
Citation: Fang, Q.; Xu, Y.; Tan, X.; Wu,

X.; Li, S.; Yuan, J.; Chen, X.; Huang, Q.;

Fu, K.; Xiao, S. The Role and

Therapeutic Potential of Pyroptosis in

Colorectal Cancer: A Review.

Biomolecules 2024, 14, 874. https://

doi.org/10.3390/biom14070874

Academic Editors: Marco Corazzari

and Mohsin Saleet Jafri

Received: 9 May 2024

Revised: 16 July 2024

Accepted: 18 July 2024

Published: 20 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomolecules

Review

The Role and Therapeutic Potential of Pyroptosis in Colorectal
Cancer: A Review
Qing Fang 1,2, Yunhua Xu 1,3, Xiangwen Tan 1,4, Xiaofeng Wu 1,2, Shuxiang Li 5, Jinyi Yuan 5, Xiguang Chen 5,
Qiulin Huang 5, Kai Fu 6,* and Shuai Xiao 1,5,*

1 Cancer Research Institute, The First Affiliated Hospital, Hengyang Medical School, University of South China,
Hengyang 421001, China; q3145692607@163.com (Q.F.); xyh940707@163.com (Y.X.);
txw1143122828@hotmail.com (X.T.); 15674919272@163.com (X.W.)

2 Department of Clinical Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School,
University of South China, Hengyang 421001, China

3 Institute of Clinical Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South
China, Hengyang 421001, China

4 Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Hengyang Medical School,
University of South China, Hengyang 421001, China

5 Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School,
University of South China, Hengyang 421001, China; t17872114789@163.com (S.L.);
18075933997@163.com (J.Y.); cxgxhhncn@126.com (X.C.); 2018011993@usc.edu.cn (Q.H.)

6 Institute of Molecular Precision Medicine and Hunan Key Laboratory of Molecular Precision Medicine,
Xiangya Hospital, Central South University, Changsha 410008, China

* Correspondence: fu_kai@csu.edu.cn (K.F.); xiaoshuai1982@hotmail.com (S.X.)

Abstract: Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality worldwide.
The unlimited proliferation of tumor cells is one of the key features resulting in the malignant
development and progression of CRC. Consequently, understanding the potential proliferation and
growth molecular mechanisms and developing effective therapeutic strategies have become key in
CRC treatment. Pyroptosis is an emerging type of regulated cell death (RCD) that has a significant
role in cells proliferation and growth. For the last few years, numerous studies have indicated a close
correlation between pyroptosis and the occurrence, progression, and treatment of many malignancies,
including CRC. The development of effective therapeutic strategies to inhibit tumor growth and
proliferation has become a key area in CRC treatment. Thus, this review mainly summarized the
different pyroptosis pathways and mechanisms, the anti-tumor (tumor suppressor) and protective
roles of pyroptosis in CRC, and the clinical and prognostic value of pyroptosis in CRC, which may
contribute to exploring new therapeutic strategies for CRC.
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1. Introduction

Colorectal cancer (CRC) is one of the most frequently occurring and the second
leading cause of tumor mortality worldwide [1,2]. CRC is considered as a multifacto-
rial disorder [3] whose development and progression are associated with age, ethnicity,
lifestyle, abnormal activation of proto-oncogenes, and inactivation of tumor suppressor
genes, etc. [4,5]. The malignant proliferation of tumor cells is a fundamental feature of
cancer occurrence, progression, and metastasis, including CRC [6,7]. The proliferation and
growth of tumors are closely associated with various cellular and biological processes,
particularly the aberration of regulated cell death (RCD). As a result, a thorough knowledge
of these molecular mechanisms and the inhibition of the proliferation of tumor cells have
become a primary focus in cancer therapy, including CRC treatment.

Pyroptosis is a programmed cell death (PCD) executed by the gasdermin (GSDM)
protein family [8], which was first discovered in macrophages infected with Salmonella [9]
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or Shigella flexneri [10] in the 1990s. This form of cell death was initially misclassified
as cell apoptosis, considering that both types of cell death are characterized by caspase-
dependent cell death, DNA damage induction, and nuclear condensation [11,12]. In 2001,
the death pattern caused by Salmonella infection with macrophages was formally defined
as “pyroptosis” [13,14]. Several studies had found that GSDM is the pyroptosis executive
protein that could be cleaved by caspase proteins. The N-terminal domain of GSDM (GSDM-
N) perforates (punches holes in) the cell membrane after binding to the cell membrane lipid,
eventually leading to the rupture of the cell membrane. After the rupture, the contents
leak out, leading to cell death and inflammation [15]. In recent years, pyroptosis has been
reported to be associated with various diseases, including inflammatory diseases [16],
cardiovascular disease [17], leukemia [18], and especially cancer [19].

The pathogenesis of cancer is a complicated biological process which involves several
cellular processes including inflammation and RCD like pyroptosis, among many others.
Inflammation, a physiological process of the body in response to harmful stimuli, is proven
to be a critical factor in cancer development and progression. Pyroptosis is a specific form
of cell death, which is also present in the context of inflammation. Numerous studies have
shown that pyroptosis and relevant molecules are closely associated with the occurrence,
development, and prognosis of melanoma, breast, gastric, liver, and lung cancer, as well as
the CRC [20–26]. Pyroptosis plays a significant tumor suppressor function in melanoma
and an important role in treatment [19,27]. However, cell pyroptosis in CRC appears to be a
double-edged sword [28–30]. While on the one hand, the excessive release of inflammatory
mediators, such as interleukin-1β (IL-1β) and IL-18, trigger abnormal systemic inflamma-
tory reactions, accelerating tumor progression and increasing tumor burden, on the other
hand, it promotes immunogenic cell death, enhances immune activity, and selectively kills
tumor cells, exhibiting potential anti-tumor activity [31,32]. This review comprehensively
analyzed the interplay between pyroptosis and CRC development, progression and clinical
significance, which may contribute to exploring new therapeutic strategies for CRC.

2. Molecular Mechanisms of Pyroptosis and CRC

Pyroptosis is an intricate molecular biological process. Four pyroptosis-related molec-
ular pathways have been identified, namely, the inflammasome-dependent canonical or
non-canonical pathway, the caspase-3 mediated non-canonical pathway, and the granzymes-
based pathway, all regulated by GSDMs (Figure 1).

2.1. The Caspase-1-Mediated Canonical Inflammasome Pathway

The first identified pathway of pyroptosis is the canonical inflammasome pathway.
The canonical inflammasome pathway is caspase-1 dependent, and the inflammasomes in-
cluding NLRP1 (nucleotide-binding domain leucine-rich repeat pyrin domain containing 1),
NLRP3 (nucleotide-binding domain leucine-rich repeat pyrin domain containing 3), NAIP
(NOD-like receptor family apoptosis inhibitory protein)/NLRC4 (NLR-family CARD-
containing protein 4), and AIM2 (Absent in melanoma 2) are the key components of this
pyroptosis pathway [33–35]. In this pathway, inflammasome activation is observed. After
the stimulation by bacteria, virus, or intracellular danger signal, distinct types of pattern
recognition receptors (PRRs) act as intracellular molecular sensors to bind and activate
caspase-1 via apoptosis-associated speck-like protein containing a CARD (ASC), which
forms the inflammasome [36]. After the inflammasome is successfully assembled, the pre-
cursor caspase-1 is cleaved into active caspase-1. Activated caspase-1 then cleaves GSDMD
to form an active N-terminal domain of GSDMD (GSDMD-N) that induces cell membrane
perforation, resulting in cell rupture, death, content release, and inflammation [37]. Mean-
while, caspase-1 promotes the maturation and secretion of IL-1β and IL-18 outside the
cells, recruits more inflammatory cells, enhances the inflammatory response, and increases
osmotic pressure and cytolysis [38].
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sis. On the other hand, the non-canonical inflammasome pathway of pyroptosis involves recogniz-
ing LPS and activating caspase-4/5/11, which cleaves GSDMD to translocate to the cell membrane, 
triggering pyroptosis. Another novel non-canonical of pyroptosis mediated by caspase-3 is regu-
lated through GSDME. Chemotherapeutic drugs activate caspase-3 to cleave GSDME, leading to 
widespread pyroptosis. Additionally, in the granzyme-dependent pathway of pyroptosis, GZMB 
and GZMA can respectively act on GSDME and GSDMB to induce pyroptosis. PAMPs: pathogen-
associated molecular patterns; DAMPs: damage-associated molecular patterns; NLRP1: nucleotide-
binding domain leucine-rich repeat pyrin domain containing 1; NLRP3: nucleotide-binding domain 
leucine-rich repeat pyrin domain containing 3; NAIP: NOD-like receptor family apoptosis inhibi-
tory protein; NLRC4: NLR-family CARD-containing protein 4; AIM2: Absent in melanoma 2; ASC: 
Apoptosis-associated speck like protein containing a CARD; LPS: Lipopolysaccharide. 
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enhances cleavage of the N-terminal domain of GSDMD (GSDMD-N) and caspase-1 in 
CRC cells [42]. A study found that in a cell model with FOXP2 depletion, low expression 
of FOXP2 promoted the cell growth of CRC and inhibited cell pyroptosis by inhibiting 
caspase-1 expression [43]. Another study found that ginsenoside Rh3 (GRh3) isolated 
from Chinese herbal medicine inhibited CRC cell proliferation and activated caspase-1 to 

Figure 1. The molecular mechanism of pyroptosis. In the caspase-1 mediated canonical inflammasome
pathway, after recognition by PRRs, PAMPs form inflammasome complexes. The inflammasome
recruits and binds with ASC, activating caspase-1, which induces the formation of perforation-active
GSDMD-N. GSDMD-N is released and forms pores in the plasma membrane, leading to secretion
of IL-18/1β, influx of water, cell swelling, and rupture, ultimately resulting in pyroptosis. On the
other hand, the non-canonical inflammasome pathway of pyroptosis involves recognizing LPS and
activating caspase-4/5/11, which cleaves GSDMD to translocate to the cell membrane, triggering
pyroptosis. Another novel non-canonical of pyroptosis mediated by caspase-3 is regulated through
GSDME. Chemotherapeutic drugs activate caspase-3 to cleave GSDME, leading to widespread
pyroptosis. Additionally, in the granzyme-dependent pathway of pyroptosis, GZMB and GZMA
can respectively act on GSDME and GSDMB to induce pyroptosis. PAMPs: pathogen-associated
molecular patterns; DAMPs: damage-associated molecular patterns; NLRP1: nucleotide-binding
domain leucine-rich repeat pyrin domain containing 1; NLRP3: nucleotide-binding domain leucine-
rich repeat pyrin domain containing 3; NAIP: NOD-like receptor family apoptosis inhibitory protein;
NLRC4: NLR-family CARD-containing protein 4; AIM2: Absent in melanoma 2; ASC: Apoptosis-
associated speck like protein containing a CARD; LPS: Lipopolysaccharide.

The advantageous role of the canonical inflammasome pathway of pyroptosis in CRC
has been confirmed in many studies [39,40]. Secoisolariciresinol (SECO) diglucoside (SDG)
is a component of lignans with biological and anti-tumor activity [41]. In CRC, SDG
enhances cleavage of the N-terminal domain of GSDMD (GSDMD-N) and caspase-1 in
CRC cells [42]. A study found that in a cell model with FOXP2 depletion, low expression
of FOXP2 promoted the cell growth of CRC and inhibited cell pyroptosis by inhibiting
caspase-1 expression [43]. Another study found that ginsenoside Rh3 (GRh3) isolated
from Chinese herbal medicine inhibited CRC cell proliferation and activated caspase-1
to induce GSDMD-dependent cell pyroptosis [44]. Also, subunit CLNA1 of Lactobacillus
plantarum ZS2058 activates caspase-1, inducing pyroptosis in CRC cells, while subunit
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CLNA2 inhibits CRC cell proliferation by activating caspase-4/-5 [45]. Above all, the canon-
ical inflammasome pathway in CRC is characterized by the formation of inflammasomes
and activation of caspases, as well as subsequent cleavage of GSDMD, resulting in cell
pyroptosis and inflammatory responses which finally lead to tumor suppression [8].

2.2. The Caspase-4/5/11 Mediated Non-Canonical Inflammasome Pathway

The non-canonical inflammasome pathway is relatively rare compared to the canonical
one and occurs independent of caspase-1 activation [46]. The activation of the non-canonical
inflammasome pathway is mediated by human caspase-4/5 and mice caspase-11. Studies
have found that caspase-4/5 in humans or caspase-11 in mice directly binds to LPS and
is activated under stress. Activated caspase-4/5/11 cleave GSDMD to form the activated
N-terminal domain of GSDMD (GSDMD-N) with a perforation function, which causes
cell membrane perforation and secretion of IL-1β and IL-18, resulting in pyroptosis [47,48].
According to reports, caspase-11 has been found to exert preventive and protective effects
against dextran sodium sulfate (DSS)-induced colitis in mice [49]. Mice lacking caspase-11
exhibit prominent inflammatory responses and decreased proliferation of intestinal epithe-
lial cells [50,51]. Therefore, in the non-canonical inflammasome pathway, the inhibitory
effect of pyroptosis on CRC cells is also evident.

2.3. The Caspase-3 Mediated Non-Canonical Pathway

In addition to the inflammatory caspase-1/4/5/11, other apoptosis-associated cas-
pases can also trigger pyroptosis. For example, under specific circumstances, such as
chemotherapy or targeted therapy, pyroptosis can be induced by caspase-3 mediated gas-
dermin E (GSDME) [52]. This mode of pyroptosis is mediated by GSDME instead of
GSDMD. Lobaplatin, a common chemotherapy drug, was reported to cause CRC cells to
undergo pyroptosis by triggering caspase-3 to cleave GSDME [53]. Also, lobaplatin can
activate caspase-3 in CRC cell lines HT-29 and HCT-116, leading to the cleavage of GSDME
and subsequent occurrence of pyroptosis-like features, such as plasma membrane swelling
and pore formation in CRC cells and inhibiting tumor growth [53]. The chemotherapeutic
drug doxorubicin (DOX) can also induce the caspase-3 mediated pyroptosis through the
ROS/JNK signaling pathway [54].

In addition to chemotherapeutic drugs, natural compounds can induce pyroptosis in
many cancers. Neobractatin (NBT), isolated from the edible fruit of Garcinia bracteata, can
induce GSDME cleavage by activating caspase-3 in esophageal cancer (EC) cells, resulting
in cell death and tumor growth inhibition [55]. Apoptin possesses the ability to cause cell
death in certain human cancer cell lines [56]. Apoptin from the VP3 gene of the chicken
anemia virus can also trigger GSDME-mediated pyroptosis by cleaving caspase-3 [56]. In
addition, it can increase internal reactive oxygen species (ROS) while inhibiting HCT-116
cell viability and induce pyroptosis in nude mice bearing HCT-116 xenograft, inhibiting
tumor growth [57].

2.4. Granzyme-A/B-Dependent Pyroptosis Pathway

According to recent research, granzymes can also target tumor cells via perforin
and trigger pyroptosis [58,59]. Granzyme is a serine protease secreted by cytotoxic T
lymphocytes (CTL) and natural killer (NK) cells [58,60]. Five kinds of granzymes have
been identified in humans: GZMA, GZMB, GZMH, GZMK, and GZMM [58]. A previous
study found that GZMA cleaves GSDMB, resulting in pyroptosis of SW837 and SKCO1
cells [59]. In CT26 mouse cells, the cleavage of GSDMB by GZMA significantly promotes
tumor clearance [58]. Another serine protease, GZMB, can directly cleave GSDME and
trigger caspase-independent pyroptosis in HEK293T cells. Increased expression of GSDME
enhances the phagocytic activity against tumor cells, thereby inhibiting tumor growth [59].
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3. GSDM Family and CRC

The GSDM protein family is characterized by pore formation, mainly expressed in the
digestive tract, skin, and immune cells [61]. According to the conserved C-terminal and N-
terminal domain sequences, the GSDM family is divided into GSDMA, GSDMB, GSDMC,
GSDMD, and GSDME, except pejvakin (DFNB59/PJVK) [62]. GSDMs can regulate normal
cell proliferation and differentiation, protect the host from pathogens [25], and act as an
effector protein for pyroptosis to trigger inflammation and cell death [63,64]. GSDMs
have been associated with various human diseases, including cancer and inflammation-
associated diseases. Previous studies found that the GSDM family proteins are expressed
in healthy normal tissues but also highly expressed in cancer tissues [65]. Recently, the
GSDM family’s role in cancer has become more prominent. The abnormal expression
and dysfunction of GSDM family genes were linked to multiple cancer-related pathways,
suggesting that GSDM genes are extensively involved in cancer occurrence and progression,
including breast cancer [54], lung cancer [66], and gastric cancer [24], as well as in CRC [67].
Furthermore, the GSDM genes showed significant genomic alterations, according to pan-
cancer studies of the GSDM family [65].

According to several studies, certain medications or molecules can cause GSDM-mediated
pyroptosis in CRC, suggesting that GSDM family genes were associated with the develop-
ment and progression of CRC [68]. Notably, CRC patients with low expression of GSDMD
have shown poor prognosis [69]. According to the Venn analysis, GSDMB, GSDMD, and
GSDME are related to the invasion and metastasis of CRC [65], suggesting that GSDM protein
family-mediated pyroptosis has an important role in CRC (Figure 2, Table 1).
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induce GSDME cleavage and subsequent cell death. Caspase-1/GSDMD-dependent pyroptosis
is induced by activating molecules, including SDG, FOXP2, GRh3, and CLNA1. CLNA2 induces
cell pyroptosis through the activation of caspase-4/5. GSDMB and GSDMC participate in pyrop-
tosis and subsequent cell death through the GZMA and TGFBR2, respectively. 5-aza-dC: 5-aza-
2′-deoxycytidine; RT: radiation therapy; GA: gambogic acid; DSS: dextran sulfate sodium; GRh3:
ginsenoside Rh3.

Table 1. The expression and function of GSDM family members in CRC.

GSMD Family
Gene Role in CRC Expression

Pattern
Prognosis in

CRC References

GSDMA Uncertain Uncertain Uncertain None
GSDMB Oncogene Up-regulated Negative [70,71]
GSDMC Oncogene Up-regulated Negative [23]
GSDMD Anti-oncogene Down-regulated Positive [69,72]
GSDME Anti-oncogene Down-regulated Positive [67,73,74]

DFNB59/PJVK Uncertain Uncertain Uncertain None

3.1. GSDME

GSDME, also known as deafness autosomal dominant 5 (DFNA5), can induce cell
swelling and death [75,76]. After cleavage by the activated caspase-3, the N-terminal do-
main of GSDME (GSDME-N) can promote pore formation and trigger pyroptosis. GSDME
expression level is different in malignant and normal tissues [77]. GSDME is always highly
expressed in normal tissues, but the expression level is distinct among different cancers and
episodically absent expression in some cancer, and the absent expression may be due to the
methylation of the GSDME gene promoter [67,78–80]. The mutations of tumor-associated
GSDME also could inhibit pyroptosis [81].

In addition, several studies have shown that GSDME, as a molecule with known
anti-tumor potential, is involved in the development and progression of many cancers [82].
According to a recent study, ectopic expression of GSDME in cancer cells could enhance anti-
tumor immune responses and suppress tumor growth [59]. In case of CRC also, GSDME has
been shown to have anti-tumor effect [83]. For example, an ectopic expression of GSDME
significantly inhibits colony formation, proliferation, and growth of CRC cells [73]. The
methylation inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) could promote GSDME expression
and inhibit tumor cell proliferation and carcinogenesis, implying that GSDME is a potential
tumor suppressor gene in CRC [73,84]. Radiation therapy (RT) and chemotherapeutic
agents such as lobaplatin and cisplatin can also induce caspase-3 activation and GSMDE
cleavage following by pyroptosis [53,85]. Activated caspase-3 and cleavage of GSDME
were also observed in natural compound gambogic acid (GA)-treated CRC cells. This GA
induced GSDME-dependent pyroptosis and significantly suppressed tumor proliferation,
while enhancing anti-tumor activity [86]. Since GZMB can cleave and activate caspase-3,
Zhang et al. also found that GZMB cleaved and activated GSDME in a caspase-independent
manner [59]. These findings indicate that GSDME induces pyroptosis in CRC, acting as a
cancer suppressor gene.

3.2. GSDMD

GSDMD is the extensively studied member of the GSDM family, being generally
recognized as the executor of pyroptosis [8,47]. GSDMD is mainly expressed in the gas-
trointestinal epithelium, skin, and immune cells [87,88]. GSDMD is significantly expressed
in esophageal cancer, gastric cancer, CRC, and other cancers [87,89]. Typically, inflamma-
tory caspase-1, which was activated by different signals/stimuli, cleaves the GSDMD to
form an activated N-terminal domain of GSDMD (GSDMD-N), leading membrane pores
to induce pyroptosis, which mediates the release of inflammatory cytokines IL-1β and
IL-18 [90–92]. During pyroptosis, the calcium influx through the GSDMD pores is one of
the signals to activate cell membrane repair, which enhances cell survival ability [93]. In
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addition to caspase-1, caspase-11 and caspase-4/5 can also cleave GSDMD and induce
pyroptosis. Caspase-11 and caspase-4/5 can be directly activated by LPS to cleave GSDMD
and induce pyroptosis [8,47]. Pan-cancer analysis showed that GSDMD-mediated pyropto-
sis might have a critical role in cancers such as adrenocortical carcinoma and CRC and is
associated with the prognosis [94]. In a GSDMD deficient CRC mouse model induced by
azoxymethane (AOM)/dextran sulfate sodium (DSS), CRC development is accompanied
by the downregulation of GSDMC [95]. Also, a study found that a cooperative down-
regulated expression of GSDMD and GSDMC had a suppressive effect on gastrointestinal
tumors [95]. Furthermore, GSDMD expression seems to be negatively correlated with
lymphatic metastases and distant metastases in CRC [96]. According to another study,
LPS-induced pyroptosis inhibits the proliferation of CRC and increases the anti-tumor
activity of oxaliplatin [69]. Pyroptosis induced by caspase-4/GSDMD can also promote
the release of inflammatory factors such as IL-1β and IL-18, as well as recruit CD8+ T cell
infiltration, thereby activating anti-tumor immunity [97]. Collectively, GSDMD-mediated
pyroptosis has an important anti-tumor role in CRC.

3.3. GSDMB

GSDMB is known as gasdermin-like protein (GSDML). Interestingly, GSDMB is unique
to the human genome and particularly expressed in the airway tract and gastrointestinal ep-
ithelium [87,98]. Furthermore, it is abnormally expressed in many malignancies, including
breast, cervical, gastric, and colon cancers [22,87,99]. GSDMB is frequently up-regulated
and has a complex role in cancer. Additionally, GSDMB expression is increased in CRC
and associated with inflammatory bowel disease (IBD) susceptibility. Therefore, GSDMB
may have an important role in the pathogenesis of CRC under the inflammatory response
in IBD [100,101].

A GSDMB-dependent cellular function study suggested that GSDMB-expressing in-
testinal epithelial cells (IECs) have a protective effect during gastrointestinal inflammatory
infection and cancer [71,102]. Recent studies have found that GSDMB could inhibit epithe-
lial cell proliferation and motility, suggesting that epithelial-derived GSDMB has a protec-
tive function from cancer [70]. In addition, GSDMB has been found to specifically bind
with lipid membranes, but this property appeared to be independent of pyroptosis [70,102].
Since GSDMB has no orthologs in mice, identifying its role in vivo is still challenging. At
present, the evidence related to the molecular mechanism of GSDMB-induced pyroptosis is
limited. Therefore, the important role of GSDMB in cancer cell pyroptosis remains elusive.

3.4. GSDMC

GSDMC was originally found to be highly expressed in metastatic melanoma cells
and was first known as a melanoma-derived leucine zipper-containing extranuclear factor
(MLZE) [84]. The expression of GSDMC is low in most normal tissues but high in the
gastrointestinal tract. Also, its physiological function is still unclear [87]. In most cancers,
the methylation of the GSDMC promoter is lower in tumors than in normal tissues. GSDMC
expression is tumor-specific and often expressed in melanoma [84], lung cancer [103], and
CRC [104]. In addition, GSDMC exhibits cell growth inhibition activity, which indicates it
may act as a potential tumor suppressor [87]. Like other GSDMs, GSDMC is involved in
the pyroptosis biological process. Yet, because the biological function of GSDMC is rarely
studied, its role in cancer is still not fully understood.

Hou et al. reported that GSDMC could be cleaved by caspase-8 and cause breast
cancer cells to undergo pyroptosis [105]. Another study discovered that the metabolite
α-ketoglutarate (α-KG) could induce pyroptosis via caspase-8-mediated GSDMC cleavage,
inhibiting tumor growth and metastasis in a mouse model [106]. GSDMC also inhibits cell
growth and decreases tumor proliferation in gastric and esophageal cancer [87]. On the
other hand, GSDMC has also been linked to tumorigenesis in some cases. For example,
GSDMC stimulates CRC proliferation under adenomatous polyposis coli (APC) mutation,
which was significantly reversed by GSDMC silencing [23]. However, due to various
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pathways of pyroptosis, the tumor suppressor or tumor-promoting effect of pyroptosis is
also related to the duration time and the intensity of the inflammatory response. Therefore,
the function of GSDMC in the carcinogenesis of CRC needs to be further clarified.

3.5. Other GSDMs
3.5.1. GSDMA

GSDMA is a GSDM family member with three mouse homologs [62]. The molecular
regulation mechanism of GSDMA is still not fully understood. GSDMA is expressed in
the upper gastrointestinal tract and is strongly linked with asthma susceptibility [107],
but its expression is frequently silenced in gastric cancer, suggesting the potential tumor
suppressor role in gastrointestinal cancer [87]. However, since GSDMA is not expressed
in the small and large intestine, the correlation of GSDMA with CRC development or
progression has not been identified.

3.5.2. DFNB59

DFNB59, also known as Pejvakin (PJVK), has received little attention as a member
of the GSDM family so far. Its expression has been found in the neurons of the afferent
auditory pathway, inner ear cells, and testis, and it is mainly associated with hearing
impairment [108,109]. DFNB59 lacks the linker region between the N-terminal and C-
terminal domains and has no pore-forming activity [110]; thus, its role in pyroptosis is still
unknown. The role of DFNB59 in CRC has not yet been reported.

4. The Role of Pyroptosis in CRC
4.1. Pyroptosis Function as a Tumor Suppressor in CRC

Emerging studies demonstrate that various cellular processes and RCD may lead to
cancer cell death, and the most common are apoptosis, autophagy, ferroptosis, necrop-
tosis, and pyroptosis. RCD abnormalities are associated with cancer development and
progression [68,111,112]. Pyroptosis, an inflammatory cell death associated with the in-
flammasomes and GSDM, affects the transformation and development of cancer. The
activation of pyroptosis can lead to selective cell death in tumor cells. Cancer cells exhibit a
higher sensitivity to pyroptosis compared to normal cells [113,114]. What is more, stud-
ies have proven that pyroptosis can promote immunogenic cell death, improve immune
activity, and kill tumor cells, thus having a strong anti-tumor activity against cancer cell
invasion [14,115,116]. A study found that FOXP2 could inhibit CRC cell proliferation by
promoting caspase-1 expression in a colitis-associated CRC model [43]. In addition, using
a bioorthogonal system, it was found that in tumor cells undergoing pyroptosis, cells
and genes associated with immunity and anti-tumor, such as CD4+ T, CD8+ T, and NK
cells, are up-regulated, while various molecules that promote tumor growth and prolifera-
tion are down-regulated [117]. Pyroptosis-related participants, pathways, and regulatory
mechanisms have been implicated in cancer development, progression, and metastasis,
and pyroptosis has a powerful ant-tumor potential during cancer progression, includ-
ing CRC [58,59]. Therefore, the activation of pyroptosis may provide a potential tumor
suppressor and treatment strategy for CRC.

4.2. Pyroptosis and the Tumorigenesis and Development of CRC

Various factors regulate the pathophysiological process of tumorigenesis. The two primary
processes underlying CRC occurrence are the classical normal mucosal–adenoma–carcinoma
evolution pattern and the colitis-associated pattern of CRC [5]. Pyroptosis takes part in most
aspects of the tumorigenesis and development of CRC [118–120]. According to a classical
pattern, CRC originates from cancer stem cells (CSC). Previous studies indicated that pyrop-
tosis could decrease CSC activation to inhibit cancer cell proliferation. After evaluating the
relationship between GSDM genes and stemness, it was found that the GSDM family was
not only related to stemness but also to patients’ survival [65]. The relationship between the
normal mucosal–adenoma–carcinoma evolution pattern and pyroptosis remains unclear and



Biomolecules 2024, 14, 874 9 of 19

requires further exploration and investigation. However, the relationship between pyroptosis
and colitis-associated CRC is gradually becoming clearer.

For the inflammation-related pattern, IBD is highly associated with CRC and can be di-
vided into Crohn’s disease (CD) and ulcerative colitis (UC) [121]. During the inflammatory
process, PAMPs from pathogens and DAMPs released by host damaged cells are recognized
by PRRs in intestinal epithelial cells, leading to inflammasome assembly and subsequent
cell pyroptosis. Accordingly, pyroptosis promotes cell death via the inflammatory response
and protects from CRC. The anti-tumor role of inflammasomes in colitis-associated CRC
such as maintaining epithelial cell integrity by NLRP3 inflammasomes in IBD has been
extensively studied. Several studies have identified the anti-tumor effects of pyroptosis
in CRC [18,122,123]. It has been found that NLRP1−/− mice had significantly increased
gastrointestinal inflammation and tumorigenesis compared with wild-type mice, indicating
that NLRP1 has a protective role in reducing colitis and colitis-related CRC [40]. Another
study demonstrated that NLRP3 inflammasome components act as a protective role in an
animal model of acute colitis, in which NLRP3 deficiency enhanced chemically induced
colitis-associated CRC occurrence [122]. Meanwhile, in the acute intestinal inflammation
model induced by dextran sodium sulfate (DSS), caspase-11 was found to suppress and
inhibit intestinal inflammation, further supporting the protective role of pyroptosis in
IBD [50]. In mice lacking caspase-11, the damage caused by inflammation was more pro-
nounced in the colon [124]. Moreover, in the colitis-associated CRC model induced by
5-aza-dC, the activation of NALP1 inflammasome increased, suppressing the growth of
colon cancer and increasing lifespan [114]. A study found that NLRP3 could promote
hepatic NK cell maturation, and the liver metastasis was increased when IL-18 signaling
was impaired in a NLRP3 knockdown CRC mouse model [125]. All the above findings
suggest that pyroptosis plays an important role in CRC development and progression.

5. The Potential Clinical Value of Pyroptosis in CRC

According to the important role of pyroptosis in the development and progression
of CRC, the significance of pyroptosis in CRC treatment has also been studied (Figure 3).
Chemotherapy is currently the most widely utilized treatment for CRC. Chemotherapeutic
drugs can induce pyroptosis in tumor cells, affecting cell vitality, invasion, and migration,
thereby promoting tumor cell death [69,114]. Additionally, the synergy between pyroptosis
and chemotherapy drugs can increase chemotherapy sensitivity. Radiotherapy-induced
pyroptosis enhances the radiosensitivity of CRC and boosts tumor immune infiltration,
greatly improving treatment efficacy [126,127]. In CRC immunotherapy, induction of cell
pyroptosis promotes immune cell activity, enhances cancer cell sensitivity to immune
checkpoint inhibitors (ICIs), and improves anti-tumor immune responses [58,117,128].
Furthermore, targeted pyroptosis may become an important therapeutic approach in future
CRC treatments. Recently, novel delivery molecules such as biomimetic nanoparticles (BNP)
and drug–polymer hybrid supramolecular nanoprodrugs (PDNP) have been developed,
effectively inducing pyroptosis in tumor cells and enhancing treatment efficacy [129,130].

5.1. Pyroptosis and Chemotherapy in CRC

Chemotherapy is the most important systemic treatment option for advanced CRC.
Yet, due to chemotherapy resistance, many CRC patients develop recurrence and metastasis
after therapy [131]. Therefore, developing treatment strategies to reverse or compete against
chemotherapy resistance is crucial.

Some chemotherapeutic drugs, including cisplatin, paclitaxel, 5-fluorouracil (5-FU),
lobaplatin, etc., can trigger pyroptosis in tumor cells [132]. Compared to conventional
chemotherapy, drugs inducing pyroptosis can effectively overcome resistance to apoptosis,
reduce tumor immune tolerance, and enhance treatment efficacy. In CRC with high expres-
sion of GSDME, drugs such as TNFα+CHX and navitoclax can induce pyroptosis through
the BAK/BAX caspase-3-GSDME pathway [81]. However, due to hypermethylation of
the GSDME gene, most cancer cells lack caspase-3-derived GSDME. Four inhibitors of cell
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proliferation, including obatoclax mesylate (OM), BI 2536 (BI), (S)-(+)-camptothecin (CPT),
and bortezomib (BTZ), were screened for their drug efficacy in CRC using a cancer-tissue-
originated spheroid (CTOS)-based screening method and successfully induced GSDME-
mediated pyroptosis. The results showed that CRC growth was inhibited and accompanied
by increased CD8+ T cells during pyroptosis [133]. More recently, Alisol A, a marine
herb with anti-tumor effects, was found to induce pyroptosis by increasing the levels of
caspase-1, GSDMD, and GSDME in CRC cells, while reducing cancer cell migration and
increasing the chemosensitivity of cisplatin [134]. FL118 is a novel camptothecin-based
anti-tumor drug that exhibits anti-tumor effects in CRC. Recent studies have found that
FL118 inhibits the growth and metastasis of CRC by activating the NLRP3 inflammasome
and promoting the release of IL-18 and IL-1β [135]. Additionally, it was found that admin-
istering the synthetic FXR agonist GW4064 simultaneously with oxaliplatin could have
a synergistic anti-tumor impact, as GW4064 enhanced the chemosensitivity of cells to
oxaliplatin by inducing BAX/caspase-3/GSDME-mediated pyroptosis [136]. Similarly, a
study showed that GSDMD-mediated pyroptosis promoted oxaliplatin sensitivity in HT-29
cells after LPS-induced GSDMD expression [69]. This combination method provided a new
strategy for the treatment of CRC.

In conclusion, all this evidence suggests that the induction of pyroptosis by chemother-
apeutic drugs could promote drug sensitivity and improve the efficacy of chemotherapy.
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5.2. Pyroptosis and RT in CRC

RT is one of the fundamental therapies to control local recurrence and metastasis in
advanced CRC. Several research investigations have shown that the induction of cancer
cell pyroptosis is also an important mechanism of RT [126,137]. Studies found that RT
could effectively induce dose-dependent pyroptosis in HCT-116 cells [127]. In CRC models,
RT suppressed the expression of miR-15a while inducing caspase-1 activity and GSDMD
expression, decreasing tumor cell vitality, proliferation, and growth [137]. Additionally,
caspase-1, caspase-4, and caspase-5 were up-regulated and triggered pyroptosis as a re-
sult of miR-21-5p overexpression [138]. Another study showed that the lncRNA NEAT1
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regulates the expression of GSDME, leading to pyroptosis in CRC cells during RT [127].
Elevated expression of GSDME enhances the RT sensitivity of CRC and increases tumor
immune infiltration [126,127]. Thus, the induction of pyroptosis via RT is important for
enhancing the RT efficiency in controlling tumor growth and immune microenvironment
in CRC.

5.3. Pyroptosis and Immunotherapy

The fully functional immune system can prevent tumor initiation and progression,
but the immune function is always impaired under malignant progression [139,140]. Im-
munotherapy is a treatment strategy to enhance the cancer cell immunogenicity and
stimulate the immune response against immune escape [141]. Immunotherapy based on
ICIs significantly affects most cancers, especially CRC. In fact, the application of ICIs is
limited because of their natural anti-apoptotic ability and the individual differences in
patients. Thus, studying the molecular mechanisms of cell death other than apoptosis has
become a new subject of cancer therapy [142].

Infiltration of CD8+ T cells is crucial to immunotherapy. Activated T cells can exert
synergistic effects in inducing pyroptosis and immune response [142]. During pyroptosis,
the immune cells’ activity is enhanced, leading to an increased cytotoxic effect of cyto-
toxic lymphocytes [58]. Therefore, induction of tumor cell pyroptosis can improve the
sensitivity to ICIs. For instance, nanomaterials enhanced the immunogenicity of cancer
cells and showed favorable treatment efficacy in immunogenic cell death (ICD)-based
therapy [143]. In addition, ICIs and pyroptosis were also found to show synergistic anti-
tumor activity [117,128]. A prodrug utilizing high paclitaxel (PTX) and a photosensitizer
purine 18 (P18)-loaded ROS/glutathione (GSH) dual-responsive nano-prodrug (denoted as
MCPP) was recently designed, which could efficiently induce cancer cell-specific pyroptosis,
trigger adaptive immunity, enhance the effectiveness of immune checkpoint blockade (ICB),
and achieve tumor regression [144]. These findings suggest that pyroptosis is essential for
CRC immunotherapy.

5.4. Pyroptosis and Targeted Therapy

Distinct signaling pathways and molecules of novel cell death forms other than
apoptosis have been discovered recently, providing new targets and strategies for cancer
therapy [145]. As an emerging target for cancer therapy, pyroptosis has shown great po-
tential in treating CRC [127,146]. A series of new drugs targeting pyroptosis are being
developed and tested in clinical trials in CRC. For example, a biomimetic nanoparticle
(BNP) could efficiently accumulate at tumor sites, induce GSDME-mediated pyroptosis,
and activate systemic anti-tumor immunity, effectively reducing the severe toxicity to
normal cells and tissues [129]. A nanoparticle-mediated cytotoxic drug can selectively be
delivered to cancer cells via exotoxin A to activate NLRP3, cleave GSDMD, and mediate
pyroptosis at the primary tumor site [72]. Moreover, nanoparticles with high selectivity for
inducing pyroptosis can effectively activate caspase-11 and NLRP3, causing CRC cell pro-
liferation suppression. This treatment’s maximum effect appears 48 h post-treatment [147].
Moreover, Liang and colleagues designed a drug–polymer hybrid supramolecular nanopro-
drug (PDNP) as a pyroptosis inducer. PDNP solves the weakness of pyroptotic efficacy
during drug delivery and promotes precise drug release, thereby effectively triggering
GSDME-mediated pyroptosis and enhancing the anti-tumor immune response [130]. These
findings provide a lot of preliminary targeting pyroptosis therapy evidence for CRC.

5.5. Diagnostic and Prognostic Value of Pyroptosis in CRC

As the important role of pyroptosis in CRC has been identified, the diagnostic and prog-
nostic value of pyroptosis in CRC has also gradually been studied in recent years. Several
pyroptosis-related biomarkers have been identified to predict patient prognosis [148,149].
For example, a pyroptosis-related gene (PRG) prognosis prediction model showed that
pyroptosis is associated with a higher proportion of immune infiltration and indicated a
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better prognosis [150,151]. A study demonstrated that the expression of NLRC3 and NLRP4
is lowered in CRC and correlated with immune infiltration, which was positively correlated
with favorable prognosis [120]. In a recent study, functional analysis revealed a negative
correlation between three genes (SLC2A3, TMPRSS11E, and UPK3B) can predict the overall
survival of patients with colon cancer, finding that it is negatively correlated with the
proliferation and migration of colon cancer cells [152]. Moreover, the lncRNA risk model
related to cell pyroptosis revealed remarkable predictive capacity in CRC, indicating that
the high-risk group was worse than the low-risk group in terms of survival outcomes [153].
The role of the predictively modeled lncRNA KCNQ1OT in CRC progression has been
reported [153]. In addition, a CRC risk model based on nine high-risk groups of lncRNA
associated with pyroptosis has been validated, demonstrating high expression levels in
cancer tissues [154]. It was found that pyroptosis levels in CRC (such as CSP1, CASP6,
GZMB, and NLRP1) and the tumor microenvironment (TME) were significantly correlated
with the prognosis of individual CRC patients [155]. The CRC prediction model based on
13 PRGs (AIM2, CASP1, CASP5, CASP6, CASP8, CASP9, ELANE, GPX4, GSDMD, NLRP7,
NOD2, PJVK, and PRKACA) revealed a higher proportion of immune infiltration and better
survival outcomes in the low-risk group [156]. In addition, IL-17A-mediated pyroptosis
in CRC cells could release immune antigens and promote the infiltration of CD8+ T cells,
thereby improving the CRC patients’ prognosis [97]. AIM2 inflammasome, which mediates
caspase-1 activation and pyroptosis, had low expression in CRC and was negatively corre-
lated with survival [157,158]. HMGB1 is an inflammatory nuclear protein released during
GSDME-mediated pyroptosis, and in the absence of GSDME, the expression of HMGB1 is
significantly reduced and associated with the prognosis of CRC [159].

The above studies indicate that pyroptosis plays an important function in CRC, and
that pyroptosis-related molecules can be used as biomarkers for clinical diagnosis, treatment
response, and prognosis prediction.

6. Conclusions

Pyroptosis has emerged as a novel form of pro-inflammatory RCD, characterized by
the GSDM-activated cellular lysis and subsequent release of cellular contents, triggering
a potent inflammatory response, as well as an eventual cell death. Pyroptosis is closely
associated with the development and progression of cancer, including CRC. A small
number of studies suggest that pyroptosis may increase tumor burden [160,161]. Yet, most
research has shown that pyroptosis has a significant anti-tumor effect in CRC. Consequently,
pyroptosis is considered as a promising therapeutic strategy for CRC patients. Whether
pyroptosis exerts its anti-tumor effects solely through known key activation components
requires further investigation. The powerful therapeutic potential of inducing pyroptosis
in CRC cells is apparent. It could overcome resistance to conventional chemotherapy
drugs and synergize with immunotherapy to enhance anti-tumor immune responses,
thereby improving treatment outcomes. The ongoing development of novel inducers
targeting pyroptosis, such as biomimetic nanoparticles and supramolecular nanoprodrugs,
broadens the therapeutic landscape of pyroptosis in CRC. In addition, numerous pyroptosis-
related genes have emerged as valuable diagnostic prognostic and biomarker candidates
in CRC. Overall, studies on pyroptosis in CRC will undoubtedly continue to expand, and
a comprehensive understanding of the relationship between pyroptosis and CRC will
furthermore bring new hope for preventing and treating CRC.
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