRef] [PubMed]
- Bédard, A.; Northstone, K.; Holloway, J.W.; Henderson, A.J.; Shaheen, S.O. Maternal dietary antioxidant intake in pregnancy and childhood respiratory and atopic outcomes: Birth cohort study. Eur. Respir. J. 2018, 52, 1800507. [Google Scholar] [CrossRef]
- West, C.E.; Dunstan, J.; McCarthy, S.; Metcalfe, J.; D’Vaz, N.; Meldrum, S.; Oddy, W.H.; Tulic, M.K.; Prescott, S.L. Associations between maternal antioxidant intakes in pregnancy and infant allergic outcomes. Nutrients 2012, 4, 1747–1758. [Google Scholar] [CrossRef]
- Miyake, Y.; Sasaki, S.; Ohya, Y.; Miyamoto, S.; Matsunaga, I.; Yoshida, T.; Hirota, Y.; Oda, H. Dietary intake of seaweed and minerals and prevalence of allergic rhinitis in Japanese pregnant females: Baseline data from the Osaka Maternal and Child Health Study. Ann. Epidemiol. 2006, 16, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Miyake, Y.; Sasaki, S.; Tanaka, K.; Hirota, Y. Consumption of vegetables, fruit, and antioxidants during pregnancy and wheeze and eczema in infants. Allergy 2010, 65, 758–765. [Google Scholar] [CrossRef]
- Shaheen, S.O.; Newson, R.B.; Henderson, A.J.; Emmett, P.M.; Sherriff, A.; Cooke, M. Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur. Respir. J. 2004, 24, 292–297. [Google Scholar] [CrossRef]
- Tapazoglou, E.; Prasad, A.S.; Hill, G.; Brewer, G.J.; Kaplan, J. Decreased natural killer cell activity in patients with zinc deficiency with sickle cell disease. J. Lab. Clin. Med. 1985, 105, 19–22. [Google Scholar] [PubMed]
- Mohamed, N.A.; Rushdy, M.; Abdel-Rehim, A.S.M. The immunomodulatory role of zinc in asthmatic patients. Cytokine 2018, 110, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Zemel, B.S.; Kawchak, D.A.; Fung, E.B.; Ohene-Frempong, K.; Stallings, V.A. Effect of zinc supplementation on growth and body composition in children with sickle cell disease123. Am. J. Clin. Nutr. 2002, 75, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Kahmann, L.; Uciechowski, P.; Warmuth, S.; Malavolta, M.; Mocchegiani, E.; Rink, L. Effect of improved zinc status on T helper cell activation and TH1/TH2 ratio in healthy elderly individuals. Biogerontology 2006, 7, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Bonneau, R.; Girard, M.A.; Beaulieu, C.; Larivée, P. Zinc status modulates bronchopulmonary eosinophil infiltration in a murine model of allergic inflammation. Chest 2003, 123, 446s. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Wang, Q.; Pang, B.; Zhang, X.; Zhang, Y.; Deng, X.; Zhang, Z.; Niu, W. Association Between Circulating Zinc and Risk for Childhood Asthma and Wheezing: A Meta-analysis on 21 Articles and 2205 Children. Biol. Trace Elem. Res. 2024, 202, 442–453. [Google Scholar] [CrossRef]
- Bartemes, K.R.; Kita, H. Roles of innate lymphoid cells (ILCs) in allergic diseases: The 10-year anniversary for ILC2s. J. Allergy Clin. Immunol. 2021, 147, 1531–1547. [Google Scholar] [CrossRef] [PubMed]
- Bartemes, K.R.; Kephart, G.M.; Fox, S.J.; Kita, H. Enhanced innate type 2 immune response in peripheral blood from patients with asthma. J. Allergy Clin. Immunol. 2014, 134, 671–678.e4. [Google Scholar] [CrossRef] [PubMed]
- Doherty, T.A.; Broide, D.H. Airway innate lymphoid cells in the induction and regulation of allergy. Allergol. Int. 2019, 68, 9–16. [Google Scholar] [CrossRef]
- LeSuer, W.E.; Kienzl, M.; Ochkur, S.I.; Schicho, R.; Doyle, A.D.; Wright, B.L.; Rank, M.A.; Krupnick, A.S.; Kita, H.; Jacobsen, E.A. Eosinophils promote effector functions of lung group 2 innate lymphoid cells in allergic airway inflammation in mice. J. Allergy Clin. Immunol. 2023, 152, 469–485.e10. [Google Scholar] [CrossRef]
- Dai, F.Z.; Yang, J.; Chen, X.B.; Xu, M.Q. Zinc finger protein A20 inhibits maturation of dendritic cells resident in rat liver allograft. J. Surg. Res. 2013, 183, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, H.; Morikawa, H.; Kamon, H.; Iguchi, M.; Hojyo, S.; Fukada, T.; Yamashita, S.; Kaisho, T.; Akira, S.; Murakami, M.; et al. Toll-like receptor-mediated regulation of zinc homeostasis influences dendritic cell function. Nat. Immunol. 2006, 7, 971–977. [Google Scholar] [CrossRef]
- Wessels, I.; Fischer, H.J.; Rink, L. Dietary and Physiological Effects of Zinc on the Immune System. Annu. Rev. Nutr. 2021, 41, 133–175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P. The Role of Diet and Nutrition in Allergic Diseases. Nutrients 2023, 15, 3683. [Google Scholar] [CrossRef] [PubMed]
- Bousquet, J.; Anto, J.M.; Bachert, C.; Baiardini, I.; Bosnic-Anticevich, S.; Walter Canonica, G.; Melén, E.; Palomares, O.; Scadding, G.K.; Togias, A.; et al. Allergic rhinitis. Nat. Rev. Dis. Primers 2020, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, L.F. The influence of zinc-deprivation on the mast cell population of the bone marrow and other tissues. J. Nutr. 1978, 108, 1315–1321. [Google Scholar] [CrossRef]
- Hassan, A.; Sada, K.K.; Ketheeswaran, S.; Dubey, A.K.; Bhat, M.S. Role of Zinc in Mucosal Health and Disease: A Review of Physiological, Biochemical, and Molecular Processes. Cureus 2020, 12, e8197. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Hasegawa, A.; Nakae, S.; Oboki, K.; Saito, H.; Yamasaki, S.; Hirano, T. Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J. Exp. Med. 2009, 206, 1351–1364. [Google Scholar] [CrossRef]
- Akbari Dilmaghani, N.; Alani, N.; Fazeli, S. A Randomized Clinical Trial of Elemental Zinc Add-on Therapy on Clinical Outcomes of Patients with Chronic Rhinosinusitis with Nasal Polyposis (CRSwNP). Iran. J. Pharm. Res. 2019, 18, 1595–1601. [Google Scholar] [CrossRef]
- Guo, C.H.; Liu, P.J.; Lin, K.P.; Chen, P.C. Nutritional supplement therapy improves oxidative stress, immune response, pulmonary function, and quality of life in allergic asthma patients: An open-label pilot study. Altern. Med. Rev. 2012, 17, 42–56. [Google Scholar]
- Kocyigit, A.; Armutcu, F.; Gurel, A.; Ermis, B. Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma. Biol. Trace Elem. Res. 2004, 97, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Devirgiliis, C.; Zalewski, P.D.; Perozzi, G.; Murgia, C. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat. Res. 2007, 622, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Zajac, D. Mineral Micronutrients in Asthma. Nutrients 2021, 13, 4001. [Google Scholar] [CrossRef] [PubMed]
- von Mutius, E.; Braun-Fahrländer, C.; Schierl, R.; Riedler, J.; Ehlermann, S.; Maisch, S.; Waser, M.; Nowak, D. Exposure to endotoxin or other bacterial components might protect against the development of atopy. Clin. Exp. Allergy 2000, 30, 1230–1234. [Google Scholar] [CrossRef] [PubMed]
- Genuneit, J.; Strachan, D.P.; Büchele, G.; Weber, J.; Loss, G.; Sozanska, B.; Boznanski, A.; Horak, E.; Heederik, D.; Braun-Fahrländer, C.; et al. The combined effects of family size and farm exposure on childhood hay fever and atopy. Pediatr. Allergy Immunol. 2013, 24, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Strachan, D.P. Hay fever, hygiene, and household size. BMJ 1989, 299, 1259–1260. [Google Scholar] [CrossRef]
- Gerrard, J.W.; Geddes, C.A.; Reggin, P.L.; Gerrard, C.D.; Horne, S. Serum IgE levels in white and metis communities in Saskatchewan. Ann. Allergy 1976, 37, 91–100. [Google Scholar]
- Perkin, M.R.; Strachan, D.P. The hygiene hypothesis for allergy—Conception and evolution. Front. Allergy 2022, 3, 1051368. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, D.S.; Gazzinelli-Guimarães, P.H.; Barbosa, F.S.; Resende, N.M.; Silva, C.C.; de Oliveira, L.M.; Amorim, C.C.; Oliveira, F.M.; Mattos, M.S.; Kraemer, L.R.; et al. Multiple Exposures to Ascaris suum Induce Tissue Injury and Mixed Th2/Th17 Immune Response in Mice. PLoS Negl. Trop. Dis. 2016, 10, e0004382. [Google Scholar] [CrossRef]
- Sprietsma, J.E. Modern diets and diseases: NO-zinc balance. Under Th1, zinc and nitrogen monoxide (NO) collectively protect against viruses, AIDS, autoimmunity, diabetes, allergies, asthma, infectious diseases, atherosclerosis and cancer. Med. Hypotheses 1999, 53, 6–16. [Google Scholar] [CrossRef]
- Liu, X.; Ali, M.K.; Dua, K.; Xu, R. The Role of Zinc in the Pathogenesis of Lung Disease. Nutrients 2022, 14, 2115. [Google Scholar] [CrossRef] [PubMed]
- Bucchieri, F.; Puddicombe, S.M.; Lordan, J.L.; Richter, A.; Buchanan, D.; Wilson, S.J.; Ward, J.; Zummo, G.; Howarth, P.H.; Djukanović, R.; et al. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am. J. Respir. Cell Mol. Biol. 2002, 27, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Chen, H. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Nutrients 2021, 13, 4456. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Knoell, D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 291, L1132–L1141. [Google Scholar] [CrossRef] [PubMed]
- Truong-Tran, A.Q.; Ruffin, R.E.; Foster, P.S.; Koskinen, A.M.; Coyle, P.; Philcox, J.C.; Rofe, A.M.; Zalewski, P.D. Altered zinc homeostasis and caspase-3 activity in murine allergic airway inflammation. Am. J. Respir. Cell Mol. Biol. 2002, 27, 286–296. [Google Scholar] [CrossRef]
- Seo, H.M.; Kim, Y.H.; Lee, J.H.; Kim, J.S.; Park, Y.M.; Lee, J.Y. Serum Zinc Status and Its Association with Allergic Sensitization: The Fifth Korea National Health and Nutrition Examination Survey. Sci. Rep. 2017, 7, 12637. [Google Scholar] [CrossRef]
- Truong-Tran, A.Q.; Ruffin, R.E.; Zalewski, P.D. Visualization of labile zinc and its role in apoptosis of primary airway epithelial cells and cell lines. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L1172–L1183. [Google Scholar] [CrossRef] [PubMed]
- Yousef, A.M.; Elmorsy, E. Serum zinc level in bronchial asthma. Egypt. J. Chest Dis. Tuberc. 2017, 66, 1–4. [Google Scholar] [CrossRef]
- Maret, W.; Jacob, C.; Vallee, B.L.; Fischer, E.H. Inhibitory sites in enzymes: Zinc removal and reactivation by thionein. Proc. Natl. Acad. Sci. USA 1999, 96, 1936–1940. [Google Scholar] [CrossRef]
- Ghaffari, J.; Rafatpanah, H.; Nazari, Z.; Abaskhanian, A. Serum Level of Trace Elements (Zinc, Lead, and Copper), Albumin and Immunoglobulins in Asthmatic Children. Zahedan J. Res. Med. Sci. 2013, 15, e92851. [Google Scholar]
- Devereux, G.; Turner, S.W.; Craig, L.C.; McNeill, G.; Martindale, S.; Harbour, P.J.; Helms, P.J.; Seaton, A. Low maternal vitamin E intake during pregnancy is associated with asthma in 5-year-old children. Am. J. Respir. Crit. Care Med. 2006, 174, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Uysalol, M.; Uysalol, E.P.; Yilmaz, Y.; Parlakgul, G.; Ozden, T.A.; Ertem, H.V.; Omer, B.; Uzel, N. Serum level of vitamin D and trace elements in children with recurrent wheezing: A cross-sectional study. BMC Pediatr. 2014, 14, 270. [Google Scholar] [CrossRef] [PubMed]
- Soutar, A.; Seaton, A.; Brown, K. Bronchial reactivity and dietary antioxidants. Thorax 1997, 52, 166–170. [Google Scholar] [CrossRef]
- Ariaee, N.; Farid, R.; Shabestari, F.; Shabestari, M.; Jabbari Azad, F. Trace Elements Status in Sera of Patients with Allergic Asthma. Rep. Biochem. Mol. Biol. 2016, 5, 20–25. [Google Scholar] [PubMed]
- Jayaram, L.; Chunilal, S.; Pickering, S.; Ruffin, R.E.; Zalewski, P.D. Sputum zinc concentration and clinical outcome in older asthmatics. Respirology 2011, 16, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Johnkennedy, N.; Constance, N.; Emmanuel, N.; Ukamaka, E.; Oluchi, A.A.; Christian, O. Alterations in some biochemical parameters and trace elements in asthmatic patients in Owerri. J. Krishna Inst. Med. Sci. Univ. 2017, 6, 51–56. [Google Scholar]
- Vural, H.; Uzun, K.; Uz, E.; Koçyigit, A.; Cigli, A.; Akyol, O. Concentrations of copper, zinc and various elements in serum of patients with bronchial asthma. J. Trace Elem. Med. Biol. 2000, 14, 88–91. [Google Scholar] [CrossRef] [PubMed]
- Tahan, F.; Karakukcu, C. Zinc status in infantile wheezing. Pediatr. Pulmonol. 2006, 41, 630–634. [Google Scholar] [CrossRef] [PubMed]
- de Cássia Ribeiro-Silva, R.; Fiaccone, R.L.; Barreto, M.L.; da Silva, L.A.; Santos, L.F.; Alcantara-Neves, N.M. The prevalence of wheezing and its association with serum zinc concentration in children and adolescents in Brazil. J. Trace Elem. Med. Biol. 2014, 28, 293–297. [Google Scholar] [CrossRef]
- Khanbabaee, G.; Omidian, A.; Imanzadeh, F.; Adibeshgh, F.; Ashayeripanah, M.; Rezaei, N. Serum level of zinc in asthmatic patients: A case-control study. Allergol. Immunopathol. 2014, 42, 19–21. [Google Scholar] [CrossRef]
- Kadrabová, J.; Mad’aric, A.; Podivínsky, F.; Gazdík, F.; Ginter, F. Plasma zinc, copper and copper/zinc ratio in intrinsic asthma. J. Trace Elem. Med. Biol. 1996, 10, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Siripornpanich, S.; Chongviriyaphan, N.; Manuyakorn, W.; Matangkasombut, P. Zinc and vitamin C deficiencies associate with poor pulmonary function in children with persistent asthma. Asian Pac. J. Allergy Immunol. 2022, 40, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Ehlayel, M.S.; Bener, A. Risk factors of zinc deficiency in children with atopic dermatitis. Eur. Ann. Allergy Clin. Immunol. 2020, 52, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Kuti, B.P.; Kuti, D.K.; Smith, O.S. Serum Zinc, Selenium and Total Antioxidant Contents of Nigerian Children with Asthma: Association with Disease Severity and Symptoms Control. J. Trop. Pediatr. 2020, 66, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Rerksuppaphol, S.; Rerksuppaphol, L. Zinc Supplementation in Children with Asthma Exacerbation. Pediatr. Rep. 2016, 8, 6685. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari, J.; Khalilian, A.; Salehifar, E.; Khorasani, E.; Rezaii, M.S. Effect of zinc supplementation in children with asthma: A randomized, placebo-controlled trial in northern Islamic Republic of Iran. East. Mediterr. Health J. 2014, 20, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Bilan, N.; Barzegar, M.; Pirzadeh, H.; Sobktakin, L.; Haghjo, A. Serum copper and zinc levels of children with asthma. Int. J. Curr. Res. Rev. 2014, 4, 6. [Google Scholar]
- Toro, R.D.; Capotorti, M.G.; GialanellaI, G.; del Giudice, M.M.; Moro, R.; Perrone, L. Zinc and Copper Status of Allergic Children. Acta Paediatr. 1987, 76, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.S. Zinc in human health: Effect of zinc on immune cells. Mol. Med. 2008, 14, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Kakarash, T.A.; Al-Rabaty, A. Zinc Status In Children With Bronchial Asthma. Iraqi Postgrad. Med. J. 2012, 11, 698–703. [Google Scholar]
- Malvy, J.-M.D.; Lebranchu, Y.; Richard, M.-J.; Arnaud, J.; Favier, A. Oxidative metabolism and severe asthma in children. Clin. Chim. Acta 1993, 218, 117–120. [Google Scholar] [CrossRef] [PubMed]
- Sagdic, A.; Sener, O.; Bulucu, F.; Karadurmus, N.; Özel, H.E.; Yamanel, L.; Tasci, C.; Naharci, I.; Ocal, R.; Aydin, A. Oxidative stress status and plasma trace elements in patients with asthma or allergic rhinitis. Allergol. Immunopathol. 2011, 39, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Arik Yilmaz, E.; Ozmen, S.; Bostanci, I.; Misirlioglu, E.D.; Ertan, U. Erythrocyte zinc levels in children with bronchial asthma. Pediatr. Pulmonol. 2011, 46, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- AbdulWahab, A.; Zeidan, A.; Avades, T.; Chandra, P.; Soliman, A. Serum Zinc Level in Asthmatic and Non-Asthmatic School Children. Children 2018, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Andino, D.; Moy, J.; Gaynes, B.I. Serum vitamin A, zinc and visual function in children with moderate to severe persistent asthma. J. Asthma 2019, 56, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Oluwole, O.; Arinola, O.G.; Adu, M.D.; Adepoju, A.; Adedokun, B.O.; Olopade, O.I.; Olopade, C.O. Relationships between Plasma Micronutrients, Serum IgE, and Skin Test Reactivity and Asthma among School Children in Rural Southwest Nigeria. J. Biomark. 2014, 2014, 106150. [Google Scholar] [CrossRef] [PubMed]
- Behmanesh, F.; Banihashem, A.; Hiradfar, S.; Ansari, E. A Comparative Study of Serum Zinc Level between Asthmatic and Control Group. Med. J. Mashhad Univ. Med. Sci. 2010, 53, 240–244. [Google Scholar] [CrossRef]
- Elevli, M.; Bozaci, A.; Şahin, K.; Selcuk Duru, N.; Civilibal, M.; Aktaş, B. Evaluation of serum 25-hidroxy Vitamin D and zinc levels in asthmatic patients. Turk. J. Biochem. 2017, 43, 49–56. [Google Scholar] [CrossRef]
- Bishopp, A.; Sathyamurthy, R.; Manney, S.; Webbster, C.; Krishna, M.T.; Mansur, A.H. Biomarkers of oxidative stress and antioxidants in severe asthma: A Prospective Case-Control Study. Ann. Allergy Asthma Immunol. 2017, 118, 445–451. [Google Scholar] [CrossRef]
- Hussein, M.M.; Yousif, A.A.; Saeed, A.-M. Serum Levels of Selenium, Zinc, Copper and Magnesium in Asthmatic Patients: A Case Control Study. Sudan J. Med. Sci. 2008, 3, 45–48. [Google Scholar] [CrossRef]
- Fokkens, W.J.; Lund, V.J.; Mullol, J.; Bachert, C.; Alobid, I.; Baroody, F.; Cohen, N.; Cervin, A.; Douglas, R.; Gevaert, P.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinology 2012, 50 (Suppl. S23), 1–298. [Google Scholar] [CrossRef] [PubMed]
- Unal, M.; Tamer, L.; Pata, Y.S.; Kilic, S.; Degirmenci, U.; Akbaş, Y.; Görür, K.; Atik, U. Serum levels of antioxidant vitamins, copper, zinc and magnesium in children with chronic rhinosinusitis. J. Trace Elem. Med. Biol. 2004, 18, 189–192. [Google Scholar] [CrossRef]
- Gulani, A.; Sachdev, H.S. Zinc supplements for preventing otitis media. Cochrane Database Syst. Rev. 2014, 2014, Cd006639. [Google Scholar] [CrossRef] [PubMed]
- Dewi, A.M.K.; Setyorini, D.A.; Suprihati. The effect of zinc supplementation on the improvement of clinical symptoms and the quality of life of persistent moderate severe allergic rhinitis patients. Front. Pharmacol. 2018, 9. [Google Scholar] [CrossRef]
- Suzuki, M.; Ramezanpour, M.; Cooksley, C.; Lee, T.J.; Jeong, B.; Kao, S.; Suzuki, T.; Psaltis, A.J.; Nakamaru, Y.; Homma, A.; et al. Zinc-depletion associates with tissue eosinophilia and collagen depletion in chronic rhinosinusitis. Rhinology 2020, 58, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Ramezanpour, M.; Roscioli, E.; Psaltis, A.J.; Wormald, P.J.; Vreugde, S. Mucosal zinc deficiency in chronic rhinosinusitis with nasal polyposis contributes to barrier disruption and decreases ZO-1. Allergy 2018, 73, 2095–2097. [Google Scholar] [CrossRef] [PubMed]
- Truong-Tran, A.Q.; Grosser, D.; Ruffin, R.E.; Murgia, C.; Zalewski, P.D. Apoptosis in the normal and inflamed airway epithelium: Role of zinc in epithelial protection and procaspase-3 regulation. Biochem. Pharmacol. 2003, 66, 1459–1468. [Google Scholar] [CrossRef]
- Lang, C.; Murgia, C.; Leong, M.; Tan, L.W.; Perozzi, G.; Knight, D.; Ruffin, R.; Zalewski, P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 292, L577–L584. [Google Scholar] [CrossRef]
- Suzuki, M.; Suzuki, T.; Watanabe, M.; Hatakeyama, S.; Kimura, S.; Nakazono, A.; Honma, A.; Nakamaru, Y.; Vreugde, S.; Homma, A. Role of intracellular zinc in molecular and cellular function in allergic inflammatory diseases. Allergol. Int. 2021, 70, 190–200. [Google Scholar] [CrossRef]
- Soyka, M.B.; Wawrzyniak, P.; Eiwegger, T.; Holzmann, D.; Treis, A.; Wanke, K.; Kast, J.I.; Akdis, C.A. Defective epithelial barrier in chronic rhinosinusitis: The regulation of tight junctions by IFN-γ and IL-4. J. Allergy Clin. Immunol. 2012, 130, 1087–1096.e10. [Google Scholar] [CrossRef]
- Natsume, O.; Ohya, Y. Recent advancement to prevent the development of allergy and allergic diseases and therapeutic strategy in the perspective of barrier dysfunction. Allergol. Int. 2018, 67, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Henriquez, O.A.; Den Beste, K.; Hoddeson, E.K.; Parkos, C.A.; Nusrat, A.; Wise, S.K. House dust mite allergen Der p 1 effects on sinonasal epithelial tight junctions. Int. Forum Allergy Rhinol. 2013, 3, 630–635. [Google Scholar] [CrossRef]
- Steelant, B.; Farré, R.; Wawrzyniak, P.; Belmans, J.; Dekimpe, E.; Vanheel, H.; Van Gerven, L.; Kortekaas Krohn, I.; Bullens, D.M.A.; Ceuppens, J.L.; et al. Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J. Allergy Clin. Immunol. 2016, 137, 1043–1053.e5. [Google Scholar] [CrossRef]
- Roscioli, E.; Jersmann, H.P.; Lester, S.; Badiei, A.; Fon, A.; Zalewski, P.; Hodge, S. Zinc deficiency as a codeterminant for airway epithelial barrier dysfunction in an ex vivo model of COPD. Int. J. Chron. Obs. Pulmon Dis. 2017, 12, 3503–3510. [Google Scholar] [CrossRef]
- Finamore, A.; Massimi, M.; Conti Devirgiliis, L.; Mengheri, E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J. Nutr. 2008, 138, 1664–1670. [Google Scholar] [CrossRef]
- Wessels, I.; Pupke, J.T.; von Trotha, K.T.; Gombert, A.; Himmelsbach, A.; Fischer, H.J.; Jacobs, M.J.; Rink, L.; Grommes, J. Zinc supplementation ameliorates lung injury by reducing neutrophil recruitment and activity. Thorax 2020, 75, 253–261. [Google Scholar] [CrossRef] [PubMed]
- DiGuilio, K.M.; Rybakovsky, E.; Abdavies, R.; Chamoun, R.; Flounders, C.A.; Shepley-McTaggart, A.; Harty, R.N.; Mullin, J.M. Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int. J. Mol. Sci. 2022, 23, 2995. [Google Scholar] [CrossRef]
- Tanno, L.K.; Demoly, P. Food allergy in the World Health Organization’s International Classification of Diseases (ICD)-11. Pediatr. Allergy Immunol. 2022, 33, e13882. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.S.; Warren, C.M.; Smith, B.M.; Blumenstock, J.A.; Jiang, J.; Davis, M.M.; Nadeau, K.C. The Public Health Impact of Parent-Reported Childhood Food Allergies in the United States. Pediatrics 2018, 142, e20181235. [Google Scholar] [CrossRef]
- Food Allergy Research & Education. Facts and Statistics—The Food Allergy Epidemic. Available online: https://www.foodallergy.org/resources/facts-and-statistics (accessed on 24 May 2024).
- Mazzocchi, A.; Venter, C.; Maslin, K.; Agostoni, C. The Role of Nutritional Aspects in Food Allergy: Prevention and Management. Nutrients 2017, 9, 850. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Slusarenko, A.J.; Rink, L. Zinc deficiency as a possible risk factor for increased susceptibility and severe progression of Corona Virus Disease 19. Br. J. Nutr. 2022, 127, 214–232. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.B.; Wei, H.W.; Wang, J.; Kong, Y.Q.; Wu, Y.Y.; Guo, J.L.; Li, T.F.; Li, J.K. Mammalian Metallothionein-2A and Oxidative Stress. Int. J. Mol. Sci. 2016, 17, 1483. [Google Scholar] [CrossRef] [PubMed]
- Thirumoorthy, N.; Shyam Sunder, A.; Manisenthil Kumar, K.; Senthil Kumar, M.; Ganesh, G.; Chatterjee, M. A review of metallothionein isoforms and their role in pathophysiology. World J. Surg. Oncol. 2011, 9, 54. [Google Scholar] [CrossRef] [PubMed]
- Maret, W. Redox biochemistry of mammalian metallothioneins. J. Biol. Inorg. Chem. 2011, 16, 1079–1086. [Google Scholar] [CrossRef] [PubMed]
- Shimoda, R.; Achanzar, W.E.; Qu, W.; Nagamine, T.; Takagi, H.; Mori, M.; Waalkes, M.P. Metallothionein is a potential negative regulator of apoptosis. Toxicol. Sci. 2003, 73, 294–300. [Google Scholar] [CrossRef]
- Kamer, B.; Wąsowicz, W.; Pyziak, K.; Kamer-Bartosińska, A.; Gromadzińska, J.; Pasowska, R. Role of selenium and zinc in the pathogenesis of food allergy in infants and young children. Arch. Med. Sci. 2012, 8, 1083–1088. [Google Scholar] [CrossRef] [PubMed]
- Zhong, W.; McClain, C.J.; Cave, M.; Kang, Y.J.; Zhou, Z. The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G625–G633. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. What is the leaky gut? Clinical considerations in humans. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 473–482. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, Y.; Tanabe, S.; Suzuki, T. Cellular zinc is required for intestinal epithelial barrier maintenance via the regulation of claudin-3 and occludin expression. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 311, G105–G116. [Google Scholar] [CrossRef]
- Pongkorpsakol, P.; Buasakdi, C.; Chantivas, T.; Chatsudthipong, V.; Muanprasat, C. An agonist of a zinc-sensing receptor GPR39 enhances tight junction assembly in intestinal epithelial cells via an AMPK-dependent mechanism. Eur. J. Pharmacol. 2019, 842, 306–313. [Google Scholar] [CrossRef]
- Shao, Y.X.; Lei, Z.; Wolf, P.G.; Gao, Y.; Guo, Y.M.; Zhang, B.K. Zinc Supplementation, via GPR39, Upregulates PKCζ to Protect Intestinal Barrier Integrity in Caco-2 Cells Challenged by Salmonella enterica Serovar Typhimurium. J. Nutr. 2017, 147, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Gunaydin, N.C.; Celikkol, A.; Nalbantoglu, A. Assessment of intracellular zinc levels in infants with food protein-induced allergic proctocolitis. Allergol. Immunopathol. 2023, 51, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.; Samman, S. Vegetarian diets across the lifecycle: Impact on zinc intake and status. Adv. Food Nutr. Res. 2015, 74, 93–131. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.C.; Caballero, B.H.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease, 11th ed.; Wolters Kluwer Health Adis (ESP), 2012; p. 1616. [Google Scholar]
- Protudjer, J.L.P.; Mikkelsen, A. Veganism and paediatric food allergy: Two increasingly prevalent dietary issues that are challenging when co-occurring. BMC Pediatr. 2020, 20, 341. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Trace Elements in Human Nutrition and Health. Available online: https://www.who.int/publications/i/item/9241561734 (accessed on 24 May 2024).
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12, 3844. [Google Scholar] [CrossRef]
- Weidinger, S.; Beck, L.A.; Bieber, T.; Kabashima, K.; Irvine, A.D. Atopic dermatitis. Nat. Rev. Dis. Primers 2018, 4, 1. [Google Scholar] [CrossRef] [PubMed]
- Leung, D.Y.M.; Berdyshev, E.; Goleva, E. Cutaneous barrier dysfunction in allergic diseases. J. Allergy Clin. Immunol. 2020, 145, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Kraft, M.T.; Prince, B.T. Atopic Dermatitis Is a Barrier Issue, Not an Allergy Issue. Immunol. Allergy Clin. N. Am. 2019, 39, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.M.; Mirza, M.A.; Park, M.K.; Qureshi, A.A.; Cho, E. The Role of Micronutrients in Alopecia Areata: A Review. Am. J. Clin. Dermatol. 2017, 18, 663–679. [Google Scholar] [CrossRef]
- Al-Khafaji, Z.; Brito, S.; Bin, B.H. Zinc and Zinc Transporters in Dermatology. Int. J. Mol. Sci. 2022, 23, 16165. [Google Scholar] [CrossRef]
- Inoue, Y.; Hasegawa, S.; Ban, S.; Yamada, T.; Date, Y.; Mizutani, H.; Nakata, S.; Tanaka, M.; Hirashima, N. ZIP2 protein, a zinc transporter, is associated with keratinocyte differentiation. J. Biol. Chem. 2014, 289, 21451–21462. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, Y.; Kinoshita, M.; Shimada, S.; Kawamura, T. Zinc and Skin Disorders. Nutrients 2018, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Lansdown, A.B.; Mirastschijski, U.; Stubbs, N.; Scanlon, E.; Agren, M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair. Regen. 2007, 15, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Bao, B.; Prasad, A.S.; Beck, F.W.; Snell, D.; Suneja, A.; Sarkar, F.H.; Doshi, N.; Fitzgerald, J.T.; Swerdlow, P. Zinc supplementation decreases oxidative stress, incidence of infection, and generation of inflammatory cytokines in sickle cell disease patients. Transl. Res. 2008, 152, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L.; Sekler, I.; Hershfinkel, M. The zinc sensing receptor, ZnR/GPR39, controls proliferation and differentiation of colonocytes and thereby tight junction formation in the colon. Cell Death Dis. 2014, 5, e1307. [Google Scholar] [CrossRef] [PubMed]
- Sunuwar, L.; Medini, M.; Cohen, L.; Sekler, I.; Hershfinkel, M. The zinc sensing receptor, ZnR/GPR39, triggers metabotropic calcium signalling in colonocytes and regulates occludin recovery in experimental colitis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150420. [Google Scholar] [CrossRef]
- Pati, R.; Mehta, R.K.; Mohanty, S.; Padhi, A.; Sengupta, M.; Vaseeharan, B.; Goswami, C.; Sonawane, A. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 2014, 10, 1195–1208. [Google Scholar] [CrossRef]
- Smijs, T.G.; Pavel, S. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112. [Google Scholar] [CrossRef]
- Xiang, Y.; Zhou, Q.; Li, Z.; Cui, Z.; Liu, X.; Liang, Y.; Zhu, S.; Zheng, Y.; Yeung, K.; Wu, S. A Z-Scheme Heterojunction of ZnO/CDots/C3N4 for Strengthened Photoresponsive Bacteria-Killing and Acceleration of Wound Healing. J. Mater. Sci. Technol. 2020, 57, 1–11. [Google Scholar] [CrossRef]
- Gosain, A.; DiPietro, L.A. Aging and wound healing. World J. Surg. 2004, 28, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.; Varigos, G.; Ackland, M.L. Apoptosis may underlie the pathology of zinc-deficient skin. Immunol. Cell Biol. 2006, 84, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Cortese-Krott, M.M.; Kulakov, L.; Opländer, C.; Kolb-Bachofen, V.; Kröncke, K.D.; Suschek, C.V. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells. Redox Biol. 2014, 2, 945–954. [Google Scholar] [CrossRef] [PubMed]
- David, T.J.; Wells, F.E.; Sharpe, T.C.; Gibbs, A.C.; Devlin, J. Serum levels of trace metals in children with atopic eczema. Br. J. Dermatol. 1990, 122, 485–489. [Google Scholar] [CrossRef] [PubMed]
- Esenboga, S.; Cetinkaya, P.G.; Sahiner, N.; Birben, E.; Soyer, O.; Sekerel, B.E.; Sahiner, U.M. Infantile atopic dermatitis: Serum vitamin D, zinc and TARC levels and their relationship with disease phenotype and severity. Allergol. Immunopathol. 2021, 49, 162–168. [Google Scholar] [CrossRef]
- Karabacak, E.; Aydin, E.; Kutlu, A.; Ozcan, O.; Muftuoglu, T.; Gunes, A.; Dogan, B.; Ozturk, S. Erythrocyte zinc level in patients with atopic dermatitis and its relation to SCORAD index. Postep. Dermatol. Alergol. 2016, 33, 349–352. [Google Scholar] [CrossRef] [PubMed]
- el-Kholy, M.S.; Gas Allah, M.A.; el-Shimi, S.; el-Baz, F.; el-Tayeb, H.; Abdel-Hamid, M.S. Zinc and copper status in children with bronchial asthma and atopic dermatitis. J. Egypt. Public Health Assoc. 1990, 65, 657–668. [Google Scholar]
- Toyran, M.; Kaymak, M.; Vezir, E.; Harmanci, K.; Kaya, A.; Giniş, T.; Köse, G.; Kocabaş, C.N. Trace element levels in children with atopic dermatitis. J. Investig. Allergol. Clin. Immunol. 2012, 22, 341–344. [Google Scholar] [PubMed]
- Gray, N.A.; Esterhuizen, T.M.; Khumalo, N.P.; Stein, D.J. Investigating hair zinc concentrations in children with and without atopic dermatitis. S. Afr. Med. J. 2020, 110, 409–415. [Google Scholar] [CrossRef]
- David, T.J.; Wells, F.E.; Sharpe, T.C.; Gibbs, A.C. Low serum zinc in children with atopic eczema. Br. J. Dermatol. 1984, 111, 597–601. [Google Scholar] [CrossRef]
- Farhood, I.; Ahmed, M.; Al-Bandar, R.; Farhood, R. Assessment of Serum Zinc Level in Patients with Atopic Dermatitis. Iraqi J. Med. Sci. 2019, 17, 103–107. [Google Scholar] [CrossRef]
- Kim, J.E.; Yoo, S.R.; Jeong, M.G.; Ko, J.Y.; Ro, Y.S. Hair zinc levels and the efficacy of oral zinc supplementation in patients with atopic dermatitis. Acta Derm. Venereol. 2014, 94, 558–562. [Google Scholar] [CrossRef]
- Nakajima, K.; Lee, M.G.; Bin, B.H.; Hara, T.; Takagishi, T.; Chae, S.; Sano, S.; Fukada, T. Possible involvement of zinc transporter ZIP10 in atopic dermatitis. J. Dermatol. 2020, 47, e51–e53. [Google Scholar] [CrossRef]
- Valenzuela, F.; Fernández, J.; Aroca, M.; Jiménez, C.; Albers, D.; Hernández, M.; Fernández, A. Gingival Crevicular Fluid Zinc- and Aspartyl-Binding Protease Profile of Individuals with Moderate/Severe Atopic Dermatitis. Biomolecules 2020, 10, 1600. [Google Scholar] [CrossRef]
- Makiura, M.; Akamatsu, H.; Akita, H.; Yagami, A.; Shimizu, Y.; Eiro, H.; Kuramoto, M.; Suzuki, K.; Matsunaga, K. Atopic dermatitis-like symptoms in HR-1 hairless mice fed a diet low in magnesium and zinc. J. Int. Med. Res. 2004, 32, 392–399. [Google Scholar] [CrossRef]
- Park, H.; Kim, C.W.; Kim, S.S.; Park, C.W. The therapeutic effect and the changed serum zinc level after zinc supplementation in alopecia areata patients who had a low serum zinc level. Ann. Dermatol. 2009, 21, 142–146. [Google Scholar] [CrossRef]
- Bhat, Y.J.; Manzoor, S.; Khan, A.R.; Qayoom, S. Trace element levels in alopecia areata. Indian. J. Dermatol. Venereol. Leprol. 2009, 75, 29–31. [Google Scholar] [CrossRef]
- Abdel Fattah, N.S.; Atef, M.M.; Al-Qaradaghi, S.M. Evaluation of serum zinc level in patients with newly diagnosed and resistant alopecia areata. Int. J. Dermatol. 2016, 55, 24–29. [Google Scholar] [CrossRef]
- Sara, S.; Armaghan Ghareaghaji, Z.; Afsaneh, R. Evaluating the serum zinc and vitamin D levels in alopecia areata. Iran. J. Dermatol. 2018, 21, 77–80. [Google Scholar] [CrossRef]
- Mikhael, N.W.; Hussein, M.S.; Mansour, A.I.; Abdalamer, R.S. Evaluation of Serum Level of Zinc and Biotin in Patients with Alopecia Areata. Benha J. Appl. Sci. 2020, 5, 67–72. [Google Scholar] [CrossRef]
- Ozaydin-Yavuz, G.; Yavuz, I.H.; Demir, H.; Demir, C.; Bilgili, S.G. Alopecia Areata Different View; Heavy Metals. Indian J. Dermatol. 2019, 64, 7–11. [Google Scholar] [CrossRef]
- Kil, M.S.; Kim, C.W.; Kim, S.S. Analysis of serum zinc and copper concentrations in hair loss. Ann. Dermatol. 2013, 25, 405–409. [Google Scholar] [CrossRef]
- Alamoudi, S.M.; Marghalani, S.M.; Alajmi, R.S.; Aljefri, Y.E.; Alafif, A.F. Association Between Vitamin D and Zinc Levels with Alopecia Areata Phenotypes at a Tertiary Care Center. Cureus 2021, 13, e14738. [Google Scholar] [CrossRef]
- Camacho, F.M.; García-Hernández, M.J. Zinc aspartate, biotin, and clobetasol propionate in the treatment of alopecia areata in childhood. Pediatr. Dermatol. 1999, 16, 336–338. [Google Scholar] [CrossRef]
- Sharquie, K. Oral Zinc Sulphate in Treatment of Alopecia Areata (Double Blind; Cross-Over Study). J. Clin. Exp. Dermatol. Res. 2014, 3, 1000150. [Google Scholar] [CrossRef]
- Ead, R.D. Oral zinc sulphate in alopacia areata—A double blind trial. Br. J. Dermatol. 1981, 104, 483–484. [Google Scholar] [CrossRef]
- Cvijanovich, N.Z.; King, J.C.; Flori, H.R.; Gildengorin, G.; Vinks, A.A.; Wong, H.R. Safety and Dose Escalation Study of Intravenous Zinc Supplementation in Pediatric Critical Illness. JPEN J. Parenter. Enter. Nutr. 2016, 40, 860–868. [Google Scholar] [CrossRef]
- Perera, M.; Khoury, J.; Chinni, V.; Bolton, D.; Qu, L.; Johnson, P.; Trubiano, J.; McDonald, C.; Jones, D.; Bellomo, R.; et al. Randomised controlled trial for high-dose intravenous zinc as adjunctive therapy in SARS-CoV-2 (COVID-19) positive critically ill patients: Trial protocol. BMJ Open 2020, 10, e040580. [Google Scholar] [CrossRef]
- Guttek, K.; Wagenbrett, L.; Reinhold, A.; Grüngreiff, K.; Reinhold, D. Zinc aspartate suppresses proliferation and Th1/Th2/Th17 cytokine production of pre-activated human T cells in vitro. J. Trace Elem. Med. Biol. 2018, 49, 86–90. [Google Scholar] [CrossRef]
- Maywald, M.; Wessels, I.; Rink, L. Zinc Signals and Immunity. Int. J. Mol. Sci. 2017, 18, 2222. [Google Scholar] [CrossRef]
- Rosenkranz, E.; Hilgers, R.D.; Uciechowski, P.; Petersen, A.; Plümäkers, B.; Rink, L. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects. Eur. J. Nutr. 2017, 56, 557–567. [Google Scholar] [CrossRef]
- Zinc. Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Zinc-HealthProfessional/ (accessed on 8 July 2022).
- DGE. Referenzwerte Fuer Die Naehrstoffzufuhr. Available online: https://www.dge.de/wissenschaft/referenzwerte/?L=0 (accessed on 8 July 2024).
- Guo, C.H.; Liu, P.J.; Hsia, S.; Chuang, C.J.; Chen, P.C. Role of certain trace minerals in oxidative stress, inflammation, CD4/CD8 lymphocyte ratios and lung function in asthmatic patients. Ann. Clin. Biochem. 2011, 48, 344–351. [Google Scholar] [CrossRef]
- Wiegand, C.; Hipler, U.C.; Boldt, S.; Strehle, J.; Wollina, U. Skin-protective effects of a zinc oxide-functionalized textile and its relevance for atopic dermatitis. Clin. Cosmet. Investig. Dermatol. 2013, 6, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.S.; Fu, J.L.; Smiles, K.A.; Turner, C.B.; Schnell, B.M.; Werchowski, K.M.; Lammers, K.M. The effects of minoxidil, 1% pyrithione zinc and a combination of both on hair density: A randomized controlled trial. Br. J. Dermatol. 2003, 149, 354–362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maywald, M.; Rink, L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024, 14, 863. https://doi.org/10.3390/biom14070863
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules. 2024; 14(7):863. https://doi.org/10.3390/biom14070863
Chicago/Turabian StyleMaywald, Martina, and Lothar Rink. 2024. "Zinc Deficiency and Zinc Supplementation in Allergic Diseases" Biomolecules 14, no. 7: 863. https://doi.org/10.3390/biom14070863
APA StyleMaywald, M., & Rink, L. (2024). Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules, 14(7), 863. https://doi.org/10.3390/biom14070863