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Abstract: Molybdenum (Mo) is an essential element for human life, acting as a cofactor in various
enzymes crucial for metabolic homeostasis. This review provides a comprehensive insight into
the latest advances in research on molybdenum-containing enzymes and their clinical significance.
One of these enzymes is xanthine oxidase (XO), which plays a pivotal role in purine catabolism,
generating reactive oxygen species (ROS) capable of inducing oxidative stress and subsequent
organ dysfunction. Elevated XO activity is associated with liver pathologies such as non-alcoholic
fatty liver disease (NAFLD) and hepatocellular carcinoma (HCC). Aldehyde oxidases (AOs) are
also molybdenum-containing enzymes that, similar to XO, participate in drug metabolism, with
notable roles in the oxidation of various substrates. However, beneath its apparent efficacy, AOs’
inhibition may impact drug effectiveness and contribute to liver damage induced by hepatotoxins.
Another notable molybdenum-enzyme is sulfite oxidase (SOX), which catalyzes the conversion
of sulfite to sulfate, crucial for the degradation of sulfur-containing amino acids. Recent research
highlights SOX’s potential as a diagnostic marker for HCC, offering promising sensitivity and
specificity in distinguishing cancerous lesions. The newest member of molybdenum-containing
enzymes is mitochondrial amidoxime-reducing component (mARC), involved in drug metabolism
and detoxification reactions. Emerging evidence suggests its involvement in liver pathologies such as
HCC and NAFLD, indicating its potential as a therapeutic target. Overall, understanding the roles
of molybdenum-containing enzymes in human physiology and disease pathology is essential for
advancing diagnostic and therapeutic strategies for various health conditions, particularly those
related to liver dysfunction. Further research into the molecular mechanisms underlying these
enzymes’ functions could lead to novel treatments and improved patient outcomes.

Keywords: molybdenum (Mo); molybdenum cofactor (MoCo); molybdenum cofactor deficiency
(MoCD); xanthine oxidase (XO); aldehyde oxidase (AO); sulfite oxidase (SOX); mitochondrial
amidoxime-reducing component (mARC); hepatocellular carcinoma (HCC); non-alcoholic fatty
liver disease (NAFLD)

1. Introduction

Molybdenum (Mo), an element with an atomic number (Z) of 42, was first discovered
in 1778 by Karl Scheele [1]. Its features closely resemble those of lead, hence the name
molybdenum, which could be traced back to the Greek word molybdos, meaning “lead-like”.
The essential role of Mo in human life was established in 1953 by De Renzo EC et al. and
Richert DA et al., who identified Mo as a cofactor of xanthine oxidase (XO) [2,3]. The
ubiquitous pterin-based molybdenum cofactor (MoCo) constitutes part of the active centers
of all molybdenum enzymes in living organisms, without which molybdenum remains
catalytically inactive.

Molybdenum’s ability to serve as a cofactor in molybdenum-containing enzymes
renders it indispensable in redox reactions, where electron transfer is pivotal for biological
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function. During these reactions, the oxidation state of Mo alternates between IV and
VI. Mo-enzymes catalyze reactions involving the transfer of two electrons to or from a
substrate, which is coupled with the transfer of an oxygen atom that is either derived from
or incorporated into water. Molybdenum is not directly attached to the catalytic site but
its atom is complexed within a multiring organic carbon skeleton with phosphate (PO4

2−)
and two sulfites (S−) [Figure 1]. This compound, known as molybdopterin, forms the
molybdenum cofactor MoCo upon coordinating with Mo.
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atoms are as follows: yellow (sulfur; S) dark grey (carbon; C), navy (nitrogen; N), red (oxygen; O),
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Understanding the significance of molybdenum (Mo) in redox biology provides a
framework for exploring its role in various enzymatic processes. Enzymes with different
metal cofactors exhibit distinct activities, structures, and catalytic mechanisms, rooted in
the properties of their respective metals.

Molybdenum enzymes operate by cycling molybdenum between its +4 and +6 oxida-
tion states, enabling the transfer of oxygen atoms and electrons. They are integral to pro-
cesses like purine metabolism, aldehyde detoxification, and sulfur amino acid metabolism.
In contrast, selenium-containing enzymes have selenocysteine as their active sites. These
enzymes function through redox cycles involving residue. Thus, in selenoenzymes, se-
lenium does not serve as a cofactor. For example, in glutathione peroxidase (GPx), the
selenol group (SeH) of selenocysteine is oxidized by peroxides to selenenic acid (SeOH),
which is then reduced back to the selenol form by glutathione, completing the catalytic
cycle. Selenium enzymes like GPx and thioredoxin reductase (TrxR) primarily function
to protect cells from oxidative stress by reducing peroxides and maintaining the redox
balance of proteins. These enzymes play a pivotal role in cellular defense mechanisms
against oxidative damage.

Returning to the role of molybdenum in biological systems, the unique coordination
chemistry of Mo in the active site provides distinct catalytic properties that are critical for
various metabolic pathways involving the transfer of oxygen atoms and electrons. The
number of enzymes in which Mo acts as a cofactor is finite, and this group (beyond XO)
also includes sulfite oxidase (SOX), aldehyde oxidase (AO), and mitochondrial amidoxime-
reducing component (mARC). Each of the aforementioned enzymes has a great contribution
to sensu lato metabolic homeostasis. The most recently discovered of the bunch is mARC,
which was isolated and identified in 2006 by Havemeyer et al. [4]. The drug-metabolizing
mARC is not only able to activate N-hydroxylated prodrugs but also inactivate substances
relying on subgroups’ incorporation of N-OH bonds [5]. The first molybdenum-containing
oxidating enzyme—xanthine oxidase (XO)—is vital for the catalyzation of purines to uric
acid [6]. Aldehyde oxidase is the primary catalyzer in the metabolism of N-heterocyclic
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compounds of both exo- and endogenous origins [7,8]. Sulfite oxidase plays an imperative
role in the degradation of the amino acids methionine (Met) and cysteine (Cys) [9,10].

The distribution of Mo in the human body was studied by Schroeder et al. [11] via
tissue analysis of 381 human cadavers. The results revealed varying levels of molybdenum
across tissues, with the highest content observed in the liver (1.1 mg/kg) and kidneys
(0.036 mg/kg). Considering these variations, the estimated maximum potential molyb-
denum stored in the body was approximately 0.13 mg/kg. Additionally, in experiments
conducted by Rosoff et al. [12], the liver demonstrated the highest uptake of molybdenum
(18%), followed by the kidney (9%) and pancreas (3%).

The compartmental analysis performed by Tsongas et al. [13] estimated total body
molybdenum stores in healthy adults based on daily molybdenum intake ranging from
120 to 240 µg/day to be approximately 2224 µg. This estimation closely aligns with results
reported by Schroeder et al. [11] (2286 µg). Moreover, the compartmental modeling em-
ployed to investigate changes in molybdenum distribution and elimination in response to
varying intake levels showed urinary excretion as the primary pathway for regulating the
body’s exposure to molybdenum [14].

This research highlights the organism’s capacity to adapt to molybdenum intake levels,
facilitating the elimination of excess at higher intakes and conservation at lower intakes.
Such an adaptive response plays a crucial role in mitigating the risks associated with both
molybdenum deficiency and toxicity.

Primary nutritional molybdenum deficiency in humans is a rare phenomenon but
the deficiency of molybdenum cofactor (MoCD) can occur due to genetic defects in any of
the multistep enzymatic pathways synthesizing MoCo. Hence the result of present MoCD
in humans is a complete loss of properly functioning XO, AO, SOX [9,15] and mARC.
Among the biochemical features of MoCD is the accumulation of sulfite accompanied by a
reduction in Cys; in addition, uric acid levels are significantly reduced while xanthine is
elevated. The symptoms of MoCD deficiency predominantly arise due to the insufficiency
of SOX, which safeguards organs, notably the brain, from the harmful effects of elevated
levels of toxic sulfite [9]. The clinical presentation in these types of genetic defects is present
from neonatal age and, among many symptoms, include minor dysmorphic facial features,
solitary cerebral parenchymal cysts, hypoplastic pons, cerebellum, myoclonic seizures,
apnea, limb hypertonia, or opisthotonos [15], and sadly, in the majority of cases, lead to the
early death of the patients [16].

Even though the topic of molybdenum’s significance in human body metabolism is
still being studied, we still have much to discover. This review summarizes the current
state of knowledge regarding the latest advancements in research of MoCo-incorporating
enzymes and their clinical importance.

2. Materials and Methods

Two independent researchers searched the medical database PubMed using phrases
including either full or short names of at least one of the described enzymes and/or ad-
ditional terms. Phrases used in the search included “Xanthine Oxidase liver”, “Aldehyde
Oxidase liver”, “XO liver pathology”, “Xanthine Oxidase Molybdenum Cofactor”, “Molyb-
denum Cofactor Deficiency sulphite oxidase” etc. They also reviewed references from the
articles they found. In total, they collected 102 publications; of these, 91 met the inclusion
criteria such as original or review publications describing the function, history, and/or
biochemistry of at least one of the aforementioned enzymes. Furthermore, the articles
touching on the topic of enzymes and connecting it with liver pathology were particularly
useful. The publications explaining the epidemiology of liver diseases and elaborating on
MoCD were also included to provide high-quality insights into the clinical aspect of liver
pathophysiology. The researchers excluded studies that presented the topic of selected
enzymes superficially or just briefly mentioned them in the text.
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3. Selected Molybdenum-Containing Oxidating Enzymes
3.1. Xanthine Oxidase

Xanthine oxidase (XO), also known as xanthine oxidoreductase [Figure 2], is promi-
nently found in the epithelial cells of the intestines and the parenchymal and bile duct
epithelial cells of the liver [17]. Immunohistochemical research has identified the presence
of XO in the endothelial capillaries [18].

In vivo, XO exists in two forms: the dehydrogenase (non-superoxide-generating) form,
which utilizes NAD+ as an electron acceptor, and the oxidase (superoxide-generating)
form, which uses O2 as an electron acceptor. Under conditions such as ischemia and/or
non-reversible proteolysis, the dehydrogenase form, prevalent under normal physiological
conditions, may be transformed into the oxidative form in the majority of cells [19,20].

Xanthine oxidase is a homodimer with a molecular weight of 270 kDa. Each monomer
contains a molybdenum center where substrate hydroxylation occurs, a flavin adenine
dinucleotide (FAD) cofactor facilitating electron transfer from the molybdenum center, and
two iron–sulfur centers ([2Fe-2S] clusters. The redox reaction centers are almost linearly
positioned in the order of molybdopterin, [2Fe-2S] centers, and FAD. One of the Fe-S centers
has a higher redox potential. Molybdenum binds with the pterin ring through a sulfur
atom, with a further sulfur atom and two oxygen atoms coordinated to the molybdenum
and exposed to solvent. One of the oxygen atoms is derived from a water molecule and
incorporated into the substrate (hypoxanthine and xanthine). The enzyme is reduced and
receives H+ + 2e− from the substrate, reducing the molybdenum center from Mo(VI) to
Mo(IV). This is followed by electron transfer through the iron–sulfur clusters to the FAD
cofactor, ultimately releasing reducing equivalents. The final electron acceptor, which could
be NAD+ or oxygen molecule, is reduced [21–25].
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Xanthine oxidase catalyzes the final two steps in purine catabolism, using hypoxan-
thine and subsequently xanthine as substrates for uric acid synthesis [6] [Figure 3]. The
reactions are as follows:

Hypoxanthine + H2O + O2 ↔ Xanthine + H2O2

Xanthine + H2O + O2 ↔ Uric acid + H2O2
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As byproducts of these reactions, XO produces superoxide anion (O2
−) and hydrogen

peroxide (H2O2). The first one is an essential precursor for peroxynitrate radical (ONOO•)
and hydroxide radical (OH•) [6,17,27]. Some reactive oxygen species (ROS) generated by
these byproducts can mediate oxidative stress and organ dysfunction [27,28]. These ROS
influence cell function through DNA and protein fragmentation. They can also disturb the
continuity of the cell membrane by peroxidation of the membrane lipids and stress host
tissue directly, leading to irreversible damage [29]. These ROS characteristics are vital for
defense against some infections, among which malaria is worth highlighting due to its high
prevalence, which reached around 247 million cases globally in 2021 alone [30].

In this disease, especially of Plasmodium falciparum etiology, hepatocellular dysfunction
with markedly elevated levels of XO, uric acid (XO metabolic product), liver function en-
zymes (GOT and GTP), catalase as well as bilirubin levels are reported by Iwalokun et al. [31].
In addition, increased XO activity with elevated transaminase levels was found to indicate
the presence of liver disease [32]. Normally, the levels of XO and liver function enzymes
in the circulation are low. However, their increased levels are greatly correlated with liver
pathologies. Liver enzyme levels can drastically increase in the serum when hepatocytes
undergo lysis [33], which may indicate a relationship between hepatocyte lysis and the
release of XO into the bloodstream [31].

The serum level of xanthine oxidase varies and depends on the primary liver disease.
The study conducted by Batelli et al. on the 64-patient group with chronic liver disease
concluded that sick patients had significantly higher serum XO levels compared to the
12-people control group. The greatest increase of said oxidase was noted in cases of
cholestatic disorders; some elevation was present in chronic hepatitis patients, but not in
cirrhosis [32]. An evident increase in serum XO levels in individuals with chronic liver
disease appears to indicate the presence of cholestasis.

The other disease that exhibits an indirect correlation with XO activity is non-alcoholic
fatty liver disease (NAFLD). NAFLD has a high prevalence of 47.8% in the United States [34,35]
and 26.9% in Europe [34,36]. It is one of the most common chronic liver diseases globally [37].
High serum uric acid levels are widespread metabolic abnormalities present in obese pa-
tients [38] who are at great risk of NAFLD [39]. Chengfu Xu et al. studied the relationship
between NAFLD and hyperuricemia (uric acid as the product of xanthine’s oxidation). They
firmly linked NAFLD with the subsequent onset of hyperuricemia. Furthermore, they also
discovered elevated expression and activity of XO in cellular and mouse models of NAFLD.
This increase might elucidate the molecular connection between NAFLD and high serum uric
acid levels. Moreover, their findings demonstrate that XO plays a pivotal role in regulating
NAFLD [40] and could potentially serve as an innovative therapeutic target for patients
afflicted with this condition.

3.2. Aldehyde Oxidase

The first references in literature to the xanthine oxidase-resembling enzyme, aldehyde
oxidase, date back to the 1930s [41] and 1940s [42]. Due to the increasingly frequent
association of AO with the principal metabolic pathways of drugs [43], there has been a
visible surge in interest within the scientific community, leading to numerous studies and
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articles published on AO. This interest peaked, according to PubMed, with 132 articles on
AO published in 2018 alone [44].

Aldehyde oxidase (AO) [Figure 4] is an enzyme homologous to xanthine oxidase, and
just like XO, is a complex molybdoflavoprotein. Moreover, both oxidases demonstrate
a notable level of similarity in their respective amino-acid sequences [45] and require
the same cofactors. Each identical subunit of the AO homodimer is about 140–150 kDa
when active. The single subunit can be further divided into three separate domains: the
smallest N-terminal 20 kDa domain responsible for binding the two non-identical iron-
containing aggregates, the central 40 kDa domain contains a binding site for a flavin
adenine dinucleotide (FAD), and the largest C-terminal 85 kDa domain contains MoCo and
a substrate-binding site in close proximity [46,47]. Even though there are great resemblances
between XO and AO functions, for example, both enzymes enable oxidation as well as
reduction reactions across a broad spectrum of substrates, with oxidation reactions being
significantly more prevalent [45], significant differences also exist. Remarkably, there are
distinctions in inhibitor and substrate specificities between XO and AO [48]. The only
electron acceptor for AO is molecular oxygen [49]. AO can oxidase a broader range of
substrates compared to XO [49,50]. Compounds with an aldehyde group, N-heterocycles,
or nitro compounds are some examples of AO substrates [45,51]. The mechanism of AO-
catalyzed oxidation is as follows: the substrate undergoes oxidation to produce the product
at the MoCo. Subsequently, the reducing equivalents are transferred to FAD, which is then
reoxidized by the molecular oxygen. The iron-containing centers play a role as mediators
in electron transfer between MoCo and the flavin cofactor. Additionally, they act as electron
sinks, storing reducing equivalents throughout the catalytic process [7,8,45].
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AO-mediated clearance of drugs predominantly takes place in the liver. The liver ex-
hibits the greatest AO activity [44] but the degree of AO activity varies between species [53].
Moriwaki et al. [54] reported that outside the liver, other tissues and organs have noticeable
AO activity [50,54], including endocrine, respiratory, digestive, and kidney. In addition,
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they present cell-specific localization. For instance, high AO activity was present in the
renal tissue, especially in proximal and distal convoluted tubes and collecting ducts. The
respiratory tract’s epithelium had abundant AO after immunohistochemical staining [54].

3.3. Involvement in Drug Metabolism of Aldehyde Oxidase and Xanthine Oxidase

Aldehyde oxidase is an enzyme that has an important role in drug metabolism in
the liver [55]. A study conducted in 2013 by Cexiong Fu et al. found a significant drop in
aldehyde oxidase 1 (AO1) levels in human liver cytosols of donors with chronic alcohol
consumption compared to controls, although interestingly, the cells preserved almost all
AO1 expression [56].

Scott Obach et al. conducted the biggest study at that time on human liver-derived
AO interactions with 239 drugs. The results show that as many as 36 (out of 239) frequently
administered drugs led to AO inhibition at a level greater than 80%. This distinctive
group was subsequently subjected to further investigation to determine their IC50 values.
Raloxifene, a selective estrogen receptor modulator, demonstrated the greatest potency as
an inhibitory agent (IC50 = 2.9 nM), with tamoxifen, estradiol, and ethinyl estradiol also
showing notable inhibitory effects [43].

In 2014, Choughule et al. reported the vital function of AO and XO in the metabolism
of 6-mercaptopurine (6MP) [57], an agent administered for the treatment of childhood
acute lymphoblastic leukemia [58]. Oxidation and methylation of 6MP produce inactive
metabolites. The roles of AO and XO were investigated via the utilization of specific
inhibitors—raloxifene and febuxostat. This study established that both AO and XO partici-
pate in 6MP oxidation to 6-thixanthine (6TX) intermediate, while only XO is involved in
the conversion of 6TX to 6-thiouric acid (6TUA). A combined therapy consisting of an XO
inhibitor with 6MP has been shown to increase the bioavailability of 6MP [58] [Figure 5].
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According to Shakir Ali et al., these oxidases, apart from drug–drug interactions,
contribute to the hepatic damage inflicted by free radicals thanks to the accumulation of a
variety of hepatotoxins agents such as carbon tetrachloride (CCl4), chloroform (CHCl3),
and thioacetamide (TAA). Elevated levels of CCl4, CHCl3, and TAA resulted in increased
levels of molybdoproteins. Interestingly, liver damage caused by glutathione-depleting
substances did not lead to a rise in molybdenum-containing oxidases, hence they did not
participate in amplification of hepatic damage [59].

These studies have underlined the meaningful role of AO and XO in drug metabolism
and drug–drug interactions within the liver. It suggests the clinical relevance of under-
standing AO-/XO-mediated drug interactions with liver physiology.

3.4. Sulfite Oxidase

The properties of the human SOX molecule were investigated by Johnson et al. in
1976 [60]. Those researchers estimated the weight of the SOX molecule [Figure 6] to be
approximately 61.1 kDa. They also discovered that human SOX is more negatively charged
compared to the SOX isolated from rat liver [60]. Sulfite oxidase is widely regarded as
the most crucial molybdenum-containing oxidating enzyme for human health [15] since it
catalyzes the final stage in oxidative degradation of sulfur-containing amino acids (e.g., cys-
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teine) and lipids. SOX facilitates the conversion of sulfite into sulfate. SOX is situated in
the intermembrane space of mitochondria and shuttles electrons from sulfite oxidation to
cytochrome c (Cyt c), hence connecting sulfite oxidation to the reduction of Cyt c [9,10,15].
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The animal dimeric structure of the SOX consists of one molybdenum domain and
one cytochrome b5-type heme domain [60,62]. The latter is an electron acceptor from the
molybdenum center. The catalytic process of sulfite oxidase encompasses the oxidation
of sulfite coupled with the reduction of molybdenum, succeeded by two distinct electron
transfer phases via the cytochrome b5 domain to Cyt c. This process is characterized by
significant spatial movements of the heme domain within sulfite oxidase [10]. SOX and
similar enzymes could be present in bacteria [63] and plants [64] as well. The form in
microorganisms is assembled into a heterodimer consisting of a single subunit containing
molybdenum and Cyt c, while in the latter, a homodimer composed of two Mo subunits
without the heme domain [63,64].

3.5. Sulfite Oxidase in Modern Clinical Use

Recent clinical studies have begun a new chapter for possible clinical use of SOX
activity such as in the diagnosis of hepatocellular carcinoma (HCC) [65]. According to
the World Health Organization’s estimates for 2022, 760,000 people died of liver cancer
making it the third leading cause of cancer-related deaths wordlwide [66]. Eastern Asia



Biomolecules 2024, 14, 869 9 of 16

and sub-Saharan Africa are regions that suffer the most from HCC. This cancer follows
a similar high prevalence pattern of chronic hepatitis B virus (HBV) and approximately
80% of HCC cases occur there [67]. There are numerous etiologies of HCC. Apart from
HBV infection, chronic hepatitis C virus (HCV) infection, or non-alcoholic steatohepatitis
(NASH), a more severe form of NAFLD characterized by concurrent inflammation. All of
the above can lead to cirrhosis and eventually the development of HCC [68,69].

The high global prevalence of HCC and the difficult diagnostic process poses a signifi-
cant challenge for modern medicine. HCC markers such as heat shock protein 70, glypican 3,
and glutathione synthase have roles in the cancer’s diagnostic process [70,71] but have
relatively low sensitivity in differentiating HCCs, hence the need for improvements in
this area.

In 2010, Satow et al. reported an elevation of aldo-keto reductase family 1 member
B10 (AKR1B10) in HCC [72]. The following year, Guang-Zhi Jin et al. stated that the SOX
could be a suitable immunohistochemical marker for distinguishing well-differentiated
small HCC (WD-sHCC) from high-grade dysplastic nodules (HGDNs) [73], which are
precancerous lesions with a high risk of malignant transformation [74,75]. Jin GZ. et al.
later combined previous research on HCC [70–73] and conducted a pioneering study
establishing that a marker combination that includes SOX is a meaningful contributor
to immunopathological diagnosis in HCC cases when distinguishing WD-sHCC from
HGDNs. These researchers found that the combination of markers SOX + AKR1B10 +
CD34 yielded promising sensitivity (93.8%) and specificity (95.2%) in the differentiation of
WD-sHCC from HGDNs [65].

SOX is a vital biochemical component not only for the proper function of the liver
but also for brain physiology. The manifestations of molybdenum cofactor deficiency
primarily stem from the inadequate presence of SOX, which stands as the protector of
organs, particularly the brain, against the detrimental impact of increased levels of toxic
sulfite. The MoCD also leads to sulfite accumulation [9], which has a detrimental effect
on neurons. Aggregated sulfite in serum and plasma crosses the blood–brain barrier and
leads to neuron death [10], diminished ATP synthesis [76], and (indirectly) stimulation of
glutamate receptors [77]. The latter might be the underlying reason for neural symptoms
associated with MoCD, such as convulsions or seizures, leading to irreversible neuronal
damage visible as white matter loss [16]. Recent studies performed on animal models (rats)
show great connections between SOX levels and central nervous system (CNS) function. In
2012, Kocamaz et al. reported that sulfite accumulation led to a significant drop in the total
number of pyramidal neurons in the hippocampus [78]. Cells that demonstrate high SOX
expression in CNS are astrocytes. One of the latest studies on SOX shows that SOX gene
knockdown or replacement of Mo with tungsten (W) in MoCo decreases NO synthesis by
the glia during hypoxia [79].

3.6. Mitochondrial Amidoxime-Reducing Component

Molybdenum, playing a crucial role in both oxidation and reduction processes, is also
a key element in the most recently discovered human molybdoenzyme—mitochondrial
amidoxime-reducing component (mARC)—which was identified and isolated in 2006 [4].
mARC, alongside heme-containing cytochrome b5 (Cyt b5) and NADH-dependent FAD/cy-
tochrome b5 reductase (Cyt b5R), form a three-enzyme complex localized in the outer mito-
chondrial membrane [4,80,81]. Interestingly, mARC contains MoCo, which is homologous
to the domain of molybdenum cofactor sulfurase [82]. In all mammalian genomes exam-
ined up until now, there are two mARC genes: MTARC1 and MTARC2. In humans, these
genes are localized on chromosome 1 and encode two proteins, mARC1 [Figure 7] and
mARC2 [81–84], respectively.
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mARC, with versatile capabilities, participates in the reduction of various sub-
strates. Its initial discovery was linked to the reduction of benzamidoxime [86]. Fur-
thermore, mARC is involved in reducing compounds such as N-hydroxy-valdecoxib
and N-hydroxy-benzenesulfonamide, the members of a family of N-hydroxy sulfon-
amides [87]. N-hydroxamic acids, such as benzhydroxamic acid and bufexamac [88] as
well as N-hydroxyguanidines like Nω-hydroxy-L-arginine [89] also undergo reduction
via mARC and play essential roles in various biochemical pathways. Figure 8 presents
the selected molecular structures of the mARC substrates.

For compound reduction to occur, mARC requires electrons; NADH is the electron
donor. The subatomic particle then passes through the FAD-containing Cyt b5R and Cyt
b5, eventually reaching the mARC protein, where the substrate is reduced in the mARC
molybdenum-active site [82]. mARC is present in great quantities in the kidneys and the
liver and thus actively participates in the detoxification of N-hydroxylated substrates [1].

The mitochondrial amidoxime-reducing component serves as an enzyme that metab-
olizes drugs, with the ability to activate N-hydroxylated prodrugs. On the other hand,
mARC can also deactivate drug substances that depend on functional groups with N-OH
bonds [5]. The cytostatic agent N-hydroxyurea, which inhibits ribonucleotide reductase,
is employed in the treatment of sickle-cell disease and certain types of cancers and serves
as an excellent substrate for mARC1 [90]. In a related context, Zhang et al. found that
hydroxamic acids are utilized in pharmacophores that target metalloproteins, a principle
that is applied to the inhibitors of zinc-containing histone deacetylase [91].

The role of mARC in detoxification reactions is an important point of discussion.
Following the identification of mammalian mARC [4], a new mARC discovery emerged. In
2008, Kozmin et al. found that two homologs of mARC, namely YcbX and YiiM, aid in bol-
stering the resistance of Escherichia coli bacteria to 6-hydroxylaminopurine [92]. Protecting
cells from the harmful effects of mutagenic N-hydroxylated nucleobases and nucleotides is
one of the other roles of mARC proteins [93]. mARCs have also been observed to reduce
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said substances [94]. However, the relationship between the functional groups, which
have been shown to be reduced by mARC, and the physiological function of the enzymes
remains uncertain [5].
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3.7. mARC as a Significant Component in Human Disease

Increasingly, evidence suggests that mARC enzymes may play roles in physiological
processes as well as contribute to human disease. Therefore, it seems that the function of
mARC is not solely restricted to xenobiotic metabolism.

Levels of mARC, similar to SOX, might show a correlation with the presence of HCC
in patients’ livers. A compelling example was investigated in 2020 by Wu et al., who
confirmed the involvement of mARC in HCC. Their findings revealed that mARC2 can
hinder the progression of HCC by competing with the tumor suppressor protein p27 for
degradation via the same ubiquitin E3 ligase, RNF123 (also known as KPC1) [95]. Reduced
mARC2 expression stood out as an independent risk factor for a poor prognosis. Hence, it
was notably linked to clinicopathological features of HCC, including AFP levels, tumor
grade, and tumor size [95]. In the follow-up study, also performed by Wu et al., uncovered
a negative relationship between the expression levels of MTARC2, Cyt b5, and Cyt b5R, as
well as HCC tumor size, metastasis risk, and progression. This led to the proposal that the
expression levels of MTARC2 and its associated electron carrier proteins could serve as a
prognostic indicator in HCC patients [96].

mARC involvement in liver pathologies does not end with HCC. The activity of mARC
exhibits a correlation with NAFLD and NASH. The recent genome-wide association study
(GWAS) conducted by Emdin et al. discovered that the human variant mARC1-p.A165T
seemed to offer protection against liver cirrhosis. Additionally, it was associated with
reduced liver fat, blood cholesterol levels, and circulating liver enzymes [97]. In Addition,
many other GWAS also confirmed a connection between liver disease and mARC1 [98–100].
According to Friedman et al., there are currently no pharmacotherapeutic alternatives for
the treatment and prevention of NAFLD and NASH [101]. Therefore, mARC1 could be
considered a new drug target, for example in patients suffering from obesity [102].
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4. Conclusions

In conclusion, molybdenum (Mo) stands as a fundamental element in human
metabolism, serving as a cofactor in enzymes vital for various physiological processes.
Recognized for its essentiality since the 1950s, research has delved into understanding
Mo’s distribution in tissues, metabolic functions, and clinical implications.

Predominantly found in organs like the liver, kidneys, and blood, Mo deficiency,
particularly in molybdenum cofactor (MoCo) synthesis pathways, can lead to severe
conditions such as MoCo deficiency (MoCD), impacting the proper functioning of MoCo-
dependent enzymes like xanthine oxidase (XO), sulfite oxidase (SOX), aldehyde oxidase
(AO), and mitochondrial amidoxime-reducing component (mARC).

Recent advancements in research have highlighted the clinical importance of MoCo-
incorporating enzymes, shedding light on their roles in drug metabolism, liver physiology,
and disease pathogenesis. XO and AO play pivotal roles in drug metabolism, particularly
in the liver, with implications for pharmacotherapy optimization and management of
liver-related conditions.

SOX, critical for sulfur-containing amino acid degradation and brain protection, shows
promise as a diagnostic marker for hepatocellular carcinoma (HCC) and holds implications
for neurodegenerative disorders. Additionally, mARC’s versatile capabilities in detoxifi-
cation reactions and its involvement in liver pathologies underscore its significance as a
potential prognostic indicator and therapeutic target.

Further exploration into the mechanisms of MoCo-incorporating enzymes and their
implications for human health and disease is essential. By deepening our understanding
of Mo’s roles, we may unlock novel diagnostic and therapeutic strategies, ultimately
advancing patient care and medical knowledge.
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